Metoda objętości zadania
|
|
- Maria Witek
- 6 lat temu
- Przeglądów:
Transkrypt
1 Metoda objętości zadania Płaszczyzny i dzielą graniastosłup trójkątny na cztery bryły Znaleźć stosunki objętości tych brył 2 any jest równoległościan o objętości V Wyznaczyć objętość części wspólnej czworościanów i 3 Punkt G jest środkiem ciężkości trójkąta w czworościanie o objętości V Punkt M jest środkiem odcinka G Znaleźć objętość części wspólnej czworościanu i czworościanu symetrycznego do względem punktu M 4 (mom 200-III-3) W czworościanie obrano na krawędziach,, odpowiednio takie punkty K, L, M, że K K 2 3, L L 3 4, M M 4 5 Płaszczyzna KLM dzieli ten czworościan na dwa wielościany o objętościach V i V 2 Wyznaczyć V V 2 5 (ZE 999) W czworościanie punkty E i F są odpowiednio środkami środkowych czworościanu poprowadzonych odpowiednio z wierzchołków i Wyznaczyć stosunek objętości czworościanow EF i 6 (RUS 97) any jest czworościan oraz takie punkty K, L, M, N, że K, L, M, N Udowodnić, że objętość czworościanu KLM N jest dwa razy większa niż czworościanu 7 Wykazać, że jeśli x, x 2, x 3, x 4 są odległościami dowolnego punktu leżącego wewnątrz danego czworościanu od jego ścian, a h, h 2, h 3, h 4 wysokościami opuszczonymi na te ściany, to x x 2 x 3 x 4 h h 2 h 3 h 4 8 Niech r będzie promieniem sfery wpisanej w czworościan, a h a, h b, h c, h d wysokościami tego czworościanu Wykazać, że h a h b h c h d r 9 (OM 7-I-2 b)) owieść, że suma odległości dowolnego punktu leżącego wewnątrz czworościanu foremnego od czterech ścian tego czworościanu jest stała 0 (mom 995-I-5) Wewnątrz czworościanu foremnego obrano dowolnie punkt P Prosta łącząca ten punkt ze środkiem kuli wpisanej w ten czworościan przecina płaszczyzny,,, odpowiednio w punktach,,, Udowodnić, że O P O P O P O 4 (Moskwa 996) Na półprostych O, O i O nie leżących na jednej półpłaszczyźnie obrano odpowiednio takie punkty, i, że czworościany O i O mają równe objętości oraz Wyznaczyć O O O O 2 i O O 3 2 any jest ostrosłup czworokątny M o wierzchołku M i płaszczyzna, która przecina krawędzie M, M, M, M odpowiednio w punktach,,, Wykazać, że [] M M [] M M [] M M [] M M 3 Punkt P leży wewnątrz czworościanu Proste P, P, P, P przecinają ściany,,, odpowiednio w punktach,,, owieść, że
2 a) P P P P 8 P P P, b) P P P P, c) 256 P P P, d) P P P P P P P P 2 4 (OM 9-III-5) Wykazać, że płaszczyzna dwusieczna kąta dwuściennego między dwoma ścianami pewnego czworościanu dzieli przeciwległą krawędź w stosunku równym stosunkowi pól ścian tworzących ten kąt dwuścienny 5 (OM 52-III-2) owieść, że suma odległości dowolnego punktu leżącego wewnątrz czworościanu foremnego o krawędzi od jego wierzchołków jest nie większa niż 3 2
3 Rozwiązania Płaszczyzny i dzielą graniastosłup trójkątny na cztery bryły Znaleźć stosunki objętości tych brył Rozwiązanie Niech K będzie punktem przecięcia odcinków i, a L punktem przecięcia odcinków i (oczywiście punkty K i L są środkami tych odcinków) Wtedy na mocy faktu 2 z artykułu nalogicznie V (KL ) V ( ) L K 4 V (KL ) V ( ) L K 4 Ponadto objętości czworościanów i są równe 3 objętości całego graniastisłupa Łącząc powyższe fakty łatwo otrzymujemy wynik V (KL ) : V (KL) : V (KL ) : V ( KL) : 3 : 3 : 5 2 any jest równoległościan o objętości V Wyznaczyć objętość części wspólnej czworościanów i Rozwiązanie Niech K, L, M będą środkami odpowiednio równoległoboków,,, a N punktem na przekątnej takim, że N 2 N Wtedy część wspólna czworościanów i jest bryłą o wierzchołkach, K, L, M, N Ponadto V (KLMN) V (KLM) V (LMN) 4 V ( ) 2 3 V (LM ) 4 V ( ) V ( ) ( ) 4 6 V 5 70 V 3 Punkt G jest środkiem ciężkości trójkąta w czworościanie o objętości V Punkt M jest środkiem odcinka G Znaleźć objętość części wspólnej czworościanu i czworościanu symetrycznego do względem punktu M Rozwiązanie zęść wspólna jest równoległościanem o wierzchołkach w punktach, G, środkach ciężkości ścian,, i punktach dzielących krawędzie,, w stosunku : 2 licząc od punktu Stąd łatwo otrzymujemy wynik V ( 3 ( ) ( ) ) V 4 (mom 200-III-3) W czworościanie obrano na krawędziach,, odpowiednio takie punkty K, L, M, że K K 2 3, L L 3 4, M M 4 5 Płaszczyzna KLM dzieli ten czworościan na dwa wielościany o objętościach V i V 2 Wyznaczyć V V 2 Rozwiązanie Sposób I Przyjmijmy, że płaszczyzna KLM przecina krawędź w punkcie N i prostą w punkcie X Korzystając z twierdzenia Menelausa dostajemy K K L L X X X X, X X 2 Ponownie korzystając z twierdzenia Menelausa otrzymamy MN NX X M MN NX 9 5, MN NX 5 9 3
