Autoreferat. 1. Imię i Nazwisko. Wojciech Zapała

Wielkość: px
Rozpocząć pokaz od strony:

Download "Autoreferat. 1. Imię i Nazwisko. Wojciech Zapała"

Transkrypt

1 1. Imię i Nazwisko. Wojciech Zapała Autoreferat 2. Posiadane dyplomy, stopnie naukowe z podaniem nazwy, miejsca i roku ich uzyskania oraz tytułu rozprawy doktorskiej. mgr inŝ. w zakresie chemii, specjalność inŝynieria i sterowanie procesami chemicznymi, Politechnika Rzeszowska, Wydział Chemiczny, 1989, dr inŝ. nauk technicznych w dyscyplinie inŝynieria chemiczna, Politechnika Wrocławska, Instytut InŜynierii Chemicznej i Urządzeń Cieplnych, Rozprawa doktorska pt. Rozdział mieszaniny wieloskładnikowej metodą adsorpcyjnej chromatografii cieczowej na przykładzie poreakcyjnej mieszaniny izomerów chloronitrobenzenu. 3. Informacje o dotychczasowym zatrudnieniu w jednostkach naukowych asystent staŝysta w Zakładzie InŜynierii i Sterowania Procesami Chemicznym Wydziału Chemicznego Politechniki Rzeszowskiej, 1990 słuŝba wojskowa, asystent w Zakładzie InŜynierii i Sterowania Procesami Chemicznym Wydziału Chemicznego Politechniki Rzeszowskiej, 1997 obecnie adiunkt w Katedrze InŜynierii Chemicznej i Procesowej Wydziału Chemicznego Politechniki Rzeszowskiej. 4. Wskazanie osiągnięcia wynikającego z art. 16 ust. 2 ustawy z dnia 14 marca 2003 r. o stopniach naukowych i tytule naukowym oraz o stopniach i tytule w zakresie sztuki (Dz. U. nr 65, poz. 595 ze zm.): a) tytuł osiągnięcia naukowego: Modelowanie procesu retencji w wybranych rodzajach chromatografii cieczowej b) autor/autorzy, tytuły publikacji, rok wydania Podstawą do ubiegania się przeze mnie o uzyskanie stopnia doktora habilitowanego nauk technicznych w dyscyplinie inŝynieria chemiczna jest monografia: W. Zapała, Modelowanie procesu retencji w wybranych rodzajach chromatografii cieczowej, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów 2012, ISBN , w której zebrałem i rozszerzyłem wyniki badań opublikowanych w następujących artykułach (spis prac w porządku chronologicznym):

2 M1 [10 z WP] W. Zapała, K. Kaczmarski, T. Kowalska, Comparison of different retention models in normal- and reversed-phase liquid chromatography with binary mobile phases, J. Chromatogr. Sci., 40(10), , (Wydawnictwo: PRESTON PUBLICATIONS INC, USA). IF=0.987 M2 [11 z WP] W. Zapała, Influence of mobile phase composition on retention factors in different HPLC systems with chemically bonded stationary phases, J. Chromatogr. Sci., 41(6), , (Wydawnictwo: PRESTON PUBLICATIONS INC, USA). IF=1.153 M3 [12 z WP] W. Zapała, Zastosowanie bi-langmuirowskiego modelu retencji w analizie wpływu stęŝenia modyfikatora na przebieg procesu wysokosprawnej chromatografii cieczowej, InŜ. Chem. Proces., 25(3/3), , (Wydawnictwo: POLITECHNIKA WROCŁAWSKA, POLSKA). IF=0.337 M4 [13 z WP] W. Zapała, Wpływ składu fazy ruchomej na równowagę procesu sorpcji w nieliniowej chromatografii cieczowej, InŜ. Chem. Proces., 25(3/3), , (Wydawnictwo: POLITECHNIKA WROCŁAWSKA, POLSKA). IF=0.337 M5 [16 z WP] W. Zapała, M. Waksmundzka-Hajnos, Retention process in normal phase TLC systems, J. Liq. Chromatogr. Rel. Technol., 27(14), , (Wydawnictwo: MARCEL DEKKER INC, USA). IF=0.836 M6 [18 z WP] W. Zapała, M. Waksmundzka-Hajnos, Retention process in reversed phase TLC systems with polar bonded stationary phases, J. Sep. Sci., 28, , (Wydawnictwo: WILEY-VCH VERLAG GMBH, NIEMCY). IF=1.829 M7 [28 z WP] W. Zapała, Influence of mobile phase composition on sorption equilibrium in different HPLC systems, Pol. J. Chem. Technol., 8(3), , (Wydawnictwo: OFICYNA WYDAWNICZA POLITECHNIKI SZCZECIŃSKIEJ, POLSKA). IF=0.0 M8 [19 z WP] K. Kaczmarski, W. Zapała, W. Wanat, M. Mori, B. K. Głód, T. Kowalska, Modeling of ion-exclusion and vacancy ion-exclusion chromatography in analytical and concentration overload conditions, J. Chromatogr. Sci., 45(1), 6-15, (Wydawnictwo: PRESTON PUBLICATIONS INC, USA). IF=0.869 M9 [29 z WP] W. Zapała, Modeling of influence of modifier concentration on retention process in NP-HPLC, Pol. J. Chem. Technol., 10(1), 52-56, (Wydawnictwo: VERSITA, POLSKA). IF=0.0 M10 [20 z WP] W. Zapała, Brief analysis of the retention process in RP-HPLC systems with a C 30 bonded stationary phase, J. Sep. Sci., 31, , (Wydawnictwo: WILEY-VCH VERLAG GMBH, NIEMCY). IF=2.746 M11 [22 z WP] W. Zapała, K. Kaczmarski, Modeling of ion exclusion chromatography and vacancy - ion exclusion chromatography of selected aromatic acids on strongly acidic resin in the H + form, Acta Chromatogr., 22(1), 1-25, (Wydawnictwo: AKADEMIAI KIADO RT, WĘGRY). IF=0.779 M12 [23 z WP] W. Zapała, K. Kaczmarski, Modeling of ion exclusion chromatography and vacancy - ion exclusion chromatography of C1 C6 aliphatic carboxylic acids on a weakly acidic cation-exchange resin, Acta Chromatogr., 22(3), , (Wydawnictwo: AKADEMIAI KIADO RT, WĘGRY). IF=0.779 M13 [24 z WP] W. Zapała, J. Kostka, K. Kaczmarski, Comparison of different columns in analysis of C1 C5 aliphatic acids mixture in ion exclusion chromatography and vacancy ion exclusion chromatography modes, Acta Chromatogr., 23(3), , (Wydawnictwo: AKADEMIAI KIADO RT, WĘGRY). IF= nieznany w dniu M14 [25 z WP] W. Zapała, J. Kostka, K. Kaczmarski, Unexpected aliphatic acid peak profiles preliminary investigations, Acta Chromatogr., 23(4), , (Wydawnictwo: AKADEMIAI KIADO RT, WĘGRY). IF= nieznany w dniu

3 Wyniki swoich badań prezentowałem takŝe w rozdziałach dwóch monografii ([39,40] patrz Wykaz opublikowanych prac naukowych (WP) w Załączniku pt. Wykaz Osiągnięć Naukowo Badawczych) oraz na wielu konferencjach naukowych (parz Wykaz wystąpień konferencyjnych w Załączniku pt. Wykaz Osiągnięć Naukowo Badawczych). c) omówienie celu naukowego w/w prac i osiągniętych wyników wraz z omówieniem ich ewentualnego wykorzystania Od rozpoczęcia pracy naukowej, moje zainteresowania badawcze koncentrują się wokół praktycznych i teoretycznych aspektów procesu chromatografii cieczowej. W mojej pracy naukowej realizowanej po uzyskaniu stopnia naukowego doktora moŝna wyróŝnić trzy zasadnicze wątki prowadzonych badań. Dwa pierwsze związane są ogólnie z modelowaniem retencji związków chemicznych w róŝnych rodzajach chromatografii cieczowej i dotyczą odpowiednio: modelowania wpływu składu fazy ruchomej na wartości współczynników retencji oraz modelowania procesu chromatografii cieczowej ze szczególnym uwzględnieniem chromatografii wykluczania jonowego. Trzeci wątek dotyczy natomiast praktycznych aspektów zastosowania technik chromatograficznych do rozdzielania/analizy mieszanin róŝnych związków chemicznych. Z punktu widzenia inŝynierii chemicznej chromatografia jest jedną z operacji jednostkowych rozdzielania mieszanin. Wraz z jej zastosowaniem technologicznym pojawiły się problemy związane z projektowaniem kolumn, doborem i optymalizacją warunków prowadzenia procesu (ze szczególnym naciskiem na właściwy dobór składu fazy ruchomej - eluentu), przenoszeniem skali tej operacji oraz dokładnym modelowaniem pracy kolumny chromatograficznej. Głównym celem większości badań jest znalezienie optymalnych warunków chromatograficznych dla danego problemu rozdzielania. Oparta na badaniach doświadczalnych optymalizacja procesu rozdzielania chromatograficznego obejmuje dwa etapy: modelowanie układu i przewidywanie rozdzielczości kolumny drogą symulacji komputerowej. W pierwszym etapie, wykonuje się określoną ilość niezbędnych doświadczeń w celu dopasowania równań i algorytmów pozwalających na przewidywanie retencji, a przy okazji w celu określenia innych właściwości układu związanych z przebiegiem procesu. W drugim etapie, na podstawie wykonanych doświadczeń i symulacji prowadzonych dla róŝnych warunków procesowych, wskazuje się układ zapewniający maksymalną rozdzielczość. W praktyce odbywa się to drogą symulacji procesu z uwzględnieniem odpowiednich czynników eksperymentalnych podlegających optymalizacji, w celu uzyskania maksymalnej selektywności oraz produktywności rozdzielania. Z tego powodu konieczne jest 3

4 wskazanie odpowiednio dokładnego modelu umoŝliwiającego przewidywanie retencji związków chemicznych w chromatografii cieczowej. Modele słuŝące do opisu tego procesu moŝna podzielić na trzy grupy. Pierwszą grupę stanowią modele retencji umoŝliwiające przewidywanie wpływu wybranych czynników na zachowanie się chromatografowanych substancji w kolumnie chromatograficznej. Są to głównie wyraŝenia opracowane na podstawie odpowiedniego mechanizmu retencji, po wprowadzeniu wielu załoŝeń upraszczających. W tej grupie, oprócz teoretycznych modeli termodynamicznych, najczęściej spotyka się wyraŝenia o charakterze półempirycznym oraz modele czysto empiryczne. Drugą grupę stanowią modele dyskretne zakładające, Ŝe kolumna jest podzielona na określoną liczbę identycznych komórek lub półek. Jednocześnie w kaŝdej kolejnej komórce lub na kaŝdej kolejnej półce faza ciekła i stacjonarna są w stanie równowagi. Mimo iŝ modele dyskretne nie uwzględniają rzeczywistych wartości oporów transportu masy i dyspersji poszczególnych składników, to w wielu przypadkach poprawnie opisują pracę kolumny chromatograficznej. Trzecią grupę stanowią modele ciągłe (np. model idealny, model POR, itp.) oparte na układach równań róŝniczkowych opisujących bilanse masowe, procesy wymiany masy oraz równowagę albo kinetykę procesu adsorpcja - desorpcja. NiezaleŜnie od stopnia komplikacji, głównym kryterium stosowalności danego modelu jest jego dokładność w odwzorowaniu rzeczywistości. Z tego względu, mimo istnienia wielu modeli opracowanych dla chromatografii cieczowej, poszukiwanie nowych, pozwalających na dokładniejszy ilościowy i/lub jakościowy opis tego procesu nadal stanowi podstawowy cel wielu zespołów badawczych. Cel ten przyświecał takŝe prowadzonym przeze mnie badaniom. Jak wspomniano na wstępie, chcąc zastosować proces chromatografii cieczowej w praktyce technologicznej, konieczne jest poprawne dobranie układu chromatograficznego. Retencja związków chemicznych w chromatografii cieczowej jest zjawiskiem bardzo skomplikowanym, zaleŝnym od wielu czynników takich jak: rodzaj fazy stacjonarnej, typ fazy ruchomej (jej skład jakościowy i ilościowy), stęŝenie i wielkość wprowadzanej do kolumny próbki, właściwości molekularne chromatografowanych związków, ciśnienie, temperatura, ph, itp. Z tego powodu badania związane z określeniem mechanizmu retencji oraz zmian selektywności rozdzielania były i są nadal prowadzone przez wiele zespołów badawczych patrz literatura cytowana w załączonej monografii habilitacyjnej autora. Jednym z najwaŝniejszych etapów doboru układu chromatograficznego jest określenie rodzaju i składu fazy ruchomej (eluentu) pozwalającej na uzyskanie maksymalnej selektywności oraz produktywności rozdzielania. Fazy ruchome w chromatografii cieczowej stanowią pojedyncze rozpuszczalniki lub ich dwu- albo wieloskładnikowe mieszaniny. Skład 4

