Fotonika. Plan: Wykład 14: podsumowanie, uzupełnienie
|
|
- Anna Wysocka
- 6 lat temu
- Przeglądów:
Transkrypt
1 Fotonika Wykład 14: podsumowanie, uzupełnienie Plan: Uzupełnienie: kryształy fotoniczne i metamateriały soczewka Pendrego, nadrozdzielczość Absorbery elektromagnetyczne elementy optyki fourierowskiej
2
3 Optyka geometryczna Warunek stosowalności: a λ - Światło rozchodzi się w postaci promieni - W ośrodku jednorodnym promienie są proste, a na granicy ośrodków załamują się zgodnie z prawem Snella - pomija się efekty falowe (dyfrakcja, interferencja), a najczęściej także związane z polaryzacją - Modelowanie: śledzenie promieni (ray-tracing)
4 Kryształy Naturalne kryształy dla światła z zakresu widzialnego stanowią ośrodek jednorodny (często anizotropowy) a λ Można przypisać im dodatni, lub zespolony, współczynnik załamania, bądź tensor przenikalności elektrycznej.
5 Kryształy fotoniczne a λ - Kryształy fotoniczne są periodycznymi strukturami złożonymi z dielektryków. - Okres sieci jest tego samego rzędu, co długość fali. - Występują w przyrodzie, ale można je także projektować i wytwarzać sztucznie. - Propagacja światła w kryształach fotonicznych ma miejsce w postaci fal Blocha (modów kryształu fotonicznego). - Własności kryształu opisuje się poprzez wyznaczenie struktury modowej, która ma charakter pasmowy. - W krysztale fotonicznym może występować częściowa, lub całkowita fotoniczna przerwa wzbroniona.
6 Metamateriały optyczne a λ /10 Shelby,Smith, Schultz, Science 292, 77, Metamateriałami nazywa się sztuczne struktury o niespotykanych w naturze właściwościach (nie ma jednej precyzyjnej definicji terminu). - Zwykle używa się tej nazwy w odniesieniu do sztucznych periodycznych struktur metaliczno-dielektrycznych, którym można przypisać własności efektywne (jednorodne). - Przykładowe własności metamateriałów (niejednocześnie): - własności magnetyczne, pomimo braku własności magnetycznych składników - efektywny współczynnik załamania równy 0, 1, albo ujemny - różny znak różnych składowych efektywnego tensora przenikalności elektrycznej - chiralność, pomimo użycia jednorodnych składników
7 Materiały o efektywnych własnościach magnetycznych ' ' ' ' ' E ' H Z' Z'' n '' n' P. Markos and C. M. Soukoulis, Transmission properties and effective electromagnetic parameters of double negative metamaterials, Opt. Express 11, (2003),
8 Materiały o efektywnych własnościach magnetycznych Dla częstości mikrofalowych: 2D Shelby et al. Experimental Verification of a Negative Index of Refraction, Science 292, 77 (2001) Dla częstości optycznych: S. Linden et al., Magnetic Response of Metamaterials at 100 Terahertz, Science 306, 1351 (2004) 3D C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, M. Tanielian, Experimental verification and simulation of negative index of refraction using Snell's law, Phy. Rev. Lett. 90, , (2003). Grigorenko et. al, Nanofabricated media with negative permeability at visible frequencies Nature 438, 335, 2005
9 Jak światło zachowuje się w strukturach o różnych własnościach efektywnych? μ ϵ<0 μ> 0 ϵ>0 μ> 0 Tunelowanie metale ϵ<0 μ< 0 Propagacja Propagacja 1 dielektryki 1 ϵ>0 μ< 0 Tunelowanie Większość miejsca na tym wykresie pozostaje dla metamateriałów... ϵ
10 Przezroczyste metale - Można wykonać metaliczno-dielektryczną periodyczną strukturę warstwową przezroczystą w zakresie widzialnym, podczerwonym, lub nadfioletowym, czyli tzw. przezroczysty metal - wyniki doświadczalne są zgodne z przewidywaniami - zastosowania: elektrody kom. LCD, ekrany termiczne, okulary ochronne, przezroczyste materiały przewodzące M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden et al."transparent, metallo-dielectric, one-dimensional, photonic bandgap structures," J. Appl. Phys. 83, 2377 (1998); M. J. Bloemer, M. Scalora, "Transmissive properties of Ag/MgF2 photonic band gaps," Appl. Phys. Lett. 72, 1676 (1998);
