ANALIZA PEWNEJ WŁASNOŚCI PĘKU STOŻKOWYCH ŚCIŚLE STYCZNYCH
|
|
- Bożena Dominika Zych
- 6 lat temu
- Przeglądów:
Transkrypt
1 Marian PALEJ Ośrodek Geometrii i Grafiki Inżynierskiej Politechnika Śląska ANALIZA PEWNEJ WŁASNOŚCI PĘKU STOŻKOWYCH ŚCIŚLE STYCZNYCH W pracy [1] przy omawianiu tworzenia krzywej rzędu trzeciego poprzez rzutowość pęku stożkowych z liniowym pękiem prostych (P) Autorzy dotykają problemu degeneracji tej krzywej przy szczególnie przyjętym środku P. Przedstawione przypadki rozpadu c 3 nie są jednak kompletne. Brak m.in. omówienia takich założeń, w których baza pęku stożkowych ustala prostą wspólnie styczną lub okrąg styczny, tj. kiedy dwa lub trzy podstawowe punkty bazy ulegają zjednoczeniu, np. A = B, C, D lub A = B = C, D. W artykule [2] omówiono przypadek, w którym baza pęku stożkowych zawiera jedną lub dwie styczne. Celem pracy niniejszej jest poszerzenie dyskusji na przypadek pęku stożkowych o wspólnie stycznym okręgu czyli o wspólnym okręgu krzywizny.w szczególności przyjmijmy następujące założenie. Niech bazę pęku krzywych stopnia drugiego tworzą trzy zjednoczone punkty A = B = C i różny od nich punkt D. Przeprowadźmy analizę krzywej rzędu trzeciego utworzonej z punktów styczności do stożkowych pęku - takich promieni pęku liniowego (P), którego środek P leży na prostej wyznaczonej przez A = B = C tj. na wspólnej trój punktowo stycznej prostej a. Na wstępie przypomnijmy twierdzenie o podstawowym dla dalszych rozważań znaczeniu. Cytujemy je z podręcznika [3] nie zmieniając archaicznego nieco języka: Jeśli przez każdy z dwóch wiadomych punktów wspólnych ( S i S i ) dwóch danych, współpłaszczyznowych stożkowych przeprowadzimy po promieniu i połączymy prostą drugie punkty przez nie wyznaczone na każdej z obu stożkowych, to wszystkie tak wykreślone pary prostych spotykają się w punktach jednej i tej samej prostej; prosta ta przechodzi przez pozostałe dwa punkty wspólne obu stożkowych... /1/ Przykład ilustrujący powyższą relację przedstawia rys.1. Jednym z wniosków cytowanego twierdzenia przytoczonym również z [3] w dosłownej wersji jest relacja: Jeśli dowolne trzy współpłaszczyznowe stożkowe posiadają wszystkie trzy dwa rys. 1. wspólne punkty ( S i S i ), to trzy pozostałe wspólne cięciwne przechodzą przez
2 Rys. 2. jeden punkt (rys.2)... /2/ Zarówno twierdzenie jak i wniosek jest oczywiście ważny także w przypadku kiedy punkty S i S i ulegają zjednoczeniu tj. kiedy istnieje wspólna styczna i wspólny punkt styczności rozpatrywanych stożkowych. W rys.3 i następnych takie właśnie założenie jest podstawą prowadzonych rozważań. Zauważmy jeszcze, że w przypadku kiedy dwie spośród trzech stożkowych, o których mowa w wniosku /2/ są okręgami jedna z cięciwnych jest prostą niewłaściwą jako przechodzącą przez urojone punkty kołowe. Wynika stąd natychmiast, że pozostałe dwie są do siebie równoległe (rys.4). rys. 3. Rys. 4. Fakt ten wykorzystamy w konstrukcji okręgu ściśle stycznego do stożkowej w dowolnym jej punkcie. Niech dana będzie dowolna stożkowa α (rys.5) : Aby wyznaczyć w wybranym punkcie S okrąg ściśle styczny do stożkowej α możemy kolejno: 1/. skonstruować prostą s styczną do stożkowej α w punkcie S, 2/. obrać dowolny okrąg β styczny do prostej s (a jednocześnie i do stożkowej) w punkcie S, 3/. wyznaczyć wspólną, różną od s cięciwę okręgu β i stożkowej α - k αβ 4/. poprowadzić przez punkt S prostą równoległą do k αβ ; tak skonstruowana prosta k αγ może być uważana za cięciwę, która jest wspólna stożkowej α oraz pewnemu okręgowi γ stycznemu do α w punkcie S. Ponieważ jeden z końców naszej cięciwy jednoczy się z punktem S - wnosimy, że okrąg γ i stożkowa α posiadają z sobą jeden tylko różny od S punkt