4 Po raz trzeci zastosowane twierdzenie Menelausa pozwala napisać, że Na mocy faktu 2 z artykułu otrzymujemy Zatem KL XK X L KL XK 7 3, KL XK 3 7 V (XKN) V (XLM) X X XK XL XN XM 2 V (XLM) W takim razie, ponownie wykorzystując fakt 2, uzyskamy V () V (XLM) V (XLM) V () 3 40 X L M , V (KLMN) 24 9 Sposób II Tak jak w sposobie I, przyjmijmy, że płaszczyzna KLM przecina krawędź w punkcie N Zachodzi równość K K L L M M N N, N N 2 5 (albo na mocy przestrzennej wersji twierdzenia Menelausa, albo tak jak w sposobie I oznaczając przez X punkt przecięcia płaszczyzny KLM z prostą i pisząc dwa razy twierdzenie Menelausa w wersji płaskiej) W takim razie zachodzi równość V () V (KLN) V () V (NL) V () V (MNL) V () Zadanie sprowadza się teraz do wyznaczenia każdego z tych trzech stosunków Otrzymujemy kolejno V (KLN) V () V (KLN) V (KN) V (KN) V () L K N , Zatem V (NL) V () V (NL) V (L) V (L) V () N L , V (LMN) V () V (LMN) V (LM) V (LM) V () N L M V () , V (KLMN)
5 5 (ZE 999) W czworościanie punkty E i F są odpowiednio środkami środkowych czworościanu poprowadzonych odpowiednio z wierzchołków i Wyznaczyć stosunek objętości czworościanów EF i Rozwiązanie Oczywiście środkowe poprowadzone z punktów i przecinają się w jednym punkcie, skutkiem czego punkty,, E, F leżą na jednej płaszczyźnie Przyjmijmy, że płaszczyzna ta przecina krawędź czworościanu w punkcie P Niech i będą punktami przecięcia się prostych E i F odpowiednio z prostymi P i P Wtedy oczywiście P 2 Przyjmijmy ponadto, że prosta EF przecina odcinki P i P odpowienio w punktach K i L, a prosta P E przecina odcinki i odpowiednio w punktach Q i E Wtedy Stąd natychmiast otrzymujemy Zatem wobec równości F F otrzymujemy W takim razie KE : EF : F L : 2 : oraz EF F Q Q EF E E 4 Q F Q 9 4 V (EF ) V () V (EF ) V (E) V (E) V () F Q Q E (RUS 97) any jest czworościan oraz takie punkty K, L, M, N, że K, L, M, N Udowodnić, że objętość czworościanu KLM N jest dwa razy większa niż czworościanu Rozwiązanie Zauważmy, że K MN, wynika, że czworokąt KNM jest równoległobokiem Trójkąty KN M i KM mają więc równe pola, wnosimy, że czworościany KLM N i KLM mają równe objętości Ponieważ punkt jest środkiem odcinka M, to [KM] 2 [K] 2 [], wynika, że objętość czworościanu KLM jest 2 razy większa niż objętość czworościanu L Ponieważ jednak punkt jest środkiem odcinka L, to objętość czworościanu L jest równa objętości czworościanu, co kończy dowód 7 Wykazać, że jeśli x, x 2, x 3, x 4 są odległościami dowolnego punktu leżącego wewnątrz danego czworościanu od jego ścian, a h, h 2, h 3, h 4 wysokościami opuszczonymi na te ściany, to x h x 2 h 2 x 3 h 3 x 4 h 4 Rozwiązanie Niech będzie danym czworościanem, a P punktem leżącym wewnątrz niego Niech x i będzie odległością punktu P od ściany nie zawierającej punktu i, a h i wysokością opuszczoną na tą ścianę Wtedy x V ( P ) h V ( ), x 2 V ( 3 4 P ) h 2 V ( ), x 3 V (4 2 2 P ) h 3 V ( ), x 4 V ( 2 3 P ) h 4 V ( ) odając wszystkie otrzymane równości stronami dostajemy tezę 8 Niech r będzie promieniem sfery wpisanej w czworościan, a h a, h b, h c, h d wysokościami tego czworościanu Wykazać, że h a h b h c h d r 5