11 Przezroczyste metale Przewidywane widmo transmisyjne Idea działania (metaliczny FP) M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden et al."transparent, metallo-dielectric, one-dimensional, photonic bandgap structures," J. Appl. Phys. 83, 2377 (1998)
12 Rezonansowe tunelowanie d λ=633 nm, n1 =1, n Au= i, d Au =20 nm d λ=633 nm, n1 =1.5, n 2 =1, k 0 d gap =1, θ=asin ( n 2 /n 1) 1.05
13 Struktury cienkowarstwowe materiały o zerowej przenikalności elektrycznej Optical materials with a dielectric constant near zero have the unique property that light advances with almost no phase advance. Although such materials have been made artificially in the microwave and far-infrared spectral range, bulk three-dimensional epsilon-near-zero (ENZ) engineered materials in the visible spectral range have been elusive. Here, we present an optical metamaterial composed of a carefully sculpted parallel array of subwavelength silver and silicon nitride nanolamellae that shows a vanishing effective permittivity, as demonstrated by interferometry. Good impedance matching and high optical transmission are demonstrated. The ENZ condition can be tuned over the entire visible spectral range by varying the geometry, and may enable novel micro/nanooptical components, for example, transmission enhancement, wavefront shaping, controlled spontaneous emission and superradiance.
14
15 Doskonała soczewka płaska D. Melville, R Blaikie, C. Wolf, Submicron imaging with a planar silver lens, Appl. Phys. Lett. 84, 4403, 2004 =360nm J.B. Pendry, Phys. Rev. Lett. 85, 3966, (2000)
16 Hipersoczewka do obrazowania z powiększeniem obiektów o rozmiarach poniżej kryterium dyfrakcyjnego Zhaowei Liu, et al., "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315, 1686 (2007); Wielowarstwa ułozona na brzegu cylindra pozwala na obrazowanie z powiększeniem - dzięki temu obraz obiektu o rozmiarach subfalowych może zostać zmierzony w polu dalekim
17 Doskonała soczewka płaska RHM =1, =1 d1 LHM RHM = 1, = 1 =1, =1 d 1 d2 d2
18 Dygresja: (meta)materiały left-handed (LHM) Hipoteza postawiona teoretycznie blisko 50 lat temu przez Wiktora Veselago: Załóżmy, że istnieje ośrodek o jednocześnie ujemnej przenikalności elektrycznej i magnetycznej: (ϵ< 0,μ < 0) V. G. Veselago, The electrodynamics of substances with simultaneously negative values of permittivity and permeability, Sov. Phys. Usp. 10, 509, (1968). Jak wygląda propagacja fali EM w takim ośrodku? Równanie Helmoltza: ( + n k ) Ψ =0 2 n =ϵ μ Wniosek: propagacja wygląda podobnie jak w dielektryku, bo równanie Helmoltza nie widzi oddzielnie znaków obu przenikalności
19 Dygresja: (meta)materiały left-handed (LHM) μ E=k ϵ E Wektorowe równanie falowe: zachowuje się przy transformacji Wobec tego zachowują się pola E Skrętność układu (E,H,k): exp ( i ω t) k 0 =ω / c η0= μ 0 /ϵ0 ϵ ϵ μ μ oraz D=ϵ0 ϵ E Zmienia się natomiast znak dla: Dla fali płaskiej mamy: E=E 0 exp (i k r ) H= H 0 exp(i k r ) i B= ω E 1 1 S= E H H=μ 0 μ B k E0 =k 0 η0 μ H 0 E dielektryk (RHM): k H S metamateriał (LHM): E S H k
20 Materiały LHM ujemne załamanie (ϵ1, μ 1) n 1= ϵ1 μ 1 RHM (ϵ2, μ 2) k n 1= ϵ2 μ 2 RHM r k tr θ1 θ2 θ1 k inc y sin(θ 1) = sin (θ 2 ) n 1 x Dla wszystkich trzech wiązek zachowane są: n2 (ω, k y )
21 Materiały LHM ujemne załamanie (ϵ2, μ 2) (ϵ1, μ 1) n 1= ϵ1 μ 1 RHM k n 2 = ϵ2 μ 2 η2= μ 2 /ϵ2 LHM r θ1 θ2 θ1 k inc k tr y x sin(θ 1) n 2 = sin (θ 2 ) n1 Jeśli przepływ energii jest przeciwny do k to wygodnie jest przyjąć ujemny znak w definicji współczynnika załamania bo taka konwencja pozwala pozostawić niezmienioną formę prawa Snella
22
23
24
25
26
27