5 jakościowy i ilościowy eluentu wywiera ogromny wpływ na przebieg tego procesu. Faza ruchoma jest więc czynnikiem aktywnym procesu juŝ niewielki dodatek drugiego rozpuszczalnika (modyfikatora) do rozpuszczalnika pierwotnego, istotnie zmienia jakość rozdzielenia składników chromatografowanej mieszaniny. Skład fazy ruchomej wpływa na równowagę adsorpcyjną, a tym samym determinuje czasy retencji chromatografowanych składników zarówno w chromatografii cieczowej prowadzonej w normalnym, jak i odwróconym układzie faz. Przy poprawnie dobranej fazie stacjonarnej, poprzez zmianę składu fazy ruchomej moŝliwe jest więc sterowanie procesem rozdzielania w chromatografii cieczowej. Badania dotyczące wpływu stęŝenia modyfikatora na przebieg procesu retencji w chromatografii cieczowej są więc bardzo waŝne zarówno z praktycznego, jak i teoretycznego punktu widzenia. Wiedza na ten temat zdecydowanie ułatwia dobór układu chromatograficznego oraz jego optymalizację, a ponadto umoŝliwia zrozumienie mechanizmów, według których przebiega proces rozdzielania mieszanin związków. Retencję związków chemicznych w chromatografii cieczowej prowadzonej w układach z dwuskładnikowym eluentem moŝna analizować stosując róŝnorodne modele retencji, wiąŝące wartości współczynników retencji, k, ze składem fazy ruchomej. WaŜnym problemem badawczym, szczególnie w chromatografii cieczowej prowadzonej w odwróconym układzie faz (RP-HPLC) jest określenie dominującego mechanizmu tego procesu. Zasadniczo rozpatrywane są tu trzy mechanizmy, a mianowicie: mechanizm podziałowy (zakładający podział składników fazy ciekłej w obrębie chemicznie zmodyfikowanej powierzchni adsorbentu), adsorpcyjny (zakładający szeroko pojętą sorpcję cząsteczek substancji chromatografowanej i modyfikatora eluentu na powierzchni ligandów węglowodorowych połączoną z jednoczesnym wypieraniem cząsteczek głównego składnika eluentu) oraz mieszany mechanizm adsorpcyjno podziałowy. W literaturze moŝna znaleźć wiele róŝnych modeli opisujących doświadczalne zaleŝności współczynnika retencji od stęŝenia modyfikatora, opracowanych w oparciu o wymienione powyŝej trzy mechanizmy retencji patrz literatura cytowana w załączonej monografii habilitacyjnej autora. W praktyce, modele te wykorzystywane są między innymi do wspomaganego komputerowo doboru i optymalizacji składu fazy ruchomej zarówno w chromatografii prowadzonej na skalę analityczną, jak i preparatywną. Dzięki temu moŝliwe jest ograniczenie do niezbędnego minimum ilości eksperymentów, co przekłada się na znaczne zmniejszenie kosztów badań procesowych. NaleŜy podkreślić, Ŝe stosując dany model do doboru i/lub optymalizacji składu eluentu, końcowy wynik zaleŝy w głównej mierze od jego dokładności. Jednocześnie naleŝy 5

6 zaznaczyć, Ŝe mimo dostępności w literaturze wielu róŝnorodnych modeli retencji, w większości przypadków ich dokładność jest niestety dyskusyjna [M1; 39,40 z WP]. PowyŜsze przesłanki skłoniły mnie do podjęcia badań dotyczących modelowania wpływu stęŝenia modyfikatora na proces retencji w chromatografii cieczowej. Celem badań było sformułowanie moŝliwie prostego, ale jednocześnie dokładnego i uniwersalnego modelu retencji, pozwalającego na ilościowe przewidywanie wpływu powyŝszego czynnika na przebieg tego procesu. We wstępnym etapie badań zaproponowano empiryczny model retencji, który z powodzeniem zastosowano do modelowania wpływu składu eluentu na wartości współczynników retencji w róŝnych układach chromatograficznych [M1]. W pracy [M1] przeanalizowano równieŝ dokładność i skuteczność najwaŝniejszych, znanych z literatury modeli retencji. Zdecydowana większość prezentowanych w literaturze modeli retencji opracowana została przy załoŝeniu, Ŝe powierzchnia adsorbentu jest energetycznie homogeniczna. Wprowadzenie do praktyki chromatograficznej chemicznie modyfikowanych faz stacjonarnych, zbudowanych z organicznych ligandów związanych z np. matrycą krzemionkową oraz wolnych (nie pokrytych tymi ligandami) grup silanolowych, prowadzi jednak do pytania o poprawną definicję mechanizmu i modelu retencji w takich układach. Jednocześnie badania powierzchni adsorbentów prowadzone róŝnymi metodami, w tym takŝe metodą AED (ang. Adsorption Energy Distribution) wskazują na znaczną heterogeniczność energetyczną adsorbentów stosowanych w chromatografii cieczowej prowadzonej zarówno w odwróconym jak i normalnym układzie faz. Z tego powodu opracowałem adsorpcyjny model retencji uwzględniający oddziaływania chromatografowanej substancji z heterogeniczną energetycznie powierzchnią fazy stacjonarnej (adsorbentu) [M2]. Model ten, dedykowany szczególnie dla układów z adsorbentami modyfikowanymi chemicznie, wyprowadzony został w oparciu o idealny model dynamiki sorpcji kolumny chromatograficznej. ZałoŜono w nim występowanie oddziaływań typu langmuirowskiego substancji chromatografowanej z chemicznie związanymi ligandami i wolnymi centrami aktywnymi znajdującymi się na powierzchni matrycy krzemionkowej. Przedstawione w pracach [M2,M10; 39,40 z WP] wyniki badań wykazały, Ŝe zaproponowany model jest dokładniejszy od modeli retencji znanych z literatury. DuŜa dokładność modelu potwierdza istotny wpływ heterogeniczności powierzchni adsorbentu na globalny mechanizm retencji w chromatografii cieczowej prowadzonej w układach ze zmodyfikowanymi chemicznie fazami stacjonarnymi (wpływu tego nie uwzględnia większość klasycznych modeli 6

7 literaturowych). Zaproponowany model bardzo dokładnie opisuje równieŝ wpływ składu eluentu na wartości współczynników róŝnych modeli izoterm stosowanych do opisu równowagi adsorpcyjnej w chromatografii cieczowej [M7]. W wyniku współpracy z prof. dr hab. Moniką Waksmundzką-Hajnos z Uniwersytetu Medycznego w Lublinie (prof. Waksmundzka-Hajnos wykonała badania doświadczalne metodą chromatografii planarnej w układach z modyfikowanymi chemicznie adsorbentami), zaproponowany model zaadaptowano do opisu procesu retencji w chromatografii planarnej [M5,M6]. Przeprowadzone badania potwierdziły duŝą dokładność tego modelu oraz pozostałe, wymienione powyŝej wnioski zawarte w pracach [M2,M5,M6,M10; 39,40 z WP]. Przedstawiona powyŝej moŝliwość opracowania prostego i jednocześnie bardzo dokładnego modelu retencji uwzględniającego oprócz zasadniczego mechanizmu retencji niejednorodność energetyczną powierzchni adsorbentu, skłoniła mnie do dalszych badań dotyczących modelowania procesu retencji w chromatografii cieczowej. W ich wyniku opracowano i przetestowano w róŝnych układach chromatograficznych model retencji oparty na wieloskładnikowej izotermie bi-langmuira [M3; 31 z WP]. Model ten z powodzeniem zastosowano równieŝ do analizy wpływu stęŝenia modyfikatora na równowagę adsorpcyjną w chromatografii nieliniowej [M4,M7]. Ponadto, na podstawie termodynamicznie zgodnej, zmodyfikowanej wieloskładnikowej izotermy Langmuira opracowano model retencji dedykowany dla chromatografii cieczowej prowadzonej w normalnym układzie faz [M9]. Model ten wyprowadzono przy załoŝeniu, Ŝe chromatografowana substancja i składniki fazy ruchomej konkurują ze sobą o centra aktywne na powierzchni polarnego adsorbentu. Prezentowane w pracy [M9] wyniki badań prowadzonych w wielu układach chromatograficznych wskazują na duŝą dokładność tego modelu. Wszystkie zaproponowane przeze mnie modele retencji pozwalają na dokładne przewidywanie wpływu stęŝenia modyfikatora na retencję róŝnorodnych związków chemicznych odpowiednio w chromatografii cieczowej prowadzonej w odwróconym i normalnym układzie faz. WyraŜenia te są teŝ znacznie dokładniejsze od modeli retencji znanych z literatury. MoŜna je więc wykorzystać praktycznie we wstępnych etapach projektowania procesu chromatograficznego rozdzielania mieszanin, związanych z doborem składu fazy ruchomej. Kolejny rozpatrywany przeze mnie problem badawczy dotyczył analizy i modelowania mechanizmu oraz czynników wpływających na proces retencji wybranych, adsorbujących i nieadsorbujących się kwasów organicznych (alifatycznych i aromatycznych) w chromatografii wykluczania jonowego (IEC) i wakancyjnej chromatografii wykluczania 7