3 rys. 5. wspólny Q. Warunek taki jednak może być spełniony jedynie wówczas kiedy okrąg γ jest ściśle styczny, a to oznacza, że rozwiązaniem naszej konstrukcji jest znalezienie okręgu γ o środku leżącym na normalnej do stożkowej w punkcie S i dwusiecznej odcinka QS. Korzystając z omówionych wyżej konstrukcji na rys.6 przedstawiono pęk stożkowych o bazie A = B = C, D (piąte punkty precyzujące każdą kolejną stożkową pęku obrano na prostej przynależnej do A = B = C, mamy więc kolejne stożkowe α 1 = ( A,B,C,D,E 1 ), α 2 = (A,B,C,D,E 2 ), α 3 = (A,B,C,D,E 3 ), przy czym e ( E 1, E 2, E 3... ) A. DD 1 AO 1 = 1 DD 2 AO 2 = 2 e (E 1, E 2,... ) l ( 1, 2,... ) A ( A O 1, AO 2,... ) t ( 1, 2,... ) D ( DD 1, DD 2,... ) δ ( D 1, D 2,... ) δ ( D 1, D 2,... ) e ( E 1, E 2,... ) { D i E i } = c 3 ; c 3 = ( A ) ( E 3 ) ( V ) s ( I 1, I 2,... ) e ( III 1, III 2,... ) rys
4 W założeniach przyjęto jako dane: punkt A = B = C, styczną w tym punkcie - prostą s, okrąg styczności γ oraz punkt D. Rzutując na okrąg γ z środka A - punkt D oraz punkty E i otrzymujemy z połączenia tych rzutów prostą l. Proste DE i wycinają na prostej l szereg punktów: 1, 2, 3.,..., które wraz z punktem A = B = C ustalają cięciwy wspólne okręgowi krzywizny γ oraz poszczególnym stożkowym pęku (por konstr. na rys.1). Tak więc punkty O i są punktami przecięcia stożkowych pęku z okręgiem styczności. Rozważmy pomocniczy okrąg δ styczny do stożkowych, a więc i do prostej s w punkcie A = B = C oraz przechodzący przez punkt D. Wiadomo, że każda stożkowa pęku będzie miała równoległe do siebie cięciwy wspólne z okręgami γ i δ. Oznacza to, że jeżeli przez punkt D poprowadzimy prostą równoległą np. do AO 4 to będzie to cięciwa wspólna okręgu δ z stożkową ABCDE 4 i co za tym idzie - że punkt przecięcia tą równoległą okręgu δ jest kolejnym punktem D 4 tej stożkowej. Zmierzamy do tego aby ustalić czy i jakie własności posiada szereg punktów E i o podstawie e A = B = C. Gdyby w naszym przypadku zachodziła sytuacja analogiczna do tej jaką obserwowaliśmy w pękach, których bazy zawierały jedną lub dwie pary zjednoczonych elementów, wówczas styczne do stożkowych pęku (pęku, którego baza zawiera trzy zjednoczone elementy ) - poprowadzone w punktach E i przecinałyby się w jednym punkcie. Intuicyjnie wyczuwana taka sytuacja wymaga jednak ścisłego dowodu. Szukając go wprowadźmy jeszcze pomocniczy szereg punktów niewłaściwych 1, 2, 3..., w których przecinają się odpowiednio równoległe proste DD 1 i AO 1, następnie DD 2 i AO 2 itp. Otrzymujemy następujące relacje: e ( E 1,E 2... ) l ( 1,2... ) A ( AO 1, AO 2,... ) t ( 1, 2,... ) D ( DD 1, DD 2,... ) δ ( D 1,D 2,... )... /3/ δ ( D 1, D 2,... ) e ( E 1,E )... /4/ Utwór powstały z łączenia odpowiadających sobie elementów w dwóch rzutowych szeregach: stopnia drugiego i pierwszego jest krzywą rzędu trzeciego. Tak więc zbiór prostych D i E i winien powłóczyć krzywą rzędu trzeciego. Zauważmy jednak, że w zbiorze tym istnieją dwa pęki prostych: jeden o wierzchołku A = B = C i drugi o wierzchołku E 3 = D 3. Wynika stąd, że nasza krzywa degeneruje się do trzech pęków, czyli, że wyznaczane przez punkty D i i E i proste przecinają się w jednym punkcie. W rys.6 środkiem pęku tych prostych jest punkt V. Po ustaleniu powyższych relacji wróćmy do zagadnienia stycznych do stożkowych rozpatrywanego pęku w punktach E i. W tym celu na osobnym rysunku (7) rozważmy konstrukcję wyznaczenia stycznej w punkcie E 1 do stożkowej określonej punktami A = B, D, D 1, E 1, F 1. Szukając stycznej E 1, F 1 posłużymy się twierdzeniem Pascala, z którego wynika, że prostą Pascala wyznaczają punkty I 1 = AB D 1 E 1 i III 1 = DD 1 F 1 A Punkt przecięcia prostej I 1 III 1 z prostą BD jest elementem szukanej stycznej E 1 F 1. Wracając do rysunku 6 stwierdzamy, że: s ( I 1 I 2,... ) V ( E 1 D 1, E 2 D 2,... ) e ( E 1,E 2,... )... /5/ e ( III 1, III 2,... ) D ( DD 1, DD 2,... ) e ( E 1, E 2,... )... /6/ skąd wynika rzutowość szeregów: s ( I 1,I 2,... ) e ( III 1, III 2,... )... /7/