Fotonika. Plan: Wykład 15: Elementy plazmoniki: struktury cienkowarstwowe, elementy teorii ośrodków efektywnych
Fotonika Wykład 15: Elementy plazmoniki: struktury cienkowarstwowe, elementy teorii ośrodków efektywnych S. Maier Plasmonics fundamentals and applications (Springer, 2007). Plan: Elementy plazmoniki i
Wykład 13: Elementy plazmoniki: fale powierzchniowe na granicy metali i dielektryków, nadrozdzielczość
Fotonika Wykład 13: Elementy plazmoniki: fale powierzchniowe na granicy metali i dielektryków, nadrozdzielczość S. Maier Plasmonics fundamentals and applications (Springer, 007). Plan: związek dyspersyjny
Wykłady 10: Kryształy fotoniczne, fale Blocha, fotoniczna przerwa wzbroniona, zwierciadła Bragga i odbicie omnidirectional
Fotonika Wykłady 10: Kryształy fotoniczne, fale Blocha, fotoniczna przerwa wzbroniona, zwierciadła Bragga i odbicie omnidirectional Plan: Jednowymiarowe kryształy fotoniczne Fale Blocha, fotoniczna struktura
Fotonika. Plan: Wykład 11: Kryształy fotoniczne
Fotonika Wykład 11: Kryształy fotoniczne Plan: Kryształy fotoniczne Homogenizacja długofalowa Prawo załamania dla kryształów fotonicznych, superkolimacja Tw. Blocha, kryształy, kryształy fotoniczne, kryształy
Wykład 12: prowadzenie światła
Fotonika Wykład 12: prowadzenie światła Plan: Mechanizmy prowadzenia światła Mechanizmy oparte na odbiciu całkowite wewnętrzne odbicie, odbicie od ośrodków przewodzących, fotoniczna przerwa wzbroniona
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 18, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 18, 23.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 17 - przypomnienie
Fotonika. Plan: Wykład 9: Interferencja w układach warstwowych
Fotonika Wykład 9: Interferencja w układach warstwowych Plan: metody macierzowe - macierze przejścia i rozpraszania Proste układy warstwowe powłoki antyrefleksyjne interferometr Fabry-Pérot tunelowanie
Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 18, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 18, 07.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 17 - przypomnienie
Podstawy fizyki wykład 8
Podstawy fizyki wykład 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, W11, PWr Optyka geometryczna Polaryzacja Odbicie zwierciadła Załamanie soczewki Optyka falowa Interferencja Dyfrakcja światła D.
Optyka. Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa
Optyka Optyka geometryczna Optyka falowa (fizyczna) Interferencja i dyfrakcja Koherencja światła Optyka nieliniowa 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim
Fotonika. Wykład (30h): Rafał Kotyński, wtorki 15:15-17:00, s. 1.40
Fotonika Fotonika to interdyscyplinarna dziedzina nauki i techniki, łącząca dokonania optyki, elektroniki i informatyki w celu opracowywania technik i urządzeń wykorzystujących promieniowanie elektromagnetyczne
Fotonika. Plan: Wykład 3: Polaryzacja światła
Fotonika Wykład 3: Polaryzacja światła Plan: Równania Maxwella w ośrodku optycznie liniowym Równania Maxwella dla fal monochromatycznych Polaryzacja światła Fala płaska spolaryzowana Polaryzacje liniowe,
Optyka. Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła
Optyka Optyka falowa (fizyczna) Optyka geometryczna Optyka nieliniowa Koherencja światła 1 Optyka falowa Opis i zastosowania fal elektromagnetycznych w zakresie widzialnym i bliskim widzialnemu Podstawowe
Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji
Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,
Fotonika. Wykład (30h): R. Kotyński Wtorki 15:15-17:00, s. 1.40
Fotonika Fotonika to interdyscyplinarna dziedzina nauki i techniki, łącząca dokonania optyki, elektroniki i informatyki w celu opracowywania technik i urządzeń wykorzystujących promieniowanie elektromagnetyczne
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2013/14
Wykład 17: Optyka falowa cz.2.