8 jonowego (v-iec). Wyniki badań zostały przedstawione w trzech artykułach [M8,M11,M12]. Badania doświadczalne prowadzono w układach z silnym (polistyrenowo - dwuwinylobenzenowa (PS-DVB), silnie kwaśna Ŝywica kationitowa w formie H + o średnicy porów 60Å i wysokiej pojemności jonowymiennej) i słabym kationitem (polimetakrylanowa słabo kwaśna Ŝywica kationitowa w formie H + o średnicy porów 1000Å i małej pojemności jonowymiennej), w warunkach chromatografii liniowej oraz w warunkach przeładowania stęŝeniowego kolumny. Rozszerzenie zakresu badań do warunków przeładowania stęŝeniowego umoŝliwiło zaobserwowanie wielu zjawisk, związanych przykładowo z wpływem wzrostu stęŝenia wlotowego kwasu na jego zachowanie w kolumnie chromatograficznej (np. dla kwasów silniej adsorbujących się, wraz ze wzrostem stęŝenia wprowadzanych do kolumny próbek kwasu, czasy retencji wierzchołków pików początkowo rosną, a następnie obserwuje się ich spadek) [M8,M11,M12]. Najczęściej stosowaną fazą ruchomą w IEC jest czysta dejonizowana woda. Zastosowanie czystej wody jako eluentu powoduje jednak silne rozmycie wstępującego zbocza piku chromatografowanej substancji. Jedną z metod pozwalających na wyeliminowanie tego negatywnego zjawiska jest zastosowanie techniki v-iec. W technice tej jako fazę ruchomą stosuje się wodny roztwór analizowanych związków chemicznych, czysta woda jest natomiast wprowadzana do kolumny jako próbka. W wyniku takiego prowadzenia procesu chromatografii otrzymuje się charakterystyczne, skierowane w dół (ujemne) piki o symetrycznym kształcie. Podobnie jak w innych rodzajach chromatografii cieczowej, równieŝ w chromatografii wykluczania jonowego moŝna zaobserwować wpływ pewnych czynników na przebieg procesu retencji rozdzielanych substancji. Głównymi czynnikami, które wpływają na retencję w IEC i v-iec są: jonizacja i stęŝenie chromatografowanych związków, ph fazy ruchomej, obecności organicznego modyfikatora (np. alkohole alifatyczne, cukry, acetonitryl). Wzrost temperatury uznawany jest za czynnik mało istotny, poniewaŝ dla wyŝszych kwasów powoduje tylko nieznaczne skrócenie czasu retencji. Warto odnotować, Ŝe dla wyŝszych kwasów uzupełniającą, ale wymierną rolę w ich mechanizmie retencji odgrywa adsorpcja. Proces retencji w chromatografii wykluczania jonowego opisywany jest zwykle przy pomocy prostych modeli matematycznych opracowanych przy wielu załoŝeniach upraszczających (patrz literatura cytowana w załączonej monografii habilitacyjnej autora). Modele te pozwalają na wyznaczenie wartości współczynnika podziału, K d, definiowanego, przy braku dodatkowych oddziaływań, jako stosunek sum stęŝeń wszystkich postaci próbki w fazie stacjonarnej i ruchomej. UmoŜliwiają one wprawdzie bardziej lub mniej dokładne 8

9 przewidywanie wpływu szeregu parametrów charakteryzujących próbkę, fazę ruchomą i stacjonarną na retencję związków chemicznych, ale jednocześnie nie pozwalają na przewidywanie wielu obserwowanych w IEC zjawisk związanych np. z frontalnym rozmyciem pików chromatografowanych substancji. Bardziej realistyczne podejście do tego zagadnienia daje komputerowe modelowanie kolumny przy uŝyciu modeli dyskretnych i ciągłych. Próby zastosowania tych modeli do opisu mechanizmu retencji w IEC moŝna równieŝ znaleźć w literaturze (patrz literatura cytowana w załączonej monografii habilitacyjnej autora). Dobrą, jakościową zgodność pomiędzy doświadczalnymi i teoretycznymi profilami pików uzyskano, stosując do opisu retencji pojedynczych kwasów w IEC model Craiga. Jednak symulacje prowadzone tym modelem dotyczyły tylko pojedynczych stęŝeń badanych związków nie została tym samym przeanalizowana zaleŝność retencji od stęŝenia kwasu. W literaturze, do analizy retencji pojedynczych kwasów w IEC i v-iec stosowano takŝe model równowagowo dyspersyjny. Analizy dotyczyły jednak tylko kwasów, których adsorpcję na złoŝu moŝna pominąć. Mimo iŝ wyniki modelowania dobrze odzwierciedlały dane doświadczalne otrzymane dla róŝnych stęŝeń badanych kwasów, to model ten nie został zastosowany do opisu procesu rozdzielania mieszaniny kwasów. Celem badań było opracowanie modelu opisującego mechanizm retencji wybranych kwasów organicznych w chromatografii IEC i v-iec. W pracach [M8,M11,M12] zaproponowano dwa nowe modele (opracowane odpowiednio dla układów z silnym i słabym kationitem) bazujące na metodzie Craiga. W obydwu modelach załoŝono, Ŝe objętość eluentu w przestrzeni między ziarnami w komórce, zawierająca niezdysocjowane oraz zdysocjowane formy kwasu, przepływa z komórki i-1 do komórki i-tej w czasie t- t i miesza się z eluentem zaokludowanym w porach adsorbentu i-tej komórki w czasie t- t. Po czasie t ustala się nowa równowaga pomiędzy jonami i niezdysocjowanymi cząsteczkami kwasu w eluencie oraz pomiędzy niezdysocjowanymi, zaadsorbowanymi i niezaadsorbowanymi cząsteczkami kwasu. W modelach pominięto opory transportu masy oraz przyjęto, Ŝe grupy funkcyjne wypełnienia kolumny nie modyfikują wody (eluentu) zawartej wewnątrz cząsteczek adsorbentu, przez co stęŝenie kwasu niezdysocjowanego w eluencie zaokludowanym w porach fazy stacjonarnej jest takie samo jak w fazie objętościowej. Ponadto załoŝono, Ŝe tylko niezdysocjowane cząsteczki kwasu mogą adsorbować się na powierzchni adsorbentu, chociaŝ odpowiednie jony mogą przenikać do wnętrza porów fazy stacjonarnej. Zaproponowane modele uzupełniono 9

10 odpowiednimi dla kaŝdego rodzaju kationitu zaleŝnościami równowagowymi pomiędzy kwasem i jego jonami oraz odpowiednim modelem izotermy sorpcji. Dokładność tych modeli została zweryfikowana na podstawie danych doświadczalnych wykonanych w układach z silnie oraz słabo kwasową Ŝywicą jonowymienną w formie H +. Okazało się, Ŝe wartości czasów retencji i teoretyczne kształty pików testowanych analitów, otrzymane w wyniku symulacji przeprowadzonych na podstawie opracowanych zaleŝności, z duŝą dokładnością opisują odpowiednie dane doświadczalne, tj.: czasy retencji i kształty pików pojedynczych kwasów organicznych (szczególnie zaobserwowany w IEC i v-iec wpływ zmian stęŝenia wlotowego kwasu na jego czasy retencji i zachowanie w kolumnie chromatograficznej), redukcję frontalnego rozmycia kształtów pików w v-iec, rozdzielanie mieszanin kwasów alifatycznych i aromatycznych w IEC oraz v-iec, wpływ fazy ruchomej złoŝonej z wodnego roztworu mocnego kwasu na kształty pików i ich czasy retencji wpływ fazy ruchomej złoŝonej z wodnego roztworu mocnego kwasu i organicznego modyfikatora na kształty pików i ich czasy retencji. Przedstawione w artykułach [M8,M11,M12] wyniki badań wskazują takŝe na istotną rolę w mechanizmie retencji adsorpcyjnych oddziaływań niezdysocjowanych cząsteczek kwasów z powierzchnią fazy stacjonarnej. W mechanizmie tym, istotna jest takŝe heterogeniczność energetyczna stosowanych adsorbentów, o czym świadczy duŝa dokładność modelowania uzyskana przy uŝyciu izotermy bi-langmuira. Wyniki badań oraz zaproponowane modele moŝna wykorzystać praktycznie w badaniach związanych z projektowaniem procesu rozdzielania mieszanin metodą chromatografii wykluczania jonowego (dobór warunków procesowych, przenoszenie skali, itp.). W ostatnim okresie prowadziłem równieŝ badania dotyczące praktycznych aspektów chromatografii cieczowej, których celem była intensyfikacja procesu rozdzielania mieszaniny kwasów alifatycznych szeregu C1 C5. Przedstawione w artykule [M13] wyniki badań prowadzonych metodą wysokosprawnej chromatografii cieczowej (HPLC) oraz metodą chromatografii cieczowej pod bardzo wysokim ciśnieniem (VHPLC) wskazują, Ŝe zastosowanie do rozdzielania takiej mieszaniny klasycznych kolumn RP pozwala na znaczne skrócenie czasów prowadzenia tej operacji w porównaniu do kolumn uŝywanych w chromatografii wykluczania jonowego. Szczególnie zastosowanie w tych kolumnach warunków prowadzenia procesu według metodologii v-iec (eluent będący wodnym 10

11 roztworem mieszaniny kwasów, czysta woda jako wprowadzana do kolumny próbka) umoŝliwia, przy zachowaniu duŝej selektywności rozdzielania, znaczne przyspieszenie analiz. Dla wszystkich testowanych kolumn wypełnionych adsorbentami o wielkości ziarna: 2,2 µm (VHPLC) i 5 µm (HPLC), przy zachowaniu podobnej selektywności rozdzielania, czasy analiz są co najmniej dwukrotnie krótsze w porównaniu do klasycznych kolumn jonowymiennych. Związane jest to z moŝliwością stosowania znacznie większych prędkości przepływu eluentu. Oprócz tego, zastosowanie kolumn C18 pozwala na obniŝenie kosztów analizy kolumny te są znacznie tańsze od kolumn jonowymiennych. W pracy [M14] zaproponowano takŝe hipotetyczny mechanizm oraz opracowany na tej podstawie zmodyfikowany model POR wyjaśniający przyczynę zniekształceń wstępujących zboczy pików pojedynczych kwasów alifatycznych w układach z czystą wodą jako eluentem i kolumną Acclaim RS PA2 (zniekształcenia te polegały na tym, Ŝe wstępujące zbocza pików przyjmowały kształt schodkowy). W konstrukcji modelu przyjęto następujące załoŝenia związane z mechanizmem retencji analizowanych kwasów: ilość substancji zaadsorbowanej odniesiona jest do objętości matrycy ziarna, dostępność do poszczególnych porów ziarna adsorbentu jest funkcją stęŝenia kwasu. ZałoŜono, Ŝe na powierzchni adsorbentu występują wolne, niezwiązane grupy silanolowe SiOH. Grupy te w kontakcie z wodną fazą ruchomą ulegają częściowej dysocjacji, utrudniając tym samym dyfuzję cząsteczek kwasu do wnętrza ziarna. MoŜe to mieć miejsce szczególnie w wąskich porach lub w miejscach ich przewęŝeń. Zwiększenie stęŝenia kwasu we wprowadzanej do kolumny próbce odwraca prawdopodobnie dysocjację grup silanolowych, przez co moŝliwa jest głębsza penetracja porów adsorbentu przez cząsteczki kwasu. W zaleŝności od rozmiarów porów, ich struktury geometrycznej i stopnia przewęŝenia, poszczególne fragmenty ziarna adsorbentu stają się więc dostępne dla cząsteczek kwasu po przekroczeniu róŝnych wartości progowych jego stęŝenia. Wyniki badań modelowych [M14] dość dokładnie opisują zaobserwowane zniekształcenia pików w analizowanych układach, co moŝe świadczyć o słuszności przyjętych załoŝeń. Reasumując, do moich oryginalnych osiągnięć zaliczam: A. opracowanie szeregu modeli retencji dla chromatografii cieczowej prowadzonej w odwróconym i normalnym układzie faz, bardzo dokładnie (w większości przypadków dokładniej niŝ modele literaturowe) opisujących wpływ stęŝenia modyfikatora eluentu na wartości współczynnika retencji i/lub wartości współczynników izoterm adsorpcyjnych, B. uwzględnienie w prostych modelach retencji heterogeniczności energetycznej powierzchni adsorbentów stosowanych w chromatografii cieczowej, 11