5 ABDD 1 E 1 F 1 = α 1 E 1 F 1 =? AB D 1 E 1 = I 1 BD E 1 F 1 = II 1 DD 1 F 1 A = III 1 rys. 7. Ponieważ jednocześnie do zbioru prostych łączących odpowiadające sobie elementy obydwu szeregów należy pęk o środku A = I o = III o - proste tego zbioru tworzą pęk liniowy. Stwierdzamy zatem, że proste Pascala wynikające z rozważań kolejnych stożkowych pęku o wspólnym okręgu styczności przecinają się w jednym punkcie. Jeżeli uwzględnimy, że jedna z tych prostych pokrywa się z prostą BD jako zniekształconą stożkową pęku, wnioskujemy natychmiast, że punkt taki leży na BD. Ponieważ jednak, jak to wynika z rys.7 punkt przecięcia prostych Pascala z prostą BD jest elementem stycznej do stożkowej w punkcie E - udowodniliśmy następujące twierdzenie: stożkowe pęku, którego baza zawiera trzy zjednoczone punkty podstawowe A = B = C oraz różny od nich punkt D mają tę własność, że styczne do nich w każdym punkcie szeregu, o podstawie przechodzącej przez A = B = C przecinają się w jednym punkcie W; punkt W leży na prostej AD. LITERATURA: [1]. A.S.Smogorżewskij, J.S.Stołowa - Sprawocznik po tieorii płoskich kriwych trietiowo poriadka - Gosudarstwiennoje Izdatielstwo Fiziko-Matiematiczeskoj Litieratury, Moskwa, [2]. M.Palej: O pewnej konstrukcji uzupełniającej stożkowe pasma i pęku - Biuletyn Polskiego Towarzystwa Geometrii i Grafiki Inżynierskiej, Gliwice,1998. [3]. A.Lewenberg: Geometrya rzutowa tworów pierwiastkowych, Warszawa, Druk. J.Sikorskiego
6 ANALYSIS OF A PROPERTY OF AN OSCULATORY CONICS PENCIL The paper considers a pencil of conics, which basis is formed in such a way that three fundamental points coincide. By means of projective connections the following theorem has been proved: if the basis of a pencil of conics includes three coinciding, fundamental points, e. g., A=B=C, and a different from them point D, then the range of points with a basis q passing through A=B=C has such a property, that all the tangents to the pencil s conics in points of q pass through a single point W ; the point W lies on the straight line AD
Projekt Zobaczę-dotknę-wiem i umiem, dofinansowany przez Fundację mbanku w partnerstwie z Fundacją Dobra Sieć
Kartka papieru i własności trójkątów. Ćwiczenie 1 Uczniowie ustalają ile znają rodzajów trójkątów. Podział ze względu na miary kątów Podział ostrokątny prostokątny rozwartokątny ze względu na długości
PODSTAWOWE KONSTRUKCJE GEOMETRYCZNE
PODSTAWOWE KONSTRUKCJE GEOMETRYCZNE Dane będę rysował na czarno. Różne etapy konstrukcji kolorami: (w kolejności) niebieskim, zielonym, czerwonym i ewentualnie pomarańczowym i jasnozielonym. 1. Prosta
Ćwiczenia z Geometrii I, czerwiec 2006 r.
Waldemar ompe echy przystawania trójkątów 1. unkt leży na przekątnej kwadratu (rys. 1). unkty i R są rzutami prostokątnymi punktu odpowiednio na proste i. Wykazać, że = R. R 2. any jest trójkąt ostrokątny,
Geometria analityczna
Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Publikacja jest dystrybuowana bezpłatnie Program Operacyjny Kapitał Ludzki Priorytet 9 Działanie 9.1 Poddziałanie
Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów
Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów stycznych, c) rozpoznaje trójkąty podobne i wykorzystuje
Regionalne Koło Matematyczne
Regionalne Koło Matematyczne Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki http://www.mat.umk.pl/rkm/ Lista rozwiązań zadań nr 16 (27.02.2010) Twierdzenia evy i Menelaosa 1.