Wykład 17: Optyka falowa cz.2. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Interferencja w cienkich warstwach Załamanie
Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska
Podstawy fizyki Wykład 11 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 3, Wydawnictwa Naukowe PWN, Warszawa 2003. K.Sierański, K.Jezierski,
KATEDRA TELEKOMUNIKACJI I FOTONIKI
ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE WYDZIAŁ ELEKTRYCZNY KATEDRA TELEKOMUNIKACJI I FOTONIKI OPROGRAMOWANIE DO MODELOWANIA SIECI ŚWIATŁOWODOWYCH PROJEKTOWANIE FALOWODÓW PLANARNYCH (wydrukować
Fotonika kurs magisterski grupa R41 semestr VII Specjalność: Inżynieria fotoniczna. Egzamin ustny: trzy zagadnienia do objaśnienia
Dr inż. Tomasz Kozacki Prof. dr hab.inż. Romuald Jóźwicki Zakład Techniki Optycznej Instytut Mikromechaniki i Fotoniki pokój 513a ogłoszenia na tablicach V-tego piętra kurs magisterski grupa R41 semestr
Fale elektromagnetyczne w dielektrykach
Fale elektromagnetyczne w dielektrykach Ryszard J. Barczyński, 2016 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Krótka historia odkrycia
OPTYKA GEOMETRYCZNA I INSTRUMENTALNA
1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Raał Kasztelanic Wykład 4 Obliczenia dla zwierciadeł Równanie zwierciadła 1 1 2 1 s s r s s 2 Obliczenia dla zwierciadeł
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15
Cloaking, czyli czapka niewidka?
7 maja 2009 1 Zamiana zmiennych w równaniach Maxwella Niewidzialne przedmioty Inna zamiana zmiennych? 2 Przedmioty prawie niewidzialne Płaszcze uproszczone w mikrofalach Płaszcze z dopasowaną impedancją
WSTĘP DO OPTYKI FOURIEROWSKIEJ
1100-4BW1, rok akademicki 018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Wykład 4 Przestrzeń swobodna jako filtr częstości przestrzennych Załóżmy, że znamy rozkład pola na fale monochromatyczne
Ćwiczenie: "Zagadnienia optyki"
Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.
Motywacja Podstawy. Historia Teoria 2D PhC Podsumowanie. Szymon Lis Photonics Group szymon.lis@pwr.wroc.pl C-2 p.305. Motywacja.
Politechnika Wrocławska Plan wykładu 1. 2D Kryształy Fotoniczne opis teoretyczny 2. Podstawowe informacje 3. Rys historyczny 4. Opis teoretyczny - optyka vs. elektronika - równania Maxwella Wydział Elektroniki
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 6, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 6, 0.03.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 5 - przypomnienie ciągłość
III. Opis falowy. /~bezet
Światłowody III. Opis falowy BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet Równanie falowe w próżni Teoria falowa Równanie Helmholtza Równanie bezdyspersyjne fali płaskiej, rozchodzącej
Wykład 16: Optyka falowa
Wykład 16: Optyka falowa Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza
POLARYZACJA ŚWIATŁA. Uporządkowanie kierunku drgań pola elektrycznego E w poprzecznej fali elektromagnetycznej (E B). światło niespolaryzowane
FALE ELEKTROMAGNETYCZNE Polaryzacja światła Sposoby polaryzacji Dwójłomność Skręcanie płaszczyzny polaryzacji Zastosowania praktyczne polaryzacji Efekty fotoelastyczne Stereoskopia Holografia Politechnika
Falowa natura światła
Falowa natura światła Christiaan Huygens Thomas Young James Clerk Maxwell Światło jest falą elektromagnetyczną Barwa światło zależy od jej długości (częstości). Optyka geometryczna Optyka geometryczna
Widmo fal elektromagnetycznych
Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą
Wykład 16: Optyka falowa
Wykład 16: Optyka falowa Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Zasada Huyghensa Christian Huygens 1678 r. pierwsza falowa
Wykład FIZYKA II. 7. Optyka geometryczna. Dr hab. inż. Władysław Artur Woźniak
Wykład FIZYKA II 7. Optyka geometryczna Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ WSPÓŁCZYNNIK ZAŁAMANIA Współczynnik załamania ośrodka opisuje zmianę prędkości fali
Optyka geometryczna. dr inż. Ireneusz Owczarek CMF PŁ 2012/13
Optyka geometryczna dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Plan wykładu Spis treści 1. Wstęp 2 1.1. Modele w optyce.............................................