6 Rozwiązanie Wystarczy skorzystać z poprzedniego zadania dla środka sfery wpisanej w czworościan 9 (OM 7-I-2 b)) owieść, że suma odległości dowolnego punktu leżącego wewnątrz czworościanu foremnego od czterech ścian tego czworościanu jest stała Rozwiązanie Teza natychmiast wynika z zadania 7 0 (mom 995-I-5) Wewnątrz czworościanu foremnego obrano dowolnie punkt P Prosta łącząca ten punkt ze środkiem kuli wpisanej w ten czworościan przecina płaszczyzny,,, odpowiednio w punktach,,, Udowodnić, że O P O P O P O 4 Rozwiązanie Mamy O V (P ) V (O), P O V (P ) V (O), P O V (P ) V (O), P O V (P ) V (O), O P O P O P O V (P ) V (O) V (P ) V (O) V (P ) V (O) V (P ) V (O) V () /4 V () 4 (Moskwa 996) Na półprostych O, O i O nie leżących na jednej półpłaszczyźnie obrano odpowiednio takie punkty, i, że czworościany O i O mają równe objętości oraz O O 2 i O O 3 Wyznaczyć O O Rozwiązanie Korzystając z faktu 2 z artykułu otrzymujemy V (O ) V (O) O O O O O O 2 3 O O, skad O O 6 2 any jest ostrosłup czworokątny M o wierzchołku M i płaszczyzna, która przecina krawędzie M, M, M, M odpowiednio w punktach,,, Wykazać, że [] M M [] M M [] M M [] M M Rozwiązanie Zauważmy najpierw, że Korzystając z faktu 2 dostajemy V ( M) V ( M) V ( M) V ( M) V ( M) M M M M V (M) M M M M M M V (M) [] [] M M Podobnie wyrażamy natychmiast wynika teza V ( M) M M M M M M V (M) [] [] M M, V ( M) M M M M M M V (M) [] [] M, M V ( M) M M M M M M V (M) [] [] M M, 6
7 3 Punkt P leży wewnątrz czworościanu Proste P, P, P, P przecinają ściany,,, odpowiednio w punktach,,, owieść, że a) P P P P 8 P P P, b) P P P P, c) 256 P P P, d) P P P P P P P P 2 Rozwiązanie Niech V (P ), V (P ), V (P ), V (P ) Wtedy P a) P P P P P ( ) ( ) ( ) ( ) P P P P ( ) ( ) ( ) ( 3 4 ) 8, b) P P P P c) ( 4 ) 4 ( ) , P P P , P d) P P P P P P P ( ) ( ) ( ) ( ) ( ) ( ) (OM 9-III-5) Wykazać, że płaszczyzna dwusieczna kąta dwuściennego między dwoma ścianami pewnego czworościanu dzieli przeciwległą krawędź w stosunku równym stosunkowi pól ścian tworzących ten kąt dwuścienny Rozwiązanie Przyjmijmy, że w czworościanie punkt P leży na krawędzi i P jest płaszczyzną dwusieczną kąta dwuściennego przy krawędzi Niech P i P 2 będą rzutami prostokątnymi punktu P odpowiednio na płaszczyzny i Ponieważ punkt P leży na płaszczyźnie dwusiecznej kąta dwuściennego przy krawędzi, to P P P P 2 Otrzymujemy więc P P V (P ) V (P ) 3 P P [] 3 P P 2 [] [] [] 5 (OM 52-III-2) owieść, że suma odległości dowolnego punktu leżącego wewnątrz czworościanu foremnego o krawędzi od jego wierzchołków jest nie większa niż 3 Rozwiązanie Niech będzie danym czworościanem, a P dowolnym punktem w jego wnętrzu Załóżmy, że prosta i P przecina przeciwległą ścianę czworościanu w punkcie i Niech i będzie czworościanem, którego jedną ścianą jest ta ściana czworościanu 2 3 4, która zawiera punkt i, zaś przeciwległym wierzchołkiem punkt P Wtedy Zatem 4 i P i i i 4 i 4 i V ( i ) V ( ) i P i i 3, w połączeniu z nierównościami i i < otrzymujemy tezę zadania 7
Zbiór zadań z geometrii przestrzennej. Michał Kieza
Zbiór zadań z geometrii przestrzennej Michał Kieza Zbiór zadań z geometrii przestrzennej Michał Kieza Wydawca: Netina Sp. z o.o. ISN 978-83-7521-522-9 c 2015, Wszelkie Prawa Zastrzeżone Zabrania się modyfikowania
Regionalne Koło Matematyczne
Regionalne Koło Matematyczne Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki http://www.mat.umk.pl/rkm/ Lista rozwiązań zadań nr 2 (14-19.10.2009) nalogie i różnice miedzy trójkątem
GEOMETRIA PRZESTRZENNA (STEREOMETRIA)
GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste
Czworościany ortocentryczne zadania
Czworościany ortocentryczne zadania 1. Wykazać, że nastepujące warunki są równoważne: a) istnieje przecięcie wysokości czworościanu, b) przeciwległe krawędzie są prostopadłe, c) sumy kwadratów długości
GEOMETRIA ELEMENTARNA
Bardo, 7 11 XII A. D. 2016 I Uniwersytecki Obóz Olimpiady Matematycznej GEOMETRIA ELEMENTARNA materiały przygotował Antoni Kamiński na podstawie zbiorów zadań: Przygotowanie do olimpiad matematycznych
Cztery punkty na okręgu
Tomasz Szymczyk V LO w ielsku-iałej ztery punkty na okręgu Przydatne fakty: (1) kąty wpisane w okrąg oparte na łukach przystających są równe, (2) czworokąt jest wpisany w okrąg wtedy i tylko wtedy, gdy
Ćwiczenia z Geometrii I, czerwiec 2006 r.