(a) (b) (c) o1" o2" o3" o1'=o2'=o3'
Zad.0. Odwzorowanie powierzchni stożka, walca, sfery oraz punktów leżących na tych powierzchniach. Przy odwzorowaniu powierzchni stożka, walca, sfery przyjmiemy reprezentację konturową, co oznacza, że
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia
Rysunek 1. Udowodnij, że AB CD = BC DA. Rysunek 2. Po inwersji o środku w punkcie E. Rysunek 3. Po inwersji o środku w punkcie A
g H e D c H' E g' h e' O d A C' d' C A' F' f' I' G' B' G I F f INWERSJA Inwersją o środku O i promieniu r nazywamy takie przekształcenie płaszczyzny (bez punktu O), które każdemu punktowi X O przyporządkowuje
GEOMETRIA ELEMENTARNA
Bardo, 7 11 XII A. D. 2016 I Uniwersytecki Obóz Olimpiady Matematycznej GEOMETRIA ELEMENTARNA materiały przygotował Antoni Kamiński na podstawie zbiorów zadań: Przygotowanie do olimpiad matematycznych
METODY KONSTRUKCJI ZA POMOCĄ CYRKLA. WYKŁAD 1 Czas: 45
METODY KONSTRUKCJI ZA POMOCĄ CYRKLA WYKŁAD 1 Czas: 45 TWIERDZENIE PONCELETA-STEINERA W roku 1833, Szwajcarski matematyk Jakob Steiner udowodnił, że wszystkie klasyczne konstrukcje (za pomocą cyrkla i linijki)
LX Olimpiada Matematyczna
LX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 13 lutego 2009 r. (pierwszy dzień zawodów) Zadanie 1. Liczby rzeczywiste a 1, a 2,..., a n (n 2) spełniają warunek a 1
MATEMATYKA DLA CIEKAWSKICH. Dowodzenie twierdzeń przy pomocy kartki. Część I
MATEMATYKA DLA CIEKAWSKICH Dowodzenie twierdzeń przy pomocy kartki. Część I Z trójkątem, jako figurą geometryczną, uczeń spotyka się już na etapie nauczania początkowego. W czasie dalszego procesu kształcenia
Podstawowe pojęcia geometryczne
PLANIMETRIA Podstawowe pojęcia geometryczne Geometria (słowo to pochodzi z języka greckiego i oznacza mierzenie ziemi) jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych
Inwersja w przestrzeni i rzut stereograficzny zadania
Inwersja w przestrzeni i rzut stereograficzny zadania Rozważmy sferę S o środku O i promieniu R. Inwersją względem sfery S nazywamy przekształcenie, które przekształca punkt A na punkt A leżący na półprostej
Geometria analityczna - przykłady
Geometria analityczna - przykłady 1. Znaleźć równanie ogólne i równania parametryczne prostej w R 2, któr przechodzi przez punkt ( 4, ) oraz (a) jest równoległa do prostej x + 5y 2 = 0. (b) jest prostopadła
Treści zadań Obozu Naukowego OMG
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OM 2015 rok SZCZYRK 2015 Pierwsze zawody indywidualne Treści
V Konkurs Matematyczny Politechniki Białostockiej
V Konkurs Matematyczny Politechniki Białostockiej Rozwiązania - klasy drugie 1. Znaleźć wszystkie pary liczb całkowitych (x, y) spełniające nierówności x + 1 + y 4 x + y 4 5 x 4 + y 1 > 4. Ważne jest zauważenie,
Grafika inżynierska geometria wykreślna. 3. Elementy wspólne. Cień jako rzut środkowy i równoległy. Transformacja celowa.