Metody Obliczeniowe Mikrooptyki i Fotoniki
Metody Obliczeniowe Mikrooptyki i Fotoniki Kod USOS: 1103-4Fot4 Wykład (30h): R. Kotyński Wtorki 9:15-11:00, s.1.38 lub B4.17(ul. Pasteura 5) Ćwiczenia (45h): Wtorki, w godz. 14.15-16.30, s.1.7 lub B4.17
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL
ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny
Wykład XI. Optyka geometryczna
Wykład XI Optyka geometryczna Jak widzimy? Aby przedmiot był widoczny, musi wysyłać światło w wielu kierunkach. Na podstawie światła zebranego przez oko mózg lokalizuje położenie obiektu. Niekiedy promienie
Wykład 17: Optyka falowa cz.1.
Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza
Uniwersytet Warszawski Wydział Fizyki. Światłowody
Uniwersytet Warszawski Wydział Fizyki Marcin Polkowski 251328 Światłowody Pracownia Fizyczna dla Zaawansowanych ćwiczenie L6 w zakresie Optyki Streszczenie Celem wykonanego na Pracowni Fizycznej dla Zaawansowanych
Prawa optyki geometrycznej
Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)
Światło ma podwójną naturę:
Światło ma podwójną naturę: przejawia własności fal i cząstek W. C. Roentgen ( Nobel 1901) Istnieje ciągłe przejście pomiędzy tymi własnościami wzdłuż spektrum fal elektromagnetycznych Dla niskich częstości
Optyka. Wykład IX Krzysztof Golec-Biernat. Optyka geometryczna. Uniwersytet Rzeszowski, 13 grudnia 2017
Optyka Wykład IX Krzysztof Golec-Biernat Optyka geometryczna Uniwersytet Rzeszowski, 13 grudnia 2017 Wykład IX Krzysztof Golec-Biernat Optyka 1 / 16 Plan Dyspersja chromatyczna Przybliżenie optyki geometrycznej
Metody Obliczeniowe Mikrooptyki i Fotoniki
Metody Obliczeniowe Mikrooptyki i Fotoniki https://www.igf.fuw.edu.pl/pl/courses/lectures/metody-obliczen-95-021c/ Podstawy metody różnic skończonych (Basics of finite-difference methods) Podstawy metody
Elementy optyki relatywistycznej
Elementy optyki relatywistycznej O czym będzie wykład? Pojęcie relatywistyczny kojarzy się z bardzo dużymi prędkościami, bliskimi prędkości światła. Tylko, ze światło porusza się zawsze z prędkością światła.
Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji
Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,
Optyka. Wykład VII Krzysztof Golec-Biernat. Prawa odbicia i załamania. Uniwersytet Rzeszowski, 22 listopada 2017
Optyka Wykład VII Krzysztof Golec-Biernat Prawa odbicia i załamania Uniwersytet Rzeszowski, 22 listopada 2017 Wykład VII Krzysztof Golec-Biernat Optyka 1 / 20 Plan Zachowanie pola elektromagnetycznego
ANALIZA WŁAŚCIWOŚCI ABSORPCJI POLA ELEKTROMAGNETYCZNEGO W WYBRANYCH METAMATERIAŁACH
POZNAN UNIVERSITY OF TECHNOLOGY ACADEMIC JOURNALS No 93 Electrical Engineering 018 DOI 10.1008/j.1897-0737.018.93.003 Mikołaj NOWAK * ANALIZA WŁAŚCIWOŚCI ABSORPCJI POLA ELEKTROMAGNETYCZNEGO W WYBRANYCH
OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę
OPTYKA FALOWA W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę falową. W roku 8 Thomas Young wykonał doświadczenie, które pozwoliło wyznaczyć długość fali światła.