Waldemar ompe echy przystawania trójkątów 1. unkt leży na przekątnej kwadratu (rys. 1). unkty i R są rzutami prostokątnymi punktu odpowiednio na proste i. Wykazać, że = R. R 2. any jest trójkąt ostrokątny,
XIV Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2018 r. 15 października 2018 r.)
XIV Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna ( września 0 r. października 0 r.) Szkice rozwiązań zadań konkursowych. Liczbę naturalną n pomnożono przez, otrzymując
Stereometria bryły. Wielościany. Wielościany foremne
Stereometria bryły Stereometria - geometria przestrzeni trójwymiarowej. Przedmiotem jej badań są własności brył oraz przekształcenia izometryczne i afiniczne przestrzeni. Przyjęte oznaczenia: - Pole powierzchni
Ostrosłupy ( ) Zad. 4: Jedna z krawędzi ostrosłupa trójkątnego ma długość 2, a pozostałe 4. Znajdź objętość tego ostrosłupa. Odp.: V =
Ostrosłupy Zad 1: W ostrosłupie prawidłowym trójkątnym kwadrat długości krawędzi podstawy, kwadrat długości wysokości ostrosłupa i kwadrat długości krawędzi bocznej są kolejnymi wyrazami ciągu arytmetycznego
Graniastosłupy mają dwie podstawy, a ich ściany boczne mają kształt prostokątów.
GRANIASTOSŁUPY I OSTROSŁUPY Bryły czyli figury przestrzenne dzielimy na: graniastosłupy ostrosłupy bryły obrotowe Graniastosłupy i ostrosłupy nazywamy wielościanami Graniastosłupy mają dwie podstawy, a
XII Olimpiada Matematyczna Juniorów
XII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część testowa (29 września 2016 r.) Rozwiązania zadań testowych 1. odatnia liczba a powiększona o 50% jest równa dodatniej liczbie b pomniejszonej
XI Olimpiada Matematyczna Gimnazjalistów
XI Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (24 września 2015 r.) Rozwiązania zadań testowych 1. Dane są takie dodatnie liczby a i b, że 30% liczby a
Regionalne Koło Matematyczne
Regionalne Koło Matematyczne Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki http://www.mat.umk.pl/rkm/ Lista rozwiązań zadań nr 0, grupa zaawansowana (7.03.010) krąg dziewięciu
W. Guzicki Zadanie 28 z Informatora Maturalnego poziom rozszerzony 1
W. uzicki Zadanie 8 z Informatora Maturalnego poziom rozszerzony 1 Zadanie 8. any jest sześcian (zobacz rysunek) o krawędzi równej 1. unkt S jest środkiem krawędzi. Odcinek W jest wysokością ostrosłupa
Stereo. (a miejscami nawet surround) 30 stycznia 2014
Stereo (a miejscami nawet surround) 30 stycznia 2014 To kółko wiele zawdzięcza niezrównanym artykułom Michała Kiezy z Kącika Przestrzennego Delty. Oprócz tego zadania pochodzą z OMów oraz prezentacji Adama
Twierdzenie Talesa. Adrian Łydka Bernadeta Tomasz. Teoria
Twierdzenie Talesa. drian Łydka ernadeta Tomasz Teoria Definicja 1. Mówimy, że odcinki i CD są proporcjonalne odpowiednio do odcinków EF i GH, jeżeli CD = EF GH. Twierdzenie 1. (Twierdzenie Talesa) Jeżeli
Twierdzenie Talesa. Adrian Łydka Bernadeta Tomasz. Teoria
Twierdzenie Talesa. drian Łydka ernadeta Tomasz Teoria efinicja 1. Mówimy, że odcinki i są proporcjonalne odpowiednio do odcinków EF i GH, jeżeli = EF GH. Twierdzenie 1. (Twierdzenie Talesa) Jeżeli ramiona
Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)
Pytania zamknięte / TEST : Wybierz 1 odp prawidłową. 1. Punkt: A) jest aksjomatem in. pewnikiem; B) nie jest aksjomatem, bo można go zdefiniować. 2. Prosta: A) to zbiór punktów; B) to zbiór punktów współliniowych.