Grafika inżynierska geometria wykreślna 3. Elementy wspólne. Cień jako rzut środkowy i równoległy. Transformacja celowa. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie,
Regionalne Koło Matematyczne
Regionalne Koło Matematyczne Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki http://www.mat.umk.pl/rkm/ Lista rozwiązań zadań nr 0, grupa zaawansowana (7.03.010) krąg dziewięciu
Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2
Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych
Geometria wykreślna. 2. Elementy wspólne. Cień jako rzut środkowy i równoległy. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury
Geometria wykreślna 2. Elementy wspólne. Cień jako rzut środkowy i równoległy. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr
Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość:
Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: A. r 2 + q 2 = p 2 B. p 2 + r 2 = q 2 C. p 2 + q 2 = r 2 D. p + q
Zbiór zadań z geometrii przestrzennej. Michał Kieza
Zbiór zadań z geometrii przestrzennej Michał Kieza Zbiór zadań z geometrii przestrzennej Michał Kieza Wydawca: Netina Sp. z o.o. ISN 978-83-7521-522-9 c 2015, Wszelkie Prawa Zastrzeżone Zabrania się modyfikowania
Kolorowanie płaszczyzny, prostych i okręgów
Kolorowanie płaszczyzny, prostych i okręgów Jadwiga Czyżewska Pisane pod kierunkiem W.Guzickiego W 2013 roku na II etapie VIII edycji Olimpiady Matematycznej Gimnazjalistów pojawiło się zadanie o następującej
KLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe:
KLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe: ZAKRES PODSTAWOWY 7. Planimetria. Uczeń: 1) rozpoznaje trójkąty podobne i wykorzystuje (także w kontekstach praktycznych)
V Międzyszkolny Konkurs Matematyczny
V Międzyszkolny Konkurs Matematyczny im. Stefana Banacha dla uczniów szkół średnich Zespół Szkół Nr 1 im. Adama Mickiewicza w Lublińcu 42-700 Lubliniec, ul. Sobieskiego 22 18. kwiecień 2011 rok 1. W trapezie
Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10
Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10, ACE = 60, ADB = 40 i BEC = 20. Oblicz miarę kąta CAD. B C A D E Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3
DEFINICJE PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 Czworokąt to wielokąt o 4 bokach i 4 kątach. Przekątną czworokąta nazywamy odcinek łączący przeciwległe wierzchołki. Wysokością czworokąta nazywamy
Jarosław Wróblewski Matematyka Elementarna, zima 2014/15
Kolokwium nr 3: 27.01.2015 (wtorek), godz. 8:15-10:00 (materiał zad. 1-309) Kolokwium nr 4: 3.02.2015 (wtorek), godz. 8:15-10:00 (materiał zad. 1-309) Ćwiczenia 13,15,20,22.01.2015 (wtorki, czwartki) 266.
Wskazówki do zadań testowych. Matura 2016
Wskazówki do zadań testowych. Matura 2016 Zadanie 1 la każdej dodatniej liczby a iloraz jest równy.. C.. Korzystamy ze wzoru Zadanie 2 Liczba jest równa.. 2 C.. 3 Zadanie 3 Liczby a i c są dodatnie. Liczba
Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.
C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty
Planimetria VII. Wymagania egzaminacyjne:
Wymagania egzaminacyjne: a) korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu, b) wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych
Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 11 Zadania planimetria
1 TEST WSTĘPNY 1. (1p) Wysokość rombu o boku długości 6 i kącie ostrym 60 o jest równa: A. 6 3 B. 6 C. 3 3 D. 3 2. (1p) W trójkącie równoramiennym długość ramienia wynosi 10 a podstawa 16. Wysokość opuszczona
Twierdzenie Talesa. Adrian Łydka Bernadeta Tomasz. Teoria
Twierdzenie Talesa. drian Łydka ernadeta Tomasz Teoria efinicja 1. Mówimy, że odcinki i są proporcjonalne odpowiednio do odcinków EF i GH, jeżeli = EF GH. Twierdzenie 1. (Twierdzenie Talesa) Jeżeli ramiona
2.Piszemy równanie prostej przechodzącej przez dwa punkty P i S
Zadanie 1. Napisz równanie prostej przechodzącej przez punkt odcinka o koocach M N. Rozwiązanie - 1 sposób 1.Znajdujemy współrzędne punktu S będącego środkiem odcinka MN: oraz środek 2.Piszemy równanie
Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu
Oznaczenia A, B, 1, 2, I, II, punkty a, b, proste α, β, płaszczyzny π 1, π 2, rzutnie k kierunek rzutowania d(a,m) odległość punktu od prostej m(a,b) prosta przechodząca przez punkty A i B α(1,2,3) płaszczyzna
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste
LXI Olimpiada Matematyczna
1 Zadanie 1. LXI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 21 kwietnia 2010 r. (pierwszy dzień zawodów) Dana jest liczba całkowita n > 1 i zbiór S {0,1,2,...,n 1}
Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =
/9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n
Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym
Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel
A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla
Zadanie 1 Liczba jest równa A. B. C. 10 D. Odpowiedź B. Zadanie 2 Liczba jest równa A. 3 B. 2 C. D. Odpowiedź D. Zadanie 3. Liczba jest równa Odpowiedź D. Zadanie 4. Liczba osobników pewnego zagrożonego
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory
X Olimpiada Matematyczna Gimnazjalistów
www.omg.edu.pl X Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część korespondencyjna (10 listopada 01 r. 15 grudnia 01 r.) Szkice rozwiązań zadań konkursowych 1. nia rozmieniła banknot
LVIII Olimpiada Matematyczna
LVIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 23 lutego 2007 r. (pierwszy dzień zawodów) Zadanie. Wielomian P (x) ma współczynniki całkowite. Udowodnić, że jeżeli
W. Guzicki Zadanie 21 z Informatora Maturalnego poziom rozszerzony 1
W. Guzicki Zadanie 21 z Informatora Maturalnego poziom rozszerzony 1 Zadanie 21. krąg o środku S = (3, 2) leży wewnątrz okręgu o równaniu (x 6) 2 + (y 8) 2 = 100 i jest do niego styczny. Wyznacz równanie
Ach te trójkąty, czyli dwa interesujące twierdzenia i mnóstwo przemyśleń.