12 C. analizę mechanizmu retencji wybranych kwasów organicznych w chromatografii wykluczania jonowego i wakancyjnej chromatografii wykluczania jonowego prowadzonych w warunkach analitycznych i warunkach przeładowania stęŝeniowego kolumny, D. zaproponowanie do opisu procesu retencji w chromatografii wykluczania jonowego i wakancyjnej chromatografii wykluczania jonowego dwóch nowych modeli bazujących na metodzie Craiga. Modele te opracowano dla układów w których jako fazę stacjonarną zastosowano odpowiednio silny oraz słaby kationit. Obydwa modele dokładnie opisują zjawiska zaobserwowane w trakcie badań doświadczalnych oraz wpływ wybranych czynników na przebieg tych operacji, E. wskazanie moŝliwości przyspieszenia analiz mieszanin kwasów alifatycznych dzięki zastosowaniu kolumn RP i odpowiedniej metodologii prowadzenia procesu rozdzielania, F. zaproponowanie hipotetycznego mechanizmu retencji oraz modelu opisującego zaobserwowane zniekształcenia pików kwasów alifatycznych w układach z wodą jako eluentem i kolumną Acclaim RS PA2. NaleŜy takŝe podkreślić, Ŝe wszystkie zaproponowane przeze mnie modele charakteryzują się duŝą, jak na warunki chromatograficzne, dokładnością opisu odpowiednich danych doświadczalnych. MoŜna je więc z powodzeniem wykorzystać do celów praktycznych związanych z doborem i optymalizacją układów chromatograficznych. 5. Omówienie pozostałych osiągnięć naukowo - badawczych. Moje pierwsze prace po otrzymaniu stopnia doktora stanowiły kontynuację badań prowadzonych przed jego uzyskaniem. W pracach [6-8,26 z WP] przedstawiono rozszerzone wyniki badań zawartych w mojej rozprawie doktorskiej [5 z WP]. W pracach tych: przedstawiono metodykę doboru układu chromatograficznego umoŝliwiającego rozdzielanie poreakcyjnych mieszanin dwupodstawionych izomerów benzenu [6 z WP], przeanalizowano dokładność obliczeń wykonanych za pomocą róŝnych modeli matematycznych kolumny chromatograficznej słuŝącej do rozdzielania poreakcyjnej mieszaniny izomerów orto- i para- chloronitrobenzenu [7 z WP]. Do opisu szybkości procesu sorpcji zaproponowano stosowanie zmodyfikowanej kinetyki langmuirowskiej oraz nowej kinetyki stechiometrycznej [7 z WP]. Zaproponowano równieŝ algorytm identyfikacji parametrów modelu [7 z WP], 12

13 przedstawiono sposób doboru optymalnych warunków chromatograficznego rozdzielania mieszaniny izomerów chloronitrobenzenu metodą modelowania matematycznego. Przeanalizowano wpływ parametrów ruchowych operacji na produktywność kolumny, produktywność specyficzną oraz czystość produktów rozdzielania [8 z WP], Ponadto uzyskano patent na sposób rozdzielania mieszaniny izomerów orto- i parachloronitrobenzenu metodą chromatografii cieczowej [26 z WP]. W swojej pracy prowadziłem równieŝ wiele innych, róŝnorodnych badań naukowych. Ich wyniki zostały przedstawione w artykułach zestawionych w załączonym Wykazie opublikowanych prac naukowych (WP) w Załączniku pt. Wykaz Osiągnięć Naukowo Badawczych. W artykule [9 z WP] zaproponowano oraz przetestowano model empiryczny słuŝący do analizy wpływu składu fazy ruchomej na wartości parametrów modelu stechiometrycznej kinetyki procesu sorpcji w modelowaniu dynamiki pracy preparatywnej kolumny chromatograficznej wykorzystywanej do rozdzielania mieszaniny izomerów chloronitrobenzenu. We współpracy z prof. dr hab. inŝ. Krzysztofem Kaczmarskim z Politechniki Rzeszowskiej, prof. Georgem Guiochonem z University of Tennessee oraz prof. dr hab. Teresą Kowalską z Uniwersytetu Śląskiego powstało szereg publikacji naukowych związanych z modelowaniem procesu chromatografii cieczowej. W ramach tych prac: zbadano proces adsorpcji amylobenzenu w kolumnach RP-8e, RP-18e i RP-30. Do opisu równowagi adsorpcyjnej amylobenzenu w tych kolumnach zaproponowano nową izotermę typu klaster. W modelu załoŝono moŝliwość niezaleŝnej adsorpcji klastrów chromatografowanej substancji na powierzchni adsorbentu. Przeprowadzono walidację proponowanej izotermy przez porównanie doświadczalnych krzywych przebicia z symulacjami teoretycznymi prowadzonymi przy pomocy modelu Transportowo Dyspersyjnego (TD) [14,17,27 z WP]. przeanalizowano wpływ oddziaływań bocznych w dwuskładnikowych mieszaninach róŝnych substancji na proces elucji w chromatografii planarnej i kolumnowej [15,35 z WP], opracowano oryginalny model opisujący zachowanie się kolumny chromatograficznej wypełnionej adsorbentem o małej granulacji i pracującej przy wysokich natęŝeniach przepływu eluentu oraz wysokich ciśnieniach. Przeprowadzono wstępną walidację modelu w kolumnach wypełnionych adsorbentem o średnicy ziarna 5 µm dla ciśnień wlotowych 13

14 do 400 bar [21 z WP] w warunkach termostatowanych i w warunkach konwekcji naturalnej. Ponadto uczestniczyłem w pracach dotyczących zastosowania metod chromatograficznych w badaniach nad flawonoidami będącymi bardzo waŝną grupą związków czynnych biologicznie [30,32-34,36,37,41 z WP]. W ramach tych badań zaproponowano miedzy innymi metodologię wyznaczania stałych dysocjacji wybranych flawonoidów opierającą się na chromatografii planarnej i modelowaniu matematycznym otrzymanych danych retencyjnych [30,37,41 z WP]. Metoda ta daje wyniki porównywalne do np. metody potencjometrycznej i moŝe być bardzo przydatna do wyznaczania wartości stałych dysocjacji róŝnych substancji chemicznych. Prowadziłem równieŝ badania dotyczące chromatograficznego oczyszczania poreakcyjnych mieszanin soli sodowych sulfonowych pochodnych chryzyny [32,34 z WP] oraz modelowania dynamiki adsorpcji [33 z WP] i procesu retencji [36 z WP] wybranych flawonoidów w chromatografii cieczowej prowadzonej w odwróconym układzie faz. W ramach tych badań: zaproponowano układ chromatograficzny umoŝliwiający preparatywny rozdział oraz oczyszczanie poreakcyjnej mieszaniny soli sodowych sulfonowych pochodnych chryzyny [32,34 z WP], w oparciu o model POR dynamiki sorpcji w kolumnie chromatograficznej przeanalizowano proces adsorpcji kwercetyny i chryzyny w chromatografii cieczowej prowadzonej w odwróconym układzie faz. Do opisu równowagi procesu zastosowano model izotermy uwzględniający wielowarstwową adsorpcję [33 z WP], przeanalizowano mechanizm retencji wybranych flawonoidów w róŝnych układach chromatograficznych [36 z WP]. Wyniki wszystkich, przedstawionych powyŝej badań prezentowane były równieŝ na wielu konferencjach naukowych. Listę wystąpień konferencyjnych przedstawiono w Wykazie wystąpień konferencyjnych zawartym w Załączniku pt. Wykaz Osiągnięć Naukowo Badawczych. 14

rodzajach chromatografii cieczowej w związku ze wszczętym na

rodzajach chromatografii cieczowej w związku ze wszczętym na Katedra Chemii Analitycznej Wydział Chemiczny, Politechnika Gdańska, ul. G. Narutowicza 11/12, 80-233 Gdańsk tel. 058 347 10 10 Kierownik Katedry 058 347 19 10 Sekretariat 058 347 21 10 Laboratorium fax.

Bardziej szczegółowo

7. ROZDZIAŁ PREPARATYWNY W KOLUMNIE CHROMATOGRAFICZNEJ.

7. ROZDZIAŁ PREPARATYWNY W KOLUMNIE CHROMATOGRAFICZNEJ. 7. ROZDZIAŁ PREPARATYWNY W KOLUMNIE CHROMATOGRAFICZNEJ. opracował Wojciech Zapała I. WPROWADZENIE W tabeli 1. przedstawiono ogólne porównanie procesów chromatografii cieczowej prowadzonych w skali analitycznej

Bardziej szczegółowo

1. MODELOWANIE I SYMULACJA PRACY PREPARATYWNEJ KOLUMNY CHROMATOGRAFICZNEJ I KOLUMNY ADSORPCYJNEJ PROGRAMEM Kolumna Chromatograficzna

1. MODELOWANIE I SYMULACJA PRACY PREPARATYWNEJ KOLUMNY CHROMATOGRAFICZNEJ I KOLUMNY ADSORPCYJNEJ PROGRAMEM Kolumna Chromatograficzna 1. MODELOWANIE I SYMULACJA PRACY PREPARATYWNEJ KOLUMNY CHROMATOGRAFICZNEJ I KOLUMNY ADSORPCYJNEJ PROGRAMEM Kolumna Chromatograficzna opracował: Krzysztof Kaczmarski I. WPROWADZENIE Najprostszym modelem

Bardziej szczegółowo

4. WYZNACZENIE IZOTERMY ADSORPCJI METODĄ ECP

4. WYZNACZENIE IZOTERMY ADSORPCJI METODĄ ECP 4. WYZNACZENIE IZOTERMY ADSORPCJI METODĄ ECP Opracował: Krzysztof Kaczmarski I. WPROWADZENIE W chromatografii adsorpcyjnej rozdzielanie mieszanin jest uwarunkowane różnym powinowactwem adsorpcyjnym składników

Bardziej szczegółowo

Pytania z Wysokosprawnej chromatografii cieczowej

Pytania z Wysokosprawnej chromatografii cieczowej Pytania z Wysokosprawnej chromatografii cieczowej 1. Jak wpłynie 50% dodatek MeOH do wody na retencję kwasu propionowego w układzie faz odwróconych? 2. Jaka jest kolejność retencji kwasów mrówkowego, octowego

Bardziej szczegółowo

Kolumnowa Chromatografia Cieczowa I. 1. Czym różni się (z punktu widzenia użytkownika) chromatografia gazowa od chromatografii cieczowej?

Kolumnowa Chromatografia Cieczowa I. 1. Czym różni się (z punktu widzenia użytkownika) chromatografia gazowa od chromatografii cieczowej? Kolumnowa Chromatografia Cieczowa I 1. Czym różni się (z punktu widzenia użytkownika) chromatografia gazowa od chromatografii cieczowej? 2. Co jest miarą polarności rozpuszczalników w chromatografii cieczowej?