Promieniowanie dipolowe
Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A
Zastosowania metamateriałów o ujemnym współczynniku refrakcji w technice anten inteligentnych
Zakład Zastosowań Technik Łączności Elektronicznej (Z-10) Zastosowania metamateriałów o ujemnym współczynniku refrakcji w technice anten inteligentnych Praca nr 10300016 Warszawa, grudzień 2006 1 Zastosowania
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 7 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet
Transmisja światła i struktura fotoniczna supersieci optycznych
Transmisja światła i struktura fotoniczna supersieci optycznych Włodzimierz Salejda Instytut Fizyki Seminarium Instytutu Fizyki, 15 stycznia 2007 Skład zespołu 1.Dr inŝ. Agnieszka Klauzer-Kruszyna 2.Dr
Optyka geometryczna MICHAŁ MARZANTOWICZ
Optyka geometryczna Optyka geometryczna światło jako promień, opis uproszczony Optyka falowa światło jako fala, opis pełny Fizyka współczesna: światło jako cząstka (foton), opis pełny Optyka geometryczna
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Aneta Drabińska, Barbara Piętka, Paweł Kowalczyk Wydział Fizyki Uniwersytet
3. Materiały do manipulacji wiązkami świetlnymi
3. Materiały do manipulacji wiązkami świetlnymi Modulatory światła: wymuszona dwójłomność efekty magnetoi elektro-optyczne Np. modulatory natężenia (AM) substancja dwójłomna między skrzyż. polaryzatorami
Optyka kwantowa wprowadzenie. Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej
Optyka kwantowa wprowadzenie Początki modelu fotonowego Detekcja pojedynczych fotonów Podstawowe zagadnienia optyki kwantowej Krótka (pre-)historia fotonu (1900-1923) Własności światła i jego oddziaływania
Wykład XIV. wiatła. Younga. Younga. Doświadczenie. Younga
Wykład XIV Poglądy na naturęświat wiatła Dyfrakcja i interferencja światła rozwój poglądów na naturę światła doświadczenie spójność światła interferencja w cienkich warstwach interferometr Michelsona dyfrakcja
Wstęp do Optyki i Fizyki Materii Skondensowanej
Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 6 wykład: Piotr Fita pokazy: Jacek Szczytko ćwiczenia: Aneta Drabińska, Paweł Kowalczyk, Barbara Piętka, Michał Karpiński Wydział
Fizyka. dr Bohdan Bieg p. 36A. wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe
Fizyka dr Bohdan Bieg p. 36A wykład ćwiczenia laboratoryjne ćwiczenia rachunkowe Literatura Raymond A. Serway, John W. Jewett, Jr. Physics for Scientists and Engineers, Cengage Learning D. Halliday, D.
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki
OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania optyki półklasycznej Posłużymy się teraz równaniem (2.4), i Ψ t = ĤΨ ażeby wyprowadzić
Fizyka elektryczność i magnetyzm
Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać
Promieniowanie podczerwone (ang. infrared IR) obejmuje zakres promieniowania elektromagnetycznego pomiędzy promieniowaniem widzialnym a mikrofalowym.
Próby identyfikacji białego cukru buraczanego i trzcinowego dr inż. Maciej Wojtczak Promieniowanie podczerwone Promieniowanie podczerwone (ang. infrared IR) obejmuje zakres promieniowania elektromagnetycznego
Mody sprzężone plazmon-fonon w silnych polach magnetycznych
Mody sprzężone plazmon-fonon w silnych polach magnetycznych Mody sprzężone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga,, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,
Różne reżimy dyfrakcji
Fotonika Wykład 7 - Sposoby wyznaczania obrazu dyfrakcyjnego - Przykłady obrazów dyfrakcyjnych w polu dalekim obliczonych przy użyciu dyskretnej transformaty Fouriera - Elementy dyfrakcyjne Różne reżimy
Wprowadzenie do optyki nieliniowej
Wprowadzenie do optyki nieliniowej Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie chronione jest prawem autorskim. Wykorzystanie niekomercyjne dozwolone pod warunkiem podania
Równania Maxwella. roth t
, H wektory natężenia pola elektrycznego i magnetycznego D, B wektory indukcji elektrycznej i magnetycznej J gęstość prądu elektrycznego Równania Maxwella D roth t B rot+ t J Dla ośrodka izotropowego D
Zjawiska dyfrakcji. Propagacja dowolnych fal w przestrzeni
Zjawiska dyfrakcji Propagacja dowolnych fal w przestrzeni W przestrzeni mogą się znajdować różne elementy siatki dyfrakcyjne układy optyczne przysłony filtry i inne Analizy dyfrakcyjne należą do najważniejszych
Najprostszą soczewkę stanowi powierzchnia sferyczna stanowiąca granicę dwóch ośr.: powietrza, o wsp. załamania n 1. sin θ 1. sin θ 2.