Ach te trójkąty, czyli dwa interesujące twierdzenia i mnóstwo przemyśleń. Justyna Stefaniak V Liceum Ogólnokształcące Spis treści: 1. Twierdzenie Harcourt a 2. Dowód twierdzenia Harcourt a 3. Twierdzenie
VII Olimpiada Matematyczna Gimnazjalistów
VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa, test próbny www.omg.edu.pl (wrzesień 2011 r.) Rozwiązania zadań testowych 1. Liczba krawędzi pewnego ostrosłupa jest o
W. Guzicki Zadanie 28 z Informatora Maturalnego poziom rozszerzony 1
W. uzicki Zadanie 8 z Informatora Maturalnego poziom rozszerzony 1 Zadanie 8. any jest sześcian (zobacz rysunek) o krawędzi równej 1. unkt S jest środkiem krawędzi. Odcinek W jest wysokością ostrosłupa
Twierdzenie o podziale odcinków w czworokącie. Joanna Sendorek
Twierdzenie o podziale odcinków w czworokącie Joanna Sendorek Spis treści Wstęp 2 2 Stosunki odcinków w czworokątach 2 3 Twierdzenie o podziale odcinków w czworokącie 4 4 ibliografia 5 Wstęp W swojej pracy
Z CYKLU: KONSTRUKCJE W CABRI STOŻKOWE cz. I
Anna BŁACH Ośrodek Geometrii i Grafiki Inżynierskiej Politechnika Śląska w Gliwicach Z CYKLU: KONSTRUKCJE W CABRI STOŻKOWE cz. I ZAPRASZAMY WSZYSTKIE OSOBY ZAINTERESOWANE PROGRAMEM CABRI GEOMETRE II DO
VIII Olimpiada Matematyczna Gimnazjalistów
VIII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (18 października 01 r.) Rozwiązania zadań testowych 1. Miary α, β, γ kątów pewnego trójkąta spełniają warunek
Metoda objętości zadania
Metoda objętości zadania Płaszczyzny i dzielą graniastosłup trójkątny na cztery bryły Znaleźć stosunki objętości tych brył 2 any jest równoległościan o objętości V Wyznaczyć objętość części wspólnej czworościanów
Wielokąty i Okręgi- zagadnienia
Wielokąty i Okręgi- zagadnienia 1. Okrąg opisany na trójkącie. na każdym trójkącie można opisać okrąg, środkiem okręgu opisanego na trójkącie jest punkt przecięcia symetralnych boków tego trójkąta, jeżeli
Skrypt 30. Przygotowanie do egzaminu Okrąg wpisany i opisany na wielokącie
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 30 Przygotowanie do egzaminu Okrąg wpisany
Twierdzenie Talesa. Adrian Łydka Bernadeta Tomasz. Teoria
Twierdzenie Talesa. drian Łydka ernadeta Tomasz Teoria Definicja 1. Mówimy, że odcinki i CD są proporcjonalne odpowiednio do odcinków EF i GH, jeżeli CD = EF GH. Twierdzenie 1. (Twierdzenie Talesa) Jeżeli
LXV Olimpiada Matematyczna
LXV Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 8 kwietnia 2014 r. (pierwszy dzień zawodów) Zadanie 1. Dane są względnie pierwsze liczby całkowite k,n 1. Na tablicy
XIII Olimpiada Matematyczna Juniorów
XIII Olimpiada atematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2017 r. 16 października 2017 r.) 1. iczby a, b, c spełniają zależności Wykaż, że a 2 +b 2 = c 2. Szkice
MECHANIKA 2 KINEMATYKA. Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY. Prowadzący: dr Krzysztof Polko
MECHANIKA 2 KINEMATYKA Wykład Nr 5 RUCH KULISTY I RUCH OGÓLNY BRYŁY Prowadzący: dr Krzysztof Polko Określenie położenia ciała sztywnego Pierwszy sposób: Określamy położenia trzech punktów ciała nie leżących
rys. 4 BK KC AM MB CL LA = 1.
Joanna Zakrzewska Wspólny punkt Na najnowszym, trzecim już, plakacie Stowarzyszenia na rzecz Edukacji Matematycznej (zob. www.sem.edu.pl) widnieje dwanaście konfiguracji geometrycznych. Ich wspólną cechą
Bukiety matematyczne dla gimnazjum
Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 5 IX rok 2003/2004 Bukiet 1 1. W trójkącie ABC prosta równoległa do boku AB przecina boki AC i BC odpowiednio w punktach D i E. Zauważ,
XII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2016 r. 17 października 2016 r.)