Bardziej szczegółowo

GraŜyna Chwatko Zakład Chemii Środowiska

GraŜyna Chwatko Zakład Chemii Środowiska Chromatografia podstawa metod analizy laboratoryjnej GraŜyna Chwatko Zakład Chemii Środowiska Chromatografia gr. chromatos = barwa grapho = pisze Michaił Siemionowicz Cwiet 2 Chromatografia jest metodą

Bardziej szczegółowo

Chromatografia. Chromatografia po co? Zastosowanie: Optymalizacja eluentu. Chromatografia kolumnowa. oczyszczanie. wydzielanie. analiza jakościowa

Chromatografia. Chromatografia po co? Zastosowanie: Optymalizacja eluentu. Chromatografia kolumnowa. oczyszczanie. wydzielanie. analiza jakościowa Chromatografia Chromatografia kolumnowa Chromatografia po co? Zastosowanie: oczyszczanie wydzielanie Chromatogram czarnego atramentu analiza jakościowa analiza ilościowa Optymalizacja eluentu Optimum 0.2

Bardziej szczegółowo

8. CHROMATOGRAFIA CIENKOWARSTWOWA

8. CHROMATOGRAFIA CIENKOWARSTWOWA 8. CHROMATOGRAFIA CIENKOWARSTWOWA opracował: Wojciech Zapała I. WPROWADZENIE Chromatografia cieczowa naleŝy do najwaŝniejszych metod analizy mieszanin róŝnorodnych związków chemicznych. Polega ona na zróŝnicowanej

Bardziej szczegółowo

5. WYZNACZENIE KRZYWEJ VAN DEEMTER a I WSPÓŁCZYNNIKA ROZDZIELENIA DLA KOLUMNY CHROMATOGRAFICZNEJ

5. WYZNACZENIE KRZYWEJ VAN DEEMTER a I WSPÓŁCZYNNIKA ROZDZIELENIA DLA KOLUMNY CHROMATOGRAFICZNEJ 5. WYZNACZENIE KRZYWEJ VAN DEEMTER a I WSPÓŁCZYNNIKA ROZDZIELENIA DLA KOLUMNY CHROMATOGRAFICZNEJ Opracował: Krzysztof Kaczmarski I. WPROWADZENIE Sprawność kolumn chromatograficznych określa się liczbą

Bardziej szczegółowo

PORÓWNANIE FAZ STACJONARNYCH STOSOWANYCH W HPLC

PORÓWNANIE FAZ STACJONARNYCH STOSOWANYCH W HPLC PORÓWNANIE FAZ STACJONARNYCH STOSOWANYCH W HPLC Instrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego 1. Wstęp Chromatografia jest techniką umożliwiającą rozdzielanie składników

Bardziej szczegółowo

2. POMIAR IZOTERMY ADSORPCJI W UKŁADZIE CIECZ CIAŁO STAŁE

2. POMIAR IZOTERMY ADSORPCJI W UKŁADZIE CIECZ CIAŁO STAŁE 2. POMIAR IZOTERMY ADSORPCJI W UKŁADZIE CIECZ CIAŁO STAŁE Opracował: Wojciech Zapała I. WPROWADZENIE I.1. Izotermy adsorpcji. Według Brunaur a istnieje pięć zasadniczych typów izoterm adsorpcji [1]. JednakŜe

Bardziej szczegółowo

Wpływ ilości modyfikatora na współczynnik retencji w technice wysokosprawnej chromatografii cieczowej

Wpływ ilości modyfikatora na współczynnik retencji w technice wysokosprawnej chromatografii cieczowej Wpływ ilości modyfikatora na współczynnik retencji w technice wysokosprawnej chromatografii cieczowej WPROWADZENIE Wysokosprawna chromatografia cieczowa (HPLC) jest uniwersalną techniką analityczną, stosowaną

Bardziej szczegółowo

Chromatografia kolumnowa planarna

Chromatografia kolumnowa planarna Chromatografia kolumnowa planarna Znaczenie chromatografii w analizie i monitoringu środowiska lotne zanieczyszczenia organiczne (alifatyczne, aromatyczne) w powietrzu, glebie, wodzie Mikrozanieczyszczenia

Bardziej szczegółowo

-- w części przypomnienie - Gdańsk 2010

-- w części przypomnienie - Gdańsk 2010 Chromatografia cieczowa jako technika analityki, przygotowania próbek, wsadów do rozdzielania, technika otrzymywania grup i czystych substancji Cz. 4. --mechanizmy retencji i selektywności -- -- w części

Bardziej szczegółowo

WPŁYW ILOŚCI MODYFIKATORA NA WSPÓŁCZYNNIK RETENCJI W TECHNICE WYSOKOSPRAWNEJ CHROMATOGRAFII CIECZOWEJ

WPŁYW ILOŚCI MODYFIKATORA NA WSPÓŁCZYNNIK RETENCJI W TECHNICE WYSOKOSPRAWNEJ CHROMATOGRAFII CIECZOWEJ WPŁYW ILOŚCI MODYFIKATORA NA WSPÓŁCZYNNIK RETENCJI W TECHNICE WYSOKOSPRAWNEJ CHROMATOGRAFII CIECZOWEJ Wprowadzenie Wysokosprawna chromatografia cieczowa (HPLC) jest uniwersalną technika analityczną, stosowaną

Bardziej szczegółowo

RECENZJA rozprawy doktorskiej mgr inż. Beaty Rukowicz pt. Wydzielanie polioli z brzeczek fermentacyjnych metodami sorpcyjnymi

RECENZJA rozprawy doktorskiej mgr inż. Beaty Rukowicz pt. Wydzielanie polioli z brzeczek fermentacyjnych metodami sorpcyjnymi Katedra Inżynierii Chemicznej i Procesowej Wydział Chemiczny, Politechnika Rzeszowska Prof. dr hab. inż. Dorota Antos Al. Powstańców Warszawy 6, 35-959 Rzeszów tel. (+48 17) 865 18 53, email: dorota.antos@prz.edu.pl

Bardziej szczegółowo

Techniki Rozdzielania Mieszanin

Techniki Rozdzielania Mieszanin Techniki Rozdzielania Mieszanin Techniki Sorpcji i Chromatografii cz. I prof. dr hab. inż. Marian Kamiński Gdańsk 2010 Chromatografia cieczowa jako technika analityki, przygotowania próbek, wsadów do rozdzielania,

Bardziej szczegółowo

ROZDZIELENIE OD PODSTAW czyli wszystko (?) O KOLUMNIE CHROMATOGRAFICZNEJ

ROZDZIELENIE OD PODSTAW czyli wszystko (?) O KOLUMNIE CHROMATOGRAFICZNEJ ROZDZIELENIE OD PODSTAW czyli wszystko (?) O KOLUMNIE CHROMATOGRAFICZNEJ Prof. dr hab. inż. Agata Kot-Wasik Katedra Chemii Analitycznej Wydział Chemiczny, Politechnika Gdańska agawasik@pg.gda.pl ROZDZIELENIE

Bardziej szczegółowo

Chromatografia. Chromatografia po co? Zastosowanie: Podstawowe rodzaje chromatografii. Chromatografia cienkowarstwowa - TLC

Chromatografia. Chromatografia po co? Zastosowanie: Podstawowe rodzaje chromatografii. Chromatografia cienkowarstwowa - TLC Chromatografia Chromatografia cienkowarstwowa - TLC Chromatografia po co? Zastosowanie: oczyszczanie wydzielanie analiza jakościowa analiza ilościowa Chromatogram czarnego atramentu Podstawowe rodzaje

Bardziej szczegółowo

Zjawiska powierzchniowe

Zjawiska powierzchniowe Zjawiska powierzchniowe Adsorpcja Model Langmuira Model BET 1 Zjawiska powierzchniowe Adsorpcja Proces gromadzenia się substancji z wnętrza fazy na granicy międzyfazowej; Wynika z tego, że w obszarze powierzchniowym

Bardziej szczegółowo

OZNACZENIE JAKOŚCIOWE I ILOŚCIOWE w HPLC

OZNACZENIE JAKOŚCIOWE I ILOŚCIOWE w HPLC OZNACZENIE JAKOŚCIOWE I ILOŚCIOWE w HPLC prof. Marian Kamiński Wydział Chemiczny, Politechnika Gdańska CEL Celem rozdzielania mieszaniny substancji na poszczególne składniki, bądź rozdzielenia tylko wybranych

Bardziej szczegółowo

Fazą ruchomą może być gaz, ciecz lub ciecz w stanie nadkrytycznym, a fazą nieruchomą ciało stałe lub ciecz.

Fazą ruchomą może być gaz, ciecz lub ciecz w stanie nadkrytycznym, a fazą nieruchomą ciało stałe lub ciecz. Chromatografia jest to metoda fizykochemicznego rozdziału składników mieszaniny związków w wyniku ich różnego podziału pomiędzy fazę ruchomą a nieruchomą. Fazą ruchomą może być gaz, ciecz lub ciecz w stanie

Bardziej szczegółowo

Recenzja pracy doktorskiej mgr. inż. Wojciecha Marka zatytułowanej "Rozdział białek za pomocą łączonych technik chromatograficznych"

Recenzja pracy doktorskiej mgr. inż. Wojciecha Marka zatytułowanej Rozdział białek za pomocą łączonych technik chromatograficznych Rzeszów, 02-06-2014 Krzysztof Kaczmarski Katedra Inżynierii Chemicznej i Procesowej Wydział Chemiczny, Politechnika Rzeszowska Recenzja pracy doktorskiej mgr. inż. Wojciecha Marka zatytułowanej "Rozdział

Bardziej szczegółowo

Pytania z Chromatografii Cieczowej

Pytania z Chromatografii Cieczowej Pytania z Chromatografii Cieczowej 1. Podaj podstawowe różnice, z punktu widzenia użytkownika, między chromatografią gazową a cieczową (podpowiedź: (i) porównaj możliwości wpływu przez chromatografistę

Bardziej szczegółowo

Ślesin, 29 maja 2019 XXV Sympozjum Analityka od podstaw

Ślesin, 29 maja 2019 XXV Sympozjum Analityka od podstaw 1 WYMAGANIA STAWIANE KOLUMNIE CHROMATOGRAFICZNEJ w chromatografii cieczowej Prof. dr hab. inż. Agata Kot-Wasik Katedra Chemii Analitycznej Wydział Chemiczny, Politechnika Gdańska agawasik@pg.edu.pl 2 CHROMATOGRAF

Bardziej szczegółowo

Seria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii

Seria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii Seria 2, ćwiczenia do wykładu Od eksperymentu do poznania materii 8.1.21 Zad. 1. Obliczyć ciśnienie potrzebne do przemiany grafitu w diament w temperaturze 25 o C. Objętość właściwa (odwrotność gęstości)

Bardziej szczegółowo

RP WPROWADZENIE. M. Kamiński PG WCh Gdańsk Układy faz odwróconych RP-HPLC, RP-TLC gdy:

RP WPROWADZENIE. M. Kamiński PG WCh Gdańsk Układy faz odwróconych RP-HPLC, RP-TLC gdy: RP WPRWADZENIE M. Kamiński PG WCh Gdańsk 2013 Układy faz odwróconych RP-HPLC, RP-TLC gdy: Nisko polarna (hydrofobowa) faza stacjonarna, względnie polarny eluent, składający się z wody i dodatku organicznego;

Bardziej szczegółowo

CHROMATOGRAFIA W UKŁADACH FAZ ODWRÓCONYCH RP-HPLC

CHROMATOGRAFIA W UKŁADACH FAZ ODWRÓCONYCH RP-HPLC CHROMATOGRAFIA W UKŁADACH FAZ ODWRÓCONYCH RP-HPLC MK-EG-AS Wydział Chemiczny Politechniki Gdańskiej Gdańsk 2009 Chromatograficzne układy faz odwróconych (RP) Potocznie: Układy chromatograficzne, w których

Bardziej szczegółowo

Wysokosprawna chromatografia cieczowa dobór warunków separacji wybranych związków

Wysokosprawna chromatografia cieczowa dobór warunków separacji wybranych związków Wysokosprawna chromatografia cieczowa dobór warunków separacji wybranych związków Instrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego Opis programu do ćwiczeń Po włączeniu

Bardziej szczegółowo

Kontrola produktu leczniczego. Piotr Podsadni

Kontrola produktu leczniczego. Piotr Podsadni Kontrola produktu leczniczego Piotr Podsadni Kontrola Kontrola - sprawdzanie czegoś, zestawianie stanu faktycznego ze stanem wymaganym. Zakres czynności sprawdzający zapewnienie jakości. Jakość to stopień,

Bardziej szczegółowo

3. Jak zmienią się właściwości żelu krzemionkowego jako fazy stacjonarnej, jeśli zwiążemy go chemicznie z grupą n-oktadecylodimetylosililową?