Regionalne Koło Matematyczne
Regionalne Koło Matematyczne Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki http://www.mat.umk.pl/rkm/ Lista rozwiązań zadań nr 16 (27.02.2010) Twierdzenia evy i Menelaosa 1.
Metoda siatek zadania
Metoda siatek zadania 1. (Leningrad 1984) Wykazać, że jeżeli suma kątów płaskich przy wierzchołku S ostrosłupa SA 1 A 2... A n (n 3) jest większa niż 180, to każda z krawędzi bocznych jest mniejsza od
V Konkurs Matematyczny Politechniki Białostockiej
V Konkurs Matematyczny Politechniki iałostockiej Rozwiązania - klasy pierwsze 27 kwietnia 2013 r. 1. ane są cztery liczby dodatnie a b c d. Wykazać że przynajmniej jedna z liczb a + b + c d b + c + d a
IX Olimpiada Matematyczna Gimnazjalistów
IX Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (3 października 2013 r.) Rozwiązania zadań testowych 1. Liczba 3 9 3 27 jest a) niewymierna; b) równa 3 27;
XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY
pitagoras.d2.pl XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY Graniastosłup to wielościan posiadający dwie identyczne i równoległe podstawy oraz ściany boczne będące równoległobokami. Jeśli podstawy graniastosłupa
w jednym kwadrat ziemia powietrze równoboczny pięciobok
Wielościany Definicja 1: Wielościanem nazywamy zbiór skończonej ilości wielokątów płaskich spełniających następujące warunki: 1. każde dwa wielokąty mają bok lub wierzchołek wspólny albo nie mają żadnego
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia
V Konkurs Matematyczny Politechniki Białostockiej
V Konkurs Matematyczny Politechniki Białostockiej Rozwiązania - klasy drugie 1. Znaleźć wszystkie pary liczb całkowitych (x, y) spełniające nierówności x + 1 + y 4 x + y 4 5 x 4 + y 1 > 4. Ważne jest zauważenie,
Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.
C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty
Temat: PRZEKROJE PROSTOPADŁOŚCIANÓW. Cel lekcji: kształcenie wyobraźni przestrzennej
Temat: PRZEKROJE PROSTOPADŁOŚCIANÓW Cel lekcji: kształcenie wyobraźni przestrzennej Przypomnienie podstawowych wiadomości potrzebnych do rozwiązywania zadań z przekrojami prostopadłościanów. 1. Prostopadłościan
1.2. Ostrosłupy. W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach.
12 Ostrosłupy W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach Ostrosłup prosty to ostrosłup, który ma wszystkie krawędzie
XII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2016 r. 17 października 2016 r.)
XII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna ( września 06 r. 7 października 06 r.) Szkice rozwiązań zadań konkursowych. Liczby wymierne a, b, c spełniają równanie
Inwersja w przestrzeni i rzut stereograficzny zadania
Inwersja w przestrzeni i rzut stereograficzny zadania Rozważmy sferę S o środku O i promieniu R. Inwersją względem sfery S nazywamy przekształcenie, które przekształca punkt A na punkt A leżący na półprostej
Bukiety matematyczne dla gimnazjum
Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 5 IX rok 2003/2004 Bukiet 1 1. W trójkącie ABC prosta równoległa do boku AB przecina boki AC i BC odpowiednio w punktach D i E. Zauważ,
VII Olimpiada Matematyczna Gimnazjalistów
VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa, test próbny www.omg.edu.pl (wrzesień 2011 r.) Rozwiązania zadań testowych 1. Liczba krawędzi pewnego ostrosłupa jest o
VII Olimpiada Matematyczna Gimnazjalistów
VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (29 września 2011 r.) Rozwiązania zadań testowych 1. Istnieje taki graniastosłup, którego liczba krawędzi
Czy pamiętasz? Zadanie 1. Rozpoznaj wśród poniższych brył ostrosłupy i graniastosłupy.
1. Bryły Tradycyjna futbolówka jest zszyta z 3232 kawałków. Gdybyśmy ją rozcięli, ujrzelibyśmy siatkę dwudziestościanu ściętego. Kulisty kształt piłka otrzymuje dzięki wypełnieniu sprężonym powietrzem.
PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3
DEFINICJE PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 Czworokąt to wielokąt o 4 bokach i 4 kątach. Przekątną czworokąta nazywamy odcinek łączący przeciwległe wierzchołki. Wysokością czworokąta nazywamy
Plan wynikowy, klasa 3 ZSZ
Plan wynikowy, klasa 3 ZSZ Nazwa działu Temat Liczba godzin 1. Trójkąty prostokątne powtórzenie 1. Trygonometria (10 h) 2. Funkcje trygonometryczne kąta ostrego 3. 4. Trygonometria zastosowania 5. 6. Związki
Konkurs dla gimnazjalistów Etap II 8 lutego 2017 roku
Konkurs dla gimnazjalistów Etap II 8 lutego 017 roku Instrukcja dla ucznia 1. W zadaniach o numerach od 1. do 15. są podane cztery warianty odpowiedzi: A, B, C, D. Dokładnie jedna z nich jest poprawna.
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM.
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM. I. Podstawowe pojęcia statystyki. 1. Sposoby prezentowania danych, interpretacja wykresów. 2. Mediana i dominanta. 3. Średnia arytmetyczna
XIII Olimpiada Matematyczna Juniorów
XIII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część testowa (8 września 017 r.) Rozwiązania zadań testowych 1. W każdym z trzech lat 018, 019 i 00 pensja pana Antoniego będzie o 5% większa
Treści zadań Obozu Naukowego OMJ
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ JUNIORÓW Treści zadań Obozu Naukowego OMJ Poziom OM 2017 rok SZCZYRK 2017 Olimpiada Matematyczna Juniorów jest wspó³finansowana
A. 4, 5, 6 B. 3, 4, 5 C. 6, 8, 12 D. 5, 12, 14
OSTROSŁUPY i GRANIASTOSŁUPY - test grupa A 1 Ile wynosi objętość ostrosłupa prawidłowego trójkątnego o = 27 cm 2 i wysokości 10 cm A 270 cm 3 B 27 cm 3 C 90 cm 3 D 81 cm 3 2 Ile wynosi powierzchnia całkowita
XIII Olimpiada Matematyczna Juniorów
XIII Olimpiada atematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2017 r. 16 października 2017 r.) 1. iczby a, b, c spełniają zależności Wykaż, że a 2 +b 2 = c 2. Szkice
Twierdzenie o podziale odcinków w czworokącie. Joanna Sendorek
Twierdzenie o podziale odcinków w czworokącie Joanna Sendorek Spis treści Wstęp 2 2 Stosunki odcinków w czworokątach 2 3 Twierdzenie o podziale odcinków w czworokącie 4 4 ibliografia 5 Wstęp W swojej pracy
Treści zadań Obozu Naukowego OMG
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OM 2015 rok SZCZYRK 2015 Pierwsze zawody indywidualne Treści
LX Olimpiada Matematyczna
LX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 13 lutego 2009 r. (pierwszy dzień zawodów) Zadanie 1. Liczby rzeczywiste a 1, a 2,..., a n (n 2) spełniają warunek a 1
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRZED MATURĄ MAJ 2017 POZIOM PODSTAWOWY Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron (zadania 1 33). 2. Rozwiązania zadań wpisuj
XI Olimpiada Matematyczna Gimnazjalistów
www.omg.edu.pl I Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część korespondencyjna (1 września 2015 r. 12 października 2015 r.) Szkice rozwiązań zadań konkursowych 1. Wykaż, że istnieje
KORESPONDENCYJNY KURS Z MATEMATYKI. PRACA KONTROLNA nr 1
KORESPONDENCYJNY KURS Z MATEMATYKI PRACA KONTROLNA nr 1 październik 000r 1. Suma wszystkich wyrazów nieskończonego ciągu geometrycznego wynosi 040. Jeśli pierwszy wyraz tego ciągu zmniejszymy o 17, a jego
Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie
Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/) 1. W trójkącie prostokątnym wysokość poprowadzona na przeciwprostokątną ma długość 10 cm, a promień okręgu
ZADANIA MATURALNE STEREOMETRIA POZIOM PODSTAWOWY Opracowała mgr Danuta Brzezińska
ZADANIA MATURALNE STEREOMETRIA POZIOM PODSTAWOWY Opracowała mgr Danuta Brzezińska Zad.1. ( 5 pkt) Objętość ostrosłupa prawidłowego trójkątnego, o długości krawędzi podstawy 6 cm, jest równa cm 3. Oblicz
Kurs ZDAJ MATURĘ Z MATEMATYKI - MODUŁ 13 Teoria stereometria
1 GRANIASTOSŁUPY i OSTROSŁUPY wiadomości ogólne Aby tworzyć wzory na OBJĘTOŚĆ i POLE CAŁKOWITE graniastosłupów musimy znać pola figur płaskich a następnie na ich bazie stosować się do zasady: Objętość
Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019
Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019 Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające,
Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 11 Zadania planimetria
1 TEST WSTĘPNY 1. (1p) Wysokość rombu o boku długości 6 i kącie ostrym 60 o jest równa: A. 6 3 B. 6 C. 3 3 D. 3 2. (1p) W trójkącie równoramiennym długość ramienia wynosi 10 a podstawa 16. Wysokość opuszczona
Projekt Zobaczę-dotknę-wiem i umiem, dofinansowany przez Fundację mbanku w partnerstwie z Fundacją Dobra Sieć