XII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna ( września 06 r. 7 października 06 r.) Szkice rozwiązań zadań konkursowych. Liczby wymierne a, b, c spełniają równanie
3.3. dwie płaszczyzny równoległe do siebie α β Dwie płaszczyzny równoległe do siebie mają ślady równoległe do siebie
Widoczność A. W rzutowaniu europejskim zakłada się, że przedmiot obserwowany znajduje się między obserwatorem a rzutnią, a w amerykańskim rzutnia rozdziela przedmiot o oko obserwatora. B. Kierunek patrzenia
Jak rozpoznać trójkąt równoboczny?
O tym, czego nie ma na plakacie 05.11.2011 To jest na plakacie Co jest na plakacie? Charles Leytem, Rysunek 3: Własność 1. Trójkąty równoboczne to proste obiekty, które łatwo scharakteryzować. Można je
11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).
1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego
Cztery punkty na okręgu
Tomasz Szymczyk V LO w ielsku-iałej ztery punkty na okręgu Przydatne fakty: (1) kąty wpisane w okrąg oparte na łukach przystających są równe, (2) czworokąt jest wpisany w okrąg wtedy i tylko wtedy, gdy
Czworościany ortocentryczne zadania
Czworościany ortocentryczne zadania 1. Wykazać, że nastepujące warunki są równoważne: a) istnieje przecięcie wysokości czworościanu, b) przeciwległe krawędzie są prostopadłe, c) sumy kwadratów długości
Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki. Marlena Morawska. Nr albumu: Praca magisterska na kierunku Matematyka
Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Marlena Morawska Nr albumu: 197193 raca magisterska na kierunku Matematyka Konstrukcyjne dowody własności paraboli raca wykonana pod kierunkiem
MATEMATYKA DLA CIEKAWSKICH
MATEMATYKA DLA CIEKAWSKICH Dowodzenie twierdzeń przy pomocy kartki. Część II Na rysunku przedstawiony jest obszar pewnego miasta wraz z zaznaczonymi szkołami podstawowymi. Wyobraźmy sobie, że mamy przydzielić
Twierdzenia o czworokącie wpisanym w okrąg i o czworokącie opisanym na okręgu.
Twierdzenia o czworokącie wpisanym w okrąg i o czworokącie opisanym na okręgu. Adrian Łydka Bernadeta Tomasz Teoria Definicja 1. Klasyfikacja czworokątów (wypukłych): Trapez jest czworokątem, w którym
Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie
Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/) 1. W trójkącie prostokątnym wysokość poprowadzona na przeciwprostokątną ma długość 10 cm, a promień okręgu
Geometria. Zadanie 1. Liczba przekątnych pięciokąta foremnego jest równa A. 4 B. 5 C. 6 D. 7
Geometria Zadanie 1. Liczba przekątnych pięciokąta foremnego jest równa A. 4 B. 5 C. 6 D. 7 W tym przypadku możemy wykonać szkic pięciokąta i policzyć przekątne: Zadanie. Promień okręgu opisanego na kwadracie
XI Olimpiada Matematyczna Gimnazjalistów
www.omg.edu.pl I Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część korespondencyjna (1 września 2015 r. 12 października 2015 r.) Szkice rozwiązań zadań konkursowych 1. Wykaż, że istnieje
DEFINICJE: Punkt, prosta, płaszczyzna i przestrzeń są pojęciami pierwotnymi przyjmowanymi bez definicji,
TEMATYKA: Współliniowość Współpłaszczyznowość Ćwiczenia nr DEFINICJE: Punkt, prosta, płaszczyzna i przestrzeń są pojęciami pierwotnymi przyjmowanymi bez definicji, Podstawowe aksjomaty (zdanie, którego
Regionalne Koło Matematyczne
Regionalne Koło Matematyczne Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki http://www.mat.umk.pl/rkm/ Lista rozwiązań zadań nr 2 (14-19.10.2009) nalogie i różnice miedzy trójkątem
LXIX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2018 r. (pierwszy dzień zawodów)
LXIX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2018 r. (pierwszy dzień zawodów) 1. Dany jest trójkąt ostrokątny ABC, w którym AB < AC. Dwusieczna kąta
GEOMETRIA PRZESTRZENNA (STEREOMETRIA)
GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy
MiNI Akademia Matematyki na Politechnice Warszawskiej
MiNI Akademia Matematyki na Politechnice Warszawskiej Krzysztof Che lmiński Okr egi i styczne MiNI PW, 14.10.2017 Podstawowe twierdzenia wykorzystywane w zadaniach z ćwiczeń Twierdzenie 1 (najmocniesze
LVII Olimpiada Matematyczna
Zadanie 1. LVII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 5 kwietnia 2006 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych a, b, c, d, e układ równań
MATURA 2012. Powtórka do matury z matematyki. Część VIII: Geometria analityczna ODPOWIEDZI. Organizatorzy: MatmaNa6.pl, naszemiasto.