3. Jak zmienią się właściwości żelu krzemionkowego jako fazy stacjonarnej, jeśli zwiążemy go chemicznie z grupą n-oktadecylodimetylosililową? 1. Chromatogram gazowy, na którym widoczny był sygnał toluenu (t w =110 C), otrzymany został w następujących warunkach chromatograficznych: - kolumna pakowana o wymiarach 48x0,25 cala (podaj długość i

Bardziej szczegółowo

Chromatogramy Załącznik do instrukcji z Technik Rozdzielania Mieszanin

Chromatogramy Załącznik do instrukcji z Technik Rozdzielania Mieszanin Chromatogramy Załącznik do instrukcji z Technik Rozdzielania Mieszanin Badania dotyczące dobrania wypełnienia o odpowiednim zakresie wielkości porów, zapewniających wnikanie wszystkich molekuł warunki

Bardziej szczegółowo

SPECJALNE TECHNIKI ROZDZIELANIA W BIOTECHNOLOGII. Laboratorium nr1 CHROMATOGRAFIA ODDZIAŁYWAŃ HYDROFOBOWYCH

SPECJALNE TECHNIKI ROZDZIELANIA W BIOTECHNOLOGII. Laboratorium nr1 CHROMATOGRAFIA ODDZIAŁYWAŃ HYDROFOBOWYCH SPECJALNE TECHNIKI ROZDZIELANIA W BIOTECHNOLOGII Laboratorium nr1 CHROMATOGRAFIA ODDZIAŁYWAŃ HYDROFOBOWYCH Opracowała: dr inż. Renata Muca I. WPROWADZENIE TEORETYCZNE Chromatografia oddziaływań hydrofobowych

Bardziej szczegółowo

Podstawy chromatografii i technik elektromigracyjnych / Zygfryd Witkiewicz, Joanna Kałużna-Czaplińska. wyd. 6-1 w PWN. Warszawa, cop.

Podstawy chromatografii i technik elektromigracyjnych / Zygfryd Witkiewicz, Joanna Kałużna-Czaplińska. wyd. 6-1 w PWN. Warszawa, cop. Podstawy chromatografii i technik elektromigracyjnych / Zygfryd Witkiewicz, Joanna Kałużna-Czaplińska. wyd. 6-1 w PWN. Warszawa, cop. 2017 Spis treści Przedmowa 11 1. Wprowadzenie 13 1.1. Krótka historia

Bardziej szczegółowo

OPTYMALIZACJA EFEKTÓW ROZDZIELANIA W KOLUMNACH KAPILARNYCH DOBÓR PRĘDKOŚCI PRZEPŁYWU GAZU

OPTYMALIZACJA EFEKTÓW ROZDZIELANIA W KOLUMNACH KAPILARNYCH DOBÓR PRĘDKOŚCI PRZEPŁYWU GAZU OPTYMALIZACJA EFEKTÓW ROZDZIELANIA W KOLUMNACH KAPILARNYCH DOBÓR PRĘDKOŚCI PRZEPŁYWU GAZU 1. WPROWADZENIE W czasie swej wędrówki wzdłuż kolumny pasmo chromatograficzne ulega poszerzeniu, co jest zjawiskiem

Bardziej szczegółowo

4A. Chromatografia adsorpcyjna... 1 4B. Chromatografia podziałowa... 3 4C. Adsorpcyjne oczyszczanie gazów... 5

4A. Chromatografia adsorpcyjna... 1 4B. Chromatografia podziałowa... 3 4C. Adsorpcyjne oczyszczanie gazów... 5 Wykonanie ćwiczenia 4A. Chromatografia adsorpcyjna... 1 4B. Chromatografia podziałowa... 3 4C. Adsorpcyjne oczyszczanie gazów... 5 4A. Chromatografia adsorpcyjna Stanowisko badawcze składa się z: butli

Bardziej szczegółowo

Ćwiczenie 14. Maria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYMATYCZNYCH

Ćwiczenie 14. Maria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYMATYCZNYCH Ćwiczenie 14 aria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYATYCZNYCH Zagadnienia: Podstawowe pojęcia kinetyki chemicznej (szybkość reakcji, reakcje elementarne, rząd reakcji). Równania kinetyczne prostych

Bardziej szczegółowo

OFERTA TEMATÓW PROJEKTÓW DYPLOMOWYCH (MAGISTERSKICH) do zrealizowania w Katedrze INŻYNIERII CHEMICZNEJ I PROCESOWEJ

OFERTA TEMATÓW PROJEKTÓW DYPLOMOWYCH (MAGISTERSKICH) do zrealizowania w Katedrze INŻYNIERII CHEMICZNEJ I PROCESOWEJ OFERTA TEMATÓW PROJEKTÓW DYPLOMOWYCH (MAGISTERSKICH) do zrealizowania w Katedrze INŻYNIERII CHEMICZNEJ I PROCESOWEJ Badania kinetyki utleniania wybranych grup związków organicznych podczas procesów oczyszczania

Bardziej szczegółowo

Metody chromatograficzne w chemii i biotechnologii, wykład 3. Łukasz Berlicki

Metody chromatograficzne w chemii i biotechnologii, wykład 3. Łukasz Berlicki Metody chromatograficzne w chemii i biotechnologii, wykład 3 Łukasz Berlicki Rozdział chromatograficzny Przepływ Faza ruchoma mieszanina Faza stacjonarna Chromatografia cieczowa adsorbcyjna Faza stacjonarna:

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Katedra Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 2 OPTYMALIZACJA ROZDZIELANIA MIESZANINY WYBRANYCH FARMACEUTYKÓW METODĄ

Bardziej szczegółowo

SORPCJA WILGOCI SORPCJA WILGOCI

SORPCJA WILGOCI SORPCJA WILGOCI SORPCJA WILGOCI Materiały porowate o właściwościach hydrofilowych chłoną wilgoć z powietrza w ilości zaleŝnej od jego wilgotności względnej. Chłonięcie W ten sposób wilgoci z powietrza nazywa się sorpcją,

Bardziej szczegółowo

RP WPROWADZENIE. M. Kamioski PG WCh Gdaosk 2013

RP WPROWADZENIE. M. Kamioski PG WCh Gdaosk 2013 RP WPRWADZENIE M. Kamioski PG WCh Gdaosk 2013 Fazy stacjonarne w RP-HPLC / RP-HPTLC CN, cyklodekstryny, - głównie substancje średnio polarne i polarne metabolity, organiczne składniki ścieków i inne Zestawienie

Bardziej szczegółowo

Rzeszów, 16 kwietnia, 2018 r. RECENZJA

Rzeszów, 16 kwietnia, 2018 r. RECENZJA Rzeszów, 16 kwietnia, 2018 r. RECENZJA rozprawy doktorskiej mgr inż. Agaty PRZEWŁOCKIEJ pt.: Biosorpcjne usuwanie mieszaniny jonów Ni(II), Pb(II) oraz Zn(II) z roztworu wodnego przy zastosowaniu złoża

Bardziej szczegółowo

ĆWICZENIE 3: CHROMATOGRAFIA PLANARNA

ĆWICZENIE 3: CHROMATOGRAFIA PLANARNA ĆWICZENIE 3: CHROMATOGRAFIA PLANARNA Chromatografia jest to metoda chemicznej analizy instrumentalnej, w której dokonuje się podziału substancji (w przeciwprądzie) między fazę nieruchomą i fazę ruchomą.

Bardziej szczegółowo

Jolanta Jaroszewska-Manaj 1. i identyfikacji związków organicznych. Jolanta Jaroszewska-Manaj 2

Jolanta Jaroszewska-Manaj 1. i identyfikacji związków organicznych. Jolanta Jaroszewska-Manaj 2 Jolanta Jaroszewska-Manaj 1 1 Chromatograficzne metody rozdzielania i identyfikacji związków organicznych Jolanta Jaroszewska-Manaj 2 Jolanta Jaroszewska-Manaj 3 Jolanta Jaroszewska-Manaj 4 Jolanta Jaroszewska-Manaj

Bardziej szczegółowo

Kreacja aromatów. Techniki przygotowania próbek. Identyfikacja składników. Wybór składników. Kreacja aromatu

Kreacja aromatów. Techniki przygotowania próbek. Identyfikacja składników. Wybór składników. Kreacja aromatu Kreacja aromatów Techniki przygotowania próbek Identyfikacja składników Wybór składników Kreacja aromatu Techniki przygotowania próbek Ekstrakcja do fazy ciekłej Ekstrakcja do fazy stałej Desorpcja termiczna

Bardziej szczegółowo

WYZNACZANIE ZAKRESU WYKLUCZANIA DLA WYPEŁNIEŃ STOSOWANYCH W WYSOKOSPRAWNEJ CHROMATOGRAFII WYKLUCZANIA (HPSEC)

WYZNACZANIE ZAKRESU WYKLUCZANIA DLA WYPEŁNIEŃ STOSOWANYCH W WYSOKOSPRAWNEJ CHROMATOGRAFII WYKLUCZANIA (HPSEC) WYZNACZANIE ZAKRESU WYKLUCZANIA DLA WYPEŁNIEŃ STOSOWANYCH W WYSOKOSPRAWNEJ CHROMATOGRAFII WYKLUCZANIA (HPSEC) 1. Wprowadzenie Chromatografia wykluczania (Size-Exclusion Chromatography (SEC)), zwana również

Bardziej szczegółowo

Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu

Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu Ćw. 4 Kinetyka reakcji chemicznych Zagadnienia do przygotowania: Szybkość reakcji chemicznej, zależność szybkości reakcji chemicznej

Bardziej szczegółowo

CHROMATOGRAFIA CHROMATOGRAFIA GAZOWA

CHROMATOGRAFIA CHROMATOGRAFIA GAZOWA CHROMATOGRAFIA CHROMATOGRAFIA GAZOWA CHROMATOGRAFIA GAZOWA Chromatografia jest fizycznym sposobem rozdzielania gdzie rozdzielane składniki rozłożone są między dwiema fazami, Z których: jedna jest nieruchoma

Bardziej szczegółowo

Podstawy teoretyczne technologii chemicznej / Józef Szarawara, Jerzy Piotrowski. Warszawa, Spis treści. Przedmowa 13

Podstawy teoretyczne technologii chemicznej / Józef Szarawara, Jerzy Piotrowski. Warszawa, Spis treści. Przedmowa 13 Podstawy teoretyczne technologii chemicznej / Józef Szarawara, Jerzy Piotrowski. Warszawa, 2010 Spis treści Przedmowa 13 Wykaz waŝniejszych oznaczeń 16 1. Projektowanie i realizacja procesu technologicznego

Bardziej szczegółowo

Ćwiczenie 1 Analiza jakościowa w chromatografii gazowej Wstęp

Ćwiczenie 1 Analiza jakościowa w chromatografii gazowej Wstęp Pracownia dyplomowa III rok Ochrona Środowiska Licencjat (OŚI) Ćwiczenie 1 Analiza jakościowa w chromatografii gazowej Wstęp Chromatografia jest metodą fizykochemiczną metodą rozdzielania składników jednorodnych

Bardziej szczegółowo

Podstawy chromatografii i technik elektromigracyjnych / Zygfryd Witkiewicz, Joanna Kałużna-Czaplińska. wyd. 5, 4 dodr. Warszawa, 2015.