Ia. OPTYKA GEOMETRYCZNA wprowadzenie Niemal każdy system optoelektroniczny zawiera oprócz źródła światła i detektora - co najmniej jeden element optyczny, najczęściej soczewkę gdy system służy do analizy
Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe
Wykład 4 29 kwietnia 2015 Informatyka kwantowa i jej fizyczne podstawy Rezonans spinowy, bramki dwu-kubitowe Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Dobra lektura: Michel Le Bellac
Interferencja. Dyfrakcja.
Interferencja. Dyfrakcja. Wykład 8 Wrocław University of Technology 05-05-0 Światło jako fala Zasada Huygensa: Wszystkie punkty czoła fali zachowują się jak punktowe źródła elementarnych kulistych fal
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,
OPTYKA. Leszek Błaszkieiwcz
OPTYKA Leszek Błaszkieiwcz Ojcem optyki jest Witelon (1230-1314) Zjawisko odbicia fal promień odbity normalna promień padający Leszek Błaszkieiwcz Rys. Zjawisko załamania fal normalna promień padający
Fala elektromagnetyczna o określonej częstotliwości ma inną długość fali w ośrodku niż w próżni. Jako przykłady policzmy:
Rozważania rozpoczniemy od ośrodków jednorodnych. W takich ośrodkach zależność między indukcją pola elektrycznego a natężeniem pola oraz między indukcją pola magnetycznego a natężeniem pola opisana jest
PDF stworzony przez wersję demonstracyjną pdffactory
Promieniowanie elektromagnetyczne (fala elektromagnetyczna) rozchodzące się w przestrzeni zaburzenie pola elektromagnetycznego. Zaburzenie to ma charakter fali poprzecznej, w której składowa elektryczna
Równanie Fresnela. napisał Michał Wierzbicki
napisał Michał Wierzbici Równanie Fresnela W anizotropowych ryształach optycznych zależność między wetorami inducji i natężenia pola eletrycznego (równanie materiałowe) jest następująca = ϵ 0 ˆϵ E (1)
optyk e geometryczna, Prawa i zasady Optyka geometryczna Odbicie s wiatła Notatki Notatki Notatki Notatki dr inz. Ireneusz Owczarek 2013/14
CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 03/4 Wstep Modele w optyce Prawa i zasady Optyka to nauka o s wietle, jego wytwarzaniu, rozchodzeniu sie w róz nych os rodkach oraz oddziaływaniu
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach
Efekt Comptona. Efektem Comptona nazywamy zmianę długości fali elektromagnetycznej w wyniku rozpraszania jej na swobodnych elektronach Efekt Comptona. p f Θ foton elektron p f p e 0 p e Zderzenia fotonów
Wykład I Krzysztof Golec-Biernat Optyka 1 / 16
Optyka Wykład I Krzysztof Golec-Biernat Fale 1 Uniwersytet Rzeszowski, 4 października 2017 Wykład I Krzysztof Golec-Biernat Optyka 1 / 16 Uwagi wstępne 30 h wykładu wykład przy pomocy transparencji lub
Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 19, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 9, 08.2.207 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 8 - przypomnienie
Fala EM w izotropowym ośrodku absorbującym
Fala EM w izotropowym ośrodku absorbującym Fala EM powoduje generację zmienne pole elektryczne E Zmienne co do kierunku i natężenia, Pole E Nie wywołuje w ośrodku prądu elektrycznego Powoduje ruch elektronów
Egzamin / zaliczenie na ocenę*
Zał. nr 4 do ZW 33/01 WYDZIAŁ PPT KARTA PRZEDMIOTU Nazwa w języku polskim: Podstawy optyki fizycznej i instrumentalnej Nazwa w języku angielskim Fundamentals of Physical and Instrumental Optics Kierunek
Treści nauczania (program rozszerzony)- 25 spotkań po 4 godziny lekcyjne
(program rozszerzony)- 25 spotkań po 4 godziny lekcyjne 1, 2, 3- Kinematyka 1 Pomiary w fizyce i wzorce pomiarowe 12.1 2 Wstęp do analizy danych pomiarowych 12.6 3 Jak opisać położenie ciała 1.1 4 Opis