MATURA 2012 Powtórka do matury z matematyki Część VIII: Geometria analityczna ODPOWIEDZI Organizatorzy: MatmaNa6.pl, naszemiasto.pl Witaj, otrzymałeś już ósmą z dziesięciu części materiałów powtórkowych
Matura próbna 2014 z matematyki-poziom podstawowy
Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B
Jednokładność i podobieństwo
Jednokładność i podobieństwo Adrian Łydka Bernadeta Tomasz Teoria Definicja 1. Iloczynem niezerowego wektora u przez liczbę rzeczywistą s 0 nazywamy wektor v spełniający następujące dwa warunki: 1) v =
Zadania otwarte krótkiej odpowiedzi na dowodzenie
Zadania otwarte krótkiej odpowiedzi na dowodzenie Zadanie 1. Na bokach trójkąta równobocznego ABC tak wybrano punkty E, F oraz D, że AE = BF = CD = 1 AB (rysunek obok). a) Udowodnij, że trójkąt EFD jest
TRÓJKĄTY CIĘCIW. Natalia Ślusarz V Liceum Ogólnokształcące im. Augusta Witkowskiego w Krakowie
TRÓJKĄTY CIĘCIW Natalia Ślusarz V Liceum Ogólnokształcące im. Augusta Witkowskiego w Krakowie Spis treści 1. Zapoznanie z zagadnieniem 1.1. Co to jest trójkąt cięciw? 2. Twierdzenia dotyczące trójkątów
Kurs ZDAJ MATURĘ Z MATEMATYKI - MODUŁ 11 Teoria planimetria
1 Pomimo, że ten dział, to typowa geometria wydawałoby się trudny dział to paradoksalnie troszkę tu odpoczniemy, jeśli chodzi o teorię. Dlaczego? Otóż jak zapewne doskonale wiesz, na maturze otrzymasz
Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 2013
Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 013 3.4.1 Inwersja względem okręgu. Inwersja względem okręgu jest przekształceniem płaszczyzny
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt dla ucznia Planimetria: 5.
Treści zadań Obozu Naukowego OMJ
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ JUNIORÓW Treści zadań Obozu Naukowego OMJ Poziom OM 2017 rok SZCZYRK 2017 Olimpiada Matematyczna Juniorów jest wspó³finansowana
Treści zadań Obozu Naukowego OMG
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OMG 2015 rok SZCZYRK 2015 Treści zadań Pierwsze zawody indywidualne
Zadanie 1. W trapezie ABCD poprowadzono przekątne, które podzieliły go na cztery trójkąty. Mając dane pole S 1
Zadanie. W trapezie ABCD poprowadzono przekątne, które podzieliły go na cztery trójkąty. Mając dane pole S i S 2 obliczyć pole trapezu ABCD. Zadanie 2. Mamy trapez, w którym suma kątów przy dłuższej podstawie
LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów)
LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów) Zadanie 1. Dana jest liczba całkowita n 2. Wyznaczyć liczbę rozwiązań (x 1,x
XI Olimpiada Matematyczna Gimnazjalistów
XI Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (24 września 2015 r.) Rozwiązania zadań testowych 1. Dane są takie dodatnie liczby a i b, że 30% liczby a
Grafika inżynierska geometria wykreślna. 5a. Obroty i kłady. Rozwinięcie wielościanu.
Grafika inżynierska geometria wykreślna 5a. Obroty i kłady. Rozwinięcie wielościanu. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna,
ROZWINIĘCIA POWIERZCHNI STOPNIA DRUGIEGO W OPARCIU O MIEJSCA GEOMETRYCZNE Z ZA- STOSOWANIEM PROGRAMU CABRI II PLUS.
Anna BŁACH, Piotr DUDZIK, Anita PAWLAK Politechnika Śląska Ośrodek Geometrii i Grafiki Inżynierskiej ul. Krzywoustego 7 44-100 Gliwice tel./ fax: 0-32 237 26 58, e-mail: anna.blach@polsl.pl, piotr.dudzik@polsl.pl,
Rok akademicki 2005/2006
GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2005/2006 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni
Wokół twierdzenia Pascala
Wokół twierdzenia Pascala Marcin Fryz 08 czerwca 2012 1 Wstęp Geometria, a w szczególności planimetria, jest jednym z najważniejszych działów matematyki. Jej zastosowania można dojrzeć wszędzie: zaczynając
IX Olimpiada Matematyczna Gimnazjalistów
IX Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (3 października 2013 r.) Rozwiązania zadań testowych 1. Liczba 3 9 3 27 jest a) niewymierna; b) równa 3 27;
Geometria wykreślna. 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury
Geometria wykreślna 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 3.
Skrypt 19. Trygonometria: Opracowanie L3
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 19 Trygonometria: 9. Proste