Podstawy chromatografii i technik elektromigracyjnych / Zygfryd Witkiewicz, Joanna Kałużna-Czaplińska. wyd. 5, 4 dodr. Warszawa, 2015. Podstawy chromatografii i technik elektromigracyjnych / Zygfryd Witkiewicz, Joanna Kałużna-Czaplińska. wyd. 5, 4 dodr. Warszawa, 2015 Spis treści Przedmowa 11 1. Wprowadzenie 13 1.1. Krótka historia chromatografii

Bardziej szczegółowo

OD HPLC do UPLC. Prof. dr hab. inż. Agata Kot-Wasik. Katedra Chemii Analitycznej Wydział Chemiczny, Politechnika Gdańska

OD HPLC do UPLC. Prof. dr hab. inż. Agata Kot-Wasik. Katedra Chemii Analitycznej Wydział Chemiczny, Politechnika Gdańska OD HPLC do UPLC Katedra Chemii Analitycznej Wydział Chemiczny, Politechnika Gdańska 1 PREHISTORIA 1966 Chromatogram autorstwa L.R.Snyder Analiza chinolin LC-GC North America, 30(4), 328-341, 2012 2 PREHISTORIA

Bardziej szczegółowo

Identyfikacja węglowodorów aromatycznych techniką GC-MS

Identyfikacja węglowodorów aromatycznych techniką GC-MS Identyfikacja węglowodorów aromatycznych techniką GC-MS Instrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego. 1.Wstęp teoretyczny Zagadnienie rozdzielania mieszanin związków

Bardziej szczegółowo

Definicja pochodnej cząstkowej

Definicja pochodnej cząstkowej 1 z 8 gdzie punkt wewnętrzny Definicja pochodnej cząstkowej JeŜeli iloraz ma granicę dla to granicę tę nazywamy pochodną cząstkową funkcji względem w punkcie. Oznaczenia: Pochodną cząstkową funkcji względem

Bardziej szczegółowo

Techniki immunochemiczne. opierają się na specyficznych oddziaływaniach między antygenami a przeciwciałami

Techniki immunochemiczne. opierają się na specyficznych oddziaływaniach między antygenami a przeciwciałami Techniki immunochemiczne opierają się na specyficznych oddziaływaniach między antygenami a przeciwciałami Oznaczanie immunochemiczne RIA - ( ang. Radio Immuno Assay) techniki radioimmunologiczne EIA -

Bardziej szczegółowo

AUTOMATYKA I POMIARY LABORATORIUM - ĆWICZENIE NR 13 WŁAŚCIWOŚCI METROLOGICZNE POTENCJOMETRYCZNYCH CZUJNIKÓW GAZOWYCH

AUTOMATYKA I POMIARY LABORATORIUM - ĆWICZENIE NR 13 WŁAŚCIWOŚCI METROLOGICZNE POTENCJOMETRYCZNYCH CZUJNIKÓW GAZOWYCH AUTOMATYKA I POMIARY LABORATORIUM - ĆWICZENIE NR 13 WŁAŚCIWOŚCI METROLOGICZNE POTENCJOMETRYCZNYCH CZUJNIKÓW GAZOWYCH Występowanie dwutlenku węgla w atmosferze i powolny wzrost jego stęŝenia jest główną

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI Pracownia studencka Katedry Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 2 Oznaczanie benzoesanu denatonium w skażonym alkoholu etylowym metodą wysokosprawnej

Bardziej szczegółowo

POTWIERDZANIE TOŻSAMOSCI PRZY ZASTOSOWANIU RÓŻNYCH TECHNIK ANALITYCZNYCH

POTWIERDZANIE TOŻSAMOSCI PRZY ZASTOSOWANIU RÓŻNYCH TECHNIK ANALITYCZNYCH POTWIERDZANIE TOŻSAMOSCI PRZY ZASTOSOWANIU RÓŻNYCH TECHNIK ANALITYCZNYCH WSTĘP Spełnianie wymagań jakościowych stawianych przed producentami leków jest kluczowe dla zapewnienia bezpieczeństwa pacjenta.

Bardziej szczegółowo

KONDUKTOMETRIA. Konduktometria. Przewodnictwo elektrolityczne. Przewodnictwo elektrolityczne zaleŝy od:

KONDUKTOMETRIA. Konduktometria. Przewodnictwo elektrolityczne. Przewodnictwo elektrolityczne zaleŝy od: KONDUKTOMETRIA Konduktometria Metoda elektroanalityczna oparta na pomiarze przewodnictwa elektrolitycznego, którego wartość ulega zmianie wraz ze zmianą stęŝenia jonów zawartych w roztworze. Przewodnictwo

Bardziej szczegółowo

Warszawa, Prof. dr hab. inż. Zygfryd Witkiewicz Instytut Chemii WAT

Warszawa, Prof. dr hab. inż. Zygfryd Witkiewicz Instytut Chemii WAT Warszawa, 2014-05-25 Prof. dr hab. inż. Zygfryd Witkiewicz Instytut Chemii WAT Recenzja rozprawy doktorskiej mgr Elżbiety Dobrzyńskiej, pt. Łączone techniki chromatograficzne w modelowaniu sorpcji wybranych

Bardziej szczegółowo

ZAKŁAD CHEMII ANALITYCZNEJ

ZAKŁAD CHEMII ANALITYCZNEJ ZAKŁAD CHEMII ANALITYCZNEJ Chemia analityczna I E 105 30 75 II 8 Chemia analityczna II E 105 30 75 III 7 Chromatografia II Zal/o 30 30 2 Elektroanaliza I Zal/o 45 15 30 285 105 180 Chemia analityczna I

Bardziej szczegółowo

Cz. 5. Podstawy instrumentalizacji chromatografii. aparatura chromatograficzna w skali analitycznej i modelowej - -- w części przypomnienie -

Cz. 5. Podstawy instrumentalizacji chromatografii. aparatura chromatograficzna w skali analitycznej i modelowej - -- w części przypomnienie - Chromatografia cieczowa jako technika analityki, przygotowania próbek, wsadów do rozdzielania, technika otrzymywania grup i czystych substancji Cz. 5. Podstawy instrumentalizacji chromatografii aparatura

Bardziej szczegółowo

Jakościowe i ilościowe oznaczanie alkoholi techniką chromatografii gazowej

Jakościowe i ilościowe oznaczanie alkoholi techniką chromatografii gazowej Jakościowe i ilościowe oznaczanie alkoholi techniką chromatografii gazowej Instrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego. 1. Wstęp teoretyczny Zagadnienie rozdzielania

Bardziej szczegółowo

PP7: Wymiana jonowa i chromatografia jonowymienna oznaczanie kationów i anionów

PP7: Wymiana jonowa i chromatografia jonowymienna oznaczanie kationów i anionów PP7: Wymiana jonowa i chromatografia jonowymienna oznaczanie kationów i anionów Instrukcja do ćwiczeń laboratoryjnych - ćwiczenie nr 7 przedmiot: Metody Analizy Technicznej kierunek studiów: Technologia

Bardziej szczegółowo

Termodynamika fazy powierzchniowej Zjawisko sorpcji Adsorpcja fizyczna: izoterma Langmuira oraz BET Zjawiska przylegania

Termodynamika fazy powierzchniowej Zjawisko sorpcji Adsorpcja fizyczna: izoterma Langmuira oraz BET Zjawiska przylegania ermodynamika zjawisk powierzchniowych 3.6.1. ermodynamika fazy powierzchniowej 3.6.2. Zjawisko sorpcji 3.6.3. Adsorpcja fizyczna: izoterma Langmuira oraz BE 3.6.4. Zjawiska przylegania ZJAWISKA PWIERZCHNIWE

Bardziej szczegółowo

Recenzja pracy doktorskiej mgr Tomasza Świsłockiego pt. Wpływ oddziaływań dipolowych na własności spinorowego kondensatu rubidowego

Recenzja pracy doktorskiej mgr Tomasza Świsłockiego pt. Wpływ oddziaływań dipolowych na własności spinorowego kondensatu rubidowego Prof. dr hab. Jan Mostowski Instytut Fizyki PAN Warszawa Warszawa, 15 listopada 2010 r. Recenzja pracy doktorskiej mgr Tomasza Świsłockiego pt. Wpływ oddziaływań dipolowych na własności spinorowego kondensatu

Bardziej szczegółowo

chemia wykład 3 Przemiany fazowe

chemia wykład 3 Przemiany fazowe Przemiany fazowe Przemiany fazowe substancji czystych Wrzenie, krzepnięcie, przemiana grafitu w diament stanowią przykłady przemian fazowych, które zachodzą bez zmiany składu chemicznego. Diagramy fazowe

Bardziej szczegółowo

Interpretacja krzywych sondowania elektrooporowego; zagadnienie niejednoznaczności interpretacji (program IX1D Interpex) Etapy wykonania:

Interpretacja krzywych sondowania elektrooporowego; zagadnienie niejednoznaczności interpretacji (program IX1D Interpex) Etapy wykonania: Interpretacja krzywych sondowania elektrooporowego; zagadnienie niejednoznaczności interpretacji (program IX1D Interpex) Etapy wykonania: 1. Opisać problem geologiczny, który naleŝy rozwiązać (rozpoznanie

Bardziej szczegółowo

Politechnika Śląska Wydział Chemiczny Katedra Technologii Chemicznej Organicznej i Petrochemii INSTRUKCJA. Metody analizy związków chemicznych:

Politechnika Śląska Wydział Chemiczny Katedra Technologii Chemicznej Organicznej i Petrochemii INSTRUKCJA. Metody analizy związków chemicznych: Politechnika Śląska Wydział Chemiczny Katedra Technologii Chemicznej Organicznej i Petrochemii INSTRUKCJA Metody analizy związków chemicznych: UPLC-MS U/HPLC Wprowadzenie Chromatografia cieczowa, w swoich

Bardziej szczegółowo

ANALIZA HIERARCHICZNA PROBLEMU W SZACOWANIU RYZYKA PROJEKTU INFORMATYCZNEGO METODĄ PUNKTOWĄ. Joanna Bryndza

ANALIZA HIERARCHICZNA PROBLEMU W SZACOWANIU RYZYKA PROJEKTU INFORMATYCZNEGO METODĄ PUNKTOWĄ. Joanna Bryndza ANALIZA HIERARCHICZNA PROBLEMU W SZACOWANIU RYZYKA PROJEKTU INFORMATYCZNEGO METODĄ PUNKTOWĄ Joanna Bryndza Wprowadzenie Jednym z kluczowych problemów w szacowaniu poziomu ryzyka przedsięwzięcia informatycznego

Bardziej szczegółowo

CHROMATOGRAFIA GAZOWA (GC)

CHROMATOGRAFIA GAZOWA (GC) UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Katedra Analizy Środowiska CHROMATOGRAFIA GAZOWA (GC) Gdańsk 2007 GC - chromatografia gazowa 2 1. Wprowadzenie do chromatografii gazowej Chromatografia jest fizykochemiczną

Bardziej szczegółowo

Modelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka

Modelowanie jako sposób opisu rzeczywistości. Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka Modelowanie jako sposób opisu rzeczywistości Katedra Mikroelektroniki i Technik Informatycznych Politechnika Łódzka 2015 Wprowadzenie: Modelowanie i symulacja PROBLEM: Podstawowy problem z opisem otaczającej

Bardziej szczegółowo

Chromatografia cienkowarstwowa

Chromatografia cienkowarstwowa Chromatografia cienkowarstwowa Wstęp Badanie szeregu złoŝonych mieszanin substancji nastręcza niejednokrotnie wielu trudności. Do analizy skomplikowanych mieszanin wykorzystuje się między innymi procesy

Bardziej szczegółowo

Informacja o pracy dyplomowej. Projekt stanowiska dydaktycznego opartego na spręŝarkowym urządzeniu chłodniczym, napełnionym dwutlenkiem węgla (R744)