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek
Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 19, 27.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 18 - przypomnienie
Podstawy inżynierii fotonicznej
Podstawy inżynierii fotonicznej Prof.dr hab.inż. Romuald Jóźwicki Instytut Mikromechaniki i Fotoniki Pokój 513B tylko konsultacje Rok III, semestr V, wykład 30 godz., laboratorium 15 godz. Zaliczenie wykładu
Dielektryki. właściwości makroskopowe. Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego
Dielektryki właściwości makroskopowe Ryszard J. Barczyński, 2016 Materiały dydaktyczne do użytku wewnętrznego Przewodniki i izolatory Przewodniki i izolatory Pojemność i kondensatory Podatność dielektryczna
1 Płaska fala elektromagnetyczna
1 Płaska fala elektromagnetyczna 1.1 Fala w wolnej przestrzeni Rozwiązanie równań Maxwella dla zespolonych amplitud pól przemiennych sinusoidalnie, reprezentujące płaską falę elektromagnetyczną w wolnej
FIZYKA 2. Janusz Andrzejewski
FIZYKA 2 wykład 8 Janusz Andrzejewski Fale przypomnienie Fala -zaburzenie przemieszczające się w przestrzeni i w czasie. y(t) = Asin(ωt- kx) A amplituda fali kx ωt faza fali k liczba falowa ω częstość
Podpis prowadzącego SPRAWOZDANIE
Imię i nazwisko.. Grupa. Data. Podpis prowadzącego. SPRAWOZDANIE LABORATORIUM POFA/POFAT - ĆWICZENIE NR 1 Zadanie nr 1 (plik strip.pro,nazwa ośrodka wypełniającego prowadnicę - "airlossy") Rozważamy przypadek
Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 12, Mateusz Winkowski, Łukasz Zinkiewicz
Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład, 0..07 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład - przypomnienie superpozycja
Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie
napisał Michał Wierzbicki Prędkość fazowa i grupowa fali elektromagnetycznej w falowodzie Prędkość grupowa paczki falowej Paczka falowa jest superpozycją fal o różnej częstości biegnących wzdłuż osi z.
Ćwiczenia z mikroskopii optycznej
Ćwiczenia z mikroskopii optycznej Anna Gorczyca Rok akademicki 2013/2014 Literatura D. Halliday, R. Resnick, Fizyka t. 2, PWN 1999 r. J.R.Meyer-Arendt, Wstęp do optyki, PWN Warszawa 1979 M. Pluta, Mikroskopia
Photovoltaics
Photovoltaics PV Cell PV Array Components opv Cells omodules oarrays PV System Components Net Metering PV Array Fields Disadvantages of Solar Energy Less efficient and costly equipment Part Time Reliability
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych
Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Klasyczny przykład pośredniego oddziaływania pola magnetycznego na wzbudzenia fononowe Schemat: pole magnetyczne (siła Lorentza) nośniki (oddziaływanie
UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ W LUBLINIE
UNIWERSYTET MARII CURIE-SKŁODOWSKIEJ W LUBLINIE Projekt Zintegrowany UMCS Centrum Kształcenia i Obsługi Studiów, Biuro ds. Kształcenia Ustawicznego telefon: +48 81 537 54 61 Podstawowe informacje o przedmiocie
WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ
ĆWICZENIE 84 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ Cel ćwiczenia: Wyznaczenie długości fali emisji lasera lub innego źródła światła monochromatycznego, wyznaczenie stałej siatki
Zjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natężenia fal) w którym zachodzi stabilne w czasie ich
Def. MO Optyczne elementy o strukturze submm lub subμm, produkowane głównie metodami litograficznymi
Mikro optyka MO Def. MO Optyczne elementy o strukturze submm lub subμm, produkowane głównie metodami litograficznymi Systemy bazujące na mikrooptyce Zalety systemów MO duże macierze wysoka dokładność pozycjonowania