Kartka papieru i własności trójkątów. Ćwiczenie 1 Uczniowie ustalają ile znają rodzajów trójkątów. Podział ze względu na miary kątów Podział ostrokątny prostokątny rozwartokątny ze względu na długości
LVII Olimpiada Matematyczna
Zadanie 1. LVII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 5 kwietnia 2006 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych a, b, c, d, e układ równań
LXI Olimpiada Matematyczna
1 Zadanie 1. LXI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 21 kwietnia 2010 r. (pierwszy dzień zawodów) Dana jest liczba całkowita n > 1 i zbiór S {0,1,2,...,n 1}
Rozwiązanie. Oznaczmy przekątne rombu, który jest podstawa graniastosłupa: dłuższa
Temat: RZEKROJE GRANIASTOSŁUÓW I OSTROSŁUÓW Cel lekcji: kształcenie wyobraźni przestrzennej rzypomnienie podstawowych wiadomości potrzebnych do rozwiązywania zadań z przekrojami. Sposób wyznaczania kąta
Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10
Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10, ACE = 60, ADB = 40 i BEC = 20. Oblicz miarę kąta CAD. B C A D E Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym
2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego
Wymagania dla kl. 3 Zakres podstawowy Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za pomocą drzewa
Plan wynikowy klasa 3. Zakres podstawowy
Plan wynikowy klasa 3 Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające. RACHUNE PRAWDOPODOBIEŃSTWA
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej.
Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające;
Plan wynikowy klasa 3
Plan wynikowy klasa 3 Przedmiot: matematyka Klasa 3 liceum (technikum) Rok szkolny:........................ Nauczyciel:........................ zakres podstawowy: 28 tyg. 3 h = 84 h (78 h + 6 h do dyspozycji
Geometria wykreślna. 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury
Geometria wykreślna 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 3.
Ile takich samych butelek wody należy dolać do dzbanka, aby sok stanowił 25% napoju? Wybierz odpowiedź spośród podanych.
Zadanie 1. Do dzbanka wlano 2 jednakowe butelki soku. Ile takich samych butelek wody należy dolać do dzbanka, aby sok stanowił 25% napoju? Wybierz odpowiedź spośród podanych.. 2. 4 C. 6 D. 8 Zadanie 2.
Geometria mas. Bartłomiej Bzdęga. 27 października 2018 r. Uniwersytet im. Adama Mickiewicza w Poznaniu
Uniwersytet im. Adama Mickiewicza w Poznaniu 27 października 2018 r. Zasada dźwigni dwustronnej r1 r2 A 1 (m 1 ) S A 2 (m 2 ) x 1 x 2 x m 1 x 1 +m 2 x 2 m 1 +m 2 m 1 r1 + m 2 r2 = 0 m 1 m 2 = r 2 r 1 Więcej
Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy
Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Plan wynikowy Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania
LVIII Olimpiada Matematyczna
LVIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2007 r. (pierwszy dzień zawodów) Zadanie 1. W trójkącie ostrokątnym A punkt O jest środkiem okręgu opisanego,
Klasa 2. Ostrosłupy str. 1/4
Klasa 2. Ostrosłupy str. 1/4 1. Liczba wierzchołków ostrosłupa ośmiokątnego wynosi: A. 9 B. 16 C. 8 D. 7 2. Łączna długość prętów potrzebnych do wykonania szkieletu namiotu w kształcie ostrosłupa prawidłowego
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM
KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie
XIV Olimpiada Matematyczna Juniorów
XIV Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część testowa (27 września 2018 r.) Rozwiązania zadań testowych 1. W sklepie U Bronka cena spodni była równa cenie sukienki. Cenę spodni najpierw
Treści zadań Obozu Naukowego OMG
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OMG 2015 rok SZCZYRK 2015 Treści zadań Pierwsze zawody indywidualne
Kształcenie w zakresie rozszerzonym. Klasa IV
Kształcenie w zakresie rozszerzonym. Klasa IV Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować
2 Figury geometryczne
Płaszczyzna, proste... 21 2 igury geometryczne 1 Płaszczyzna, proste i półproste P 1. Wypisz proste, do których: a) prosta k jest równoległa, o n k l b) prosta p jest prostopadła, m c) prosta k nie jest
Wymagania edukacyjne zakres podstawowy klasa 3A
Ciągi Pojęcie ciągu. Sposoby opisywania ciągów Monotoniczność ciągów Ciąg arytmetyczny Suma początkowych wyrazów ciągu arytmetycznego Ciąg geometryczny Suma początkowych wyrazów ciągu geometrycznego Procent
Zadania, które zaproponowałem na różne konkursy Olimpiada Matematyczna. bc(b 3 + c 3 ) + c4 + a 4. ca(c 3 + a 3 ) 1. c + ca + cab 1 ( 1