Informacja o pracy dyplomowej. Projekt stanowiska dydaktycznego opartego na spręŝarkowym urządzeniu chłodniczym, napełnionym dwutlenkiem węgla (R744) Informacja o pracy dyplomowej 1. Nazwisko i imię: Gromow Przemysław adres e-mail: przemyslaw.gromow@gmail.com 2. Kierunek studiów: Mechanika i Budowa Maszyn 3. Rodzaj studiów: Dzienne magisterskie 4. Specjalność:

Bardziej szczegółowo

HPLC? HPLC cz.1. Analiza chromatograficzna. Klasyfikacja metod chromatograficznych

HPLC? HPLC cz.1. Analiza chromatograficzna. Klasyfikacja metod chromatograficznych HPLC cz.1 ver. 1.0 Literatura: 1. Witkiewicz Z. Podstawy chromatografii 2. Szczepaniak W., Metody instrumentalne w analizie chemicznej 3. Snyder L.R., Kirkland J.J., Glajch J.L. Practical HPLC Method Development

Bardziej szczegółowo

CHROMATOGRAFIA BARWNIKÓW ROŚLINNYCH

CHROMATOGRAFIA BARWNIKÓW ROŚLINNYCH POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćwiczenie 1 CHROMATOGRAFIA BARWNIKÓW ROŚLINNYCH I. Wiadomości teoretyczne W wielu dziedzinach nauki i techniki spotykamy się z problemem

Bardziej szczegółowo

Metody chromatograficzne w chemii i biotechnologii, wykład 6. Łukasz Berlicki

Metody chromatograficzne w chemii i biotechnologii, wykład 6. Łukasz Berlicki Metody chromatograficzne w chemii i biotechnologii, wykład 6 Łukasz Berlicki Techniki elektromigracyjne Elektroforeza technika analityczna polegająca na rozdzielaniu mieszanin związków przez wymuszenie

Bardziej szczegółowo

HETEROGENICZNOŚĆ STRUKTURALNA ORAZ WŁAŚCIWOŚCI ADSORPCYJNE ADSORBENTÓW NATURALNYCH

HETEROGENICZNOŚĆ STRUKTURALNA ORAZ WŁAŚCIWOŚCI ADSORPCYJNE ADSORBENTÓW NATURALNYCH Uniwersytet Mikołaja Kopernika Monografie Wydziału Chemii MYROSLAV SPRYNSKYY HETEROGENICZNOŚĆ STRUKTURALNA ORAZ WŁAŚCIWOŚCI ADSORPCYJNE ADSORBENTÓW NATURALNYCH (KLINOPTYLOLIT, MORDENIT, DIATOMIT, TALK,

Bardziej szczegółowo

DOBÓR ŚRODKÓW TRANSPORTOWYCH DLA GOSPODARSTWA PRZY POMOCY PROGRAMU AGREGAT - 2

DOBÓR ŚRODKÓW TRANSPORTOWYCH DLA GOSPODARSTWA PRZY POMOCY PROGRAMU AGREGAT - 2 InŜynieria Rolnicza 14/2005 Michał Cupiał, Maciej Kuboń Katedra InŜynierii Rolniczej i Informatyki Akademia Rolnicza im. Hugona Kołłątaja w Krakowie DOBÓR ŚRODKÓW TRANSPORTOWYCH DLA GOSPODARSTWA PRZY POMOCY

Bardziej szczegółowo

Ćwiczenie nr 2: ZaleŜność okresu drgań wahadła od amplitudy

Ćwiczenie nr 2: ZaleŜność okresu drgań wahadła od amplitudy Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Rok Grupa Zespół Nr ćwiczenia Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 2: ZaleŜność okresu

Bardziej szczegółowo

Najprostszy schemat blokowy

Najprostszy schemat blokowy Definicje Modelowanie i symulacja Modelowanie zastosowanie określonej metodologii do stworzenia i weryfikacji modelu dla danego układu rzeczywistego Symulacja zastosowanie symulatora, w którym zaimplementowano

Bardziej szczegółowo

Wyznaczanie stałej szybkości reakcji wymiany jonowej

Wyznaczanie stałej szybkości reakcji wymiany jonowej Wyznaczanie stałej szybkości reakcji wymiany jonowej Ćwiczenie laboratoryjne nr 4 Elementy termodynamiki i kinetyki procesowej Anna Ptaszek Elementy kinetyki chemicznej Pojęcie szybkości reakcji Pojęcie

Bardziej szczegółowo

Modelowanie reakcji chemicznych

Modelowanie reakcji chemicznych Modelowanie reakcji chemicznych Przykładowe ćwiczenia w Excelu i Modellusie 2007 IT for US Projekt jest finansowany przy wsparciu Komisji Europejskiej, nr grantu 119001-CP-1-2004-1-PL-COMENIUS-C21. Materiały

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych

Instrukcja do ćwiczeń laboratoryjnych UNIWERSYTET GDAŃSKI WYDZIAŁ CHEMII Pracownia studencka Katedra Analizy Środowiska Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 1 CHROMATOGRAFIA GAZOWA WPROWADZENIE DO TECHNIKI ORAZ ANALIZA JAKOŚCIOWA

Bardziej szczegółowo

prof. dr hab. Małgorzata Jóźwiak

prof. dr hab. Małgorzata Jóźwiak Czy równowaga w przyrodzie i w chemii jest korzystna? prof. dr hab. Małgorzata Jóźwiak 1 Pojęcie równowagi łańcuch pokarmowy równowagi fazowe równowaga ciało stałe - ciecz równowaga ciecz - gaz równowaga

Bardziej szczegółowo

Definicje. Najprostszy schemat blokowy. Schemat dokładniejszy

Definicje. Najprostszy schemat blokowy. Schemat dokładniejszy Definicje owanie i symulacja owanie zastosowanie określonej metodologii do stworzenia i weryfikacji modelu dla danego rzeczywistego Symulacja zastosowanie symulatora, w którym zaimplementowano model, do

Bardziej szczegółowo

Instrukcja ćwiczenia laboratoryjnego HPLC-2 Nowoczesne techniki analityczne

Instrukcja ćwiczenia laboratoryjnego HPLC-2 Nowoczesne techniki analityczne Instrukcja ćwiczenia laboratoryjnego HPLC-2 Nowoczesne techniki analityczne 1) OZNACZANIE ROZKŁADU MASY CZĄSTECZKOWEJ POLIMERÓW Z ASTOSOWANIEM CHROMATOGRAFII ŻELOWEJ; 2) PRZYGOTOWANIE PRÓBKI Z ZASTOSOWANIEM

Bardziej szczegółowo

Inżynieria Środowiska

Inżynieria Środowiska ROZTWORY BUFOROWE Roztworami buforowymi nazywamy takie roztwory, w których stężenie jonów wodorowych nie ulega większym zmianom ani pod wpływem rozcieńczania wodą, ani pod wpływem dodatku nieznacznych

Bardziej szczegółowo

Zintegrowany system zmniejszenia eksploatacyjnej energochłonności budynków. Konsorcjum:

Zintegrowany system zmniejszenia eksploatacyjnej energochłonności budynków. Konsorcjum: Strategiczny projekt badawczy Finansowany przez: Narodowe Centrum Badań i Rozwoju Temat projektu Zintegrowany system zmniejszenia eksploatacyjnej energochłonności budynków Zadanie Badawcze numer 3: Zwiększenie

Bardziej szczegółowo

2.1. Charakterystyka badanego sorbentu oraz ekstrahentów

2.1. Charakterystyka badanego sorbentu oraz ekstrahentów BADANIA PROCESU SORPCJI JONÓW ZŁOTA(III), PLATYNY(IV) I PALLADU(II) Z ROZTWORÓW CHLORKOWYCH ORAZ MIESZANINY JONÓW NA SORBENCIE DOWEX OPTIPORE L493 IMPREGNOWANYM CYANEXEM 31 Grzegorz Wójcik, Zbigniew Hubicki,

Bardziej szczegółowo

ODNAWIALNE ŹRÓDŁA ENERGII I GOSPODARKA ODPADAMI STUDIA STACJONARNE

ODNAWIALNE ŹRÓDŁA ENERGII I GOSPODARKA ODPADAMI STUDIA STACJONARNE PROGRAM ĆWICZEŃ LABORATORYJNYCH Z CHEMII (SEMESTR ZIMOWY) ODNAWIALNE ŹRÓDŁA ENERGII I GOSPODARKA ODPADAMI STUDIA STACJONARNE Ćwiczenie 1 (Karty pracy laboratoryjnej: 1a, 1b, 1d, 1e) 1. Organizacja ćwiczeń.

Bardziej szczegółowo

Rys. 1. Chromatogram i sposób pomiaru podstawowych wielkości chromatograficznych

Rys. 1. Chromatogram i sposób pomiaru podstawowych wielkości chromatograficznych Ćwiczenie 1 Chromatografia gazowa wprowadzenie do techniki oraz analiza jakościowa Wstęp Celem ćwiczenia jest nabycie umiejętności obsługi chromatografu gazowego oraz wykonanie analizy jakościowej za pomocą

Bardziej szczegółowo

DHPLC. Denaturing high performance liquid chromatography. Wiktoria Stańczyk Zofia Kołeczko

DHPLC. Denaturing high performance liquid chromatography. Wiktoria Stańczyk Zofia Kołeczko DHPLC Denaturing high performance liquid chromatography Wiktoria Stańczyk Zofia Kołeczko Mini-słowniczek SNP (Single Nucleotide Polymorphism) - zmienność sekwencji DNA; HET - analiza heterodupleksów; HPLC

Bardziej szczegółowo

WYZNACZANIE STAŁEJ DYSOCJACJI p-nitrofenolu METODĄ SPEKTROFOTOMETRII ABSORPCYJNEJ

WYZNACZANIE STAŁEJ DYSOCJACJI p-nitrofenolu METODĄ SPEKTROFOTOMETRII ABSORPCYJNEJ Ćwiczenie nr 13 WYZNCZNIE STŁEJ DYSOCJCJI p-nitrofenolu METODĄ SPEKTROFOTOMETRII BSORPCYJNEJ I. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie metodą spektrofotometryczną stałej dysocjacji słabego kwasu,

Bardziej szczegółowo

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ.

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ. Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ. Jolanta Zimmerman 1. Wprowadzenie do metody elementów skończonych Działanie rzeczywistych

Bardziej szczegółowo

Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego

Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego Tytuł projektu: Realizacja Przedmiot Treści nauczania z podstawy programowej Treści wykraczające poza podstawę

Bardziej szczegółowo

TECHNOLOGIA CHEMICZNA JAKO NAUKA STOSOWANA GENEZA NOWEGO PROCESU TECHNOLOGICZNEGO CHEMICZNA KONCEPCJA PROCESU

TECHNOLOGIA CHEMICZNA JAKO NAUKA STOSOWANA GENEZA NOWEGO PROCESU TECHNOLOGICZNEGO CHEMICZNA KONCEPCJA PROCESU PODSTAWY TECHNOLOGII OGÓŁNEJ wykład 1 TECHNOLOGIA CHEMICZNA JAKO NAUKA STOSOWANA GENEZA NOWEGO PROCESU TECHNOLOGICZNEGO CHEMICZNA KONCEPCJA PROCESU Technologia chemiczna - definicja Technologia chemiczna

Bardziej szczegółowo

ADSORPCJA PARACETAMOLU NA WĘGLU AKTYWNYM

ADSORPCJA PARACETAMOLU NA WĘGLU AKTYWNYM ADSORPCJA PARACETAMOLU NA WĘGLU AKTYWNYM CEL ĆWICZENIA Celem ćwiczenia jest analiza procesu adsorpcji paracetamolu na węglu aktywnym. Zadanie praktyczne polega na spektrofotometrycznym oznaczeniu stężenia

Bardziej szczegółowo