Zadania, które zaproponowałem na różne konkursy Olimpiada Matematyczna. (57-II-3) Liczby dodatnie a, b, c spełniają warunek ab + bc + ca = abc. Dowieść, że a 4 + b 4 ab(a 3 + b 3 ) + b4 + c 4 bc(b 3 +
VIII Olimpiada Matematyczna Gimnazjalistów
VIII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (18 października 01 r.) Rozwiązania zadań testowych 1. Miary α, β, γ kątów pewnego trójkąta spełniają warunek
TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH )
Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH ) PAKIET ZADAŃ (zadania wybrano ze zbiorów autorów i wydawnictw: Kiełbasa, Res Polona,
Mini tablice matematyczne. Figury geometryczne
Mini tablice matematyczne Figury geometryczne Spis treści Własności kwadratu Ciekawostka:Kwadrat magiczny Prostokąt Własności prostokąta Trapez Własności trapezu Równoległobok Własności równoległoboku
Geometria analityczna
Geometria analityczna Wektory Zad Dane są wektory #» a, #» b, #» c Znaleźć długość wektora #» x (a #» a = [, 0, ], #» b = [0,, 3], #» c = [,, ], #» x = #» #» a b + 3 #» c ; (b #» a = [,, ], #» b = [,,
MATURA PRÓBNA - odpowiedzi
MATURA PRÓBNA - odpowiedzi Zadanie 1. (1pkt) Zbiorem wartości funkcji = + 6 7 jest przedział: A., B., C., D., Zadanie. (1pkt) Objętość kuli wpisanej w sześcian o krawędzi długości 6 jest równa: A. B. 4
Regionalne Koło Matematyczne
Regionalne Koło Matematyczne Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki http://www.mat.umk.pl/rkm/ Lista rozwiązań zadań nr 2, grupa zaawansowana (17.10.2009) Analogie i
MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1
Wszelkie prawa zastrzeżone. Rozpowszechnianie, wypożyczanie i powielanie niniejszych testów w jakiejkolwiek formie surowo zabronione. W przypadku złamania zakazu mają zastosowanie przepisy dotyczące naruszenia
X Olimpiada Matematyczna Gimnazjalistów
www.omg.edu.pl X Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część korespondencyjna (10 listopada 01 r. 15 grudnia 01 r.) Szkice rozwiązań zadań konkursowych 1. nia rozmieniła banknot
1. Potęgi. Logarytmy. Funkcja wykładnicza
1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności
Matura próbna 2014 z matematyki-poziom podstawowy
Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B
Skrypt 19. Bryły. 14. Zastosowanie twierdzenia Pitagorasa do obliczania pól powierzchni ostrosłupów
Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 19 Bryły 11. Ostrosłupy - rozpoznawanie,
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (c.d).
I. Potęgi. Logarytmy. Funkcja wykładnicza.
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Potęgi. Logarytmy. Funkcja wykładnicza. dobrą, bardzo - oblicza potęgi o wykładnikach wymiernych; - zna
Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem
Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem pojęcie potęgi o wykładniku naturalnym wzór na mnożenie i dzielenie potęg o tych samych podstawach wzór na potęgowanie
Skrypt 33. Powtórzenie do matury:
Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 33 Powtórzenie do matury:
Agnieszka Kamińska, Dorota Ponczek. Matematyka na czasie Gimnazjum, klasa 3 Rozkład materiału i plan wynikowy
Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Gimnazjum, klasa Rozkład materiału i plan wynikowy I. FUNKCJE 1 1. Pojęcie funkcji zbiór i jego elementy pojęcie przyporządkowania pojęcie funkcji
MATEMATYKA DLA CIEKAWSKICH. Dowodzenie twierdzeń przy pomocy kartki. Część I
MATEMATYKA DLA CIEKAWSKICH Dowodzenie twierdzeń przy pomocy kartki. Część I Z trójkątem, jako figurą geometryczną, uczeń spotyka się już na etapie nauczania początkowego. W czasie dalszego procesu kształcenia
TWIERDZENIE TALESA W PRZESTRZENI
TWIERDZENIE TALESA W PRZESTRZENI PRACA BADAWCZA autor Agnieszka Duszeńko Uniwersytet Wrocławski Wydział Matematyki i Informatyki 2005 Na płaszczyźnie: Najpopularniejsza, powszechnie znana wersja twierdzenia
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI poziom rozszerzony
Próbny egzamin maturalny z matematyki. Poziom rozszerzony 1 PRÓNY EGZMIN MTURLNY Z MTEMTYKI poziom rozszerzony ZNI ZMKNIĘTE W każdym z zadań 1.. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0
Podstawowe pojęcia geometryczne
PLANIMETRIA Podstawowe pojęcia geometryczne Geometria (słowo to pochodzi z języka greckiego i oznacza mierzenie ziemi) jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych
LXIII Olimpiada Matematyczna
1 Zadanie 1. LXIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 17 lutego 2012 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych a, b, c, d układ równań a