XII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2016 r. 17 października 2016 r.)

Save this PDF as:
Wielkość: px
Rozpocząć pokaz od strony:

Download "XII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2016 r. 17 października 2016 r.)"

Transkrypt

1 XII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna ( września 06 r. 7 października 06 r.) Szkice rozwiązań zadań konkursowych. Liczby wymierne a, b, c spełniają równanie Wykaż, że a+b = c = 0. (a+b+c)(a+b c) = c. Przekształcamy równoważnie daną równość, uzyskując kolejno: (a+b+c)(a+b c) = c, (a+b) c = c, (a+b) = c, a+b = c. Przypuśćmy, że c 0. Wówczas ostatnią zależność możemy podzielić obustronnie przez c, otrzymując a+b c =. Ponieważ liczby a, b, c są wymierne, więc także liczba a+b jest wymierna i w konsekwencji lewa strona powyższej równości jest wymierna. Tymczasem jej prawa strona, czyli liczba jest niewymierna. Uzyskana sprzeczność dowodzi, że c = 0, a skoro a + b = c, to również a+b = 0.. Dany jest trójkąt ostrokątny, w którym <) = 45. Niech ED oraz F G będą kwadratami leżącymi na zewnątrz trójkąta. Udowodnij, że środek odcinka DG pokrywa się ze środkiem okręgu opisanego na trójkącie. Zauważmy, że <)F +<) +<)D = = 80, skąd wynika, że punkty F,, D leżą na jednej prostej. Podobnie uzasadniamy, że punkty E,, G leżą na jednej prostej. E F 45 D M G rys.

2 Oznaczmy przez M środek odcinka DG (rys. ). Ponieważ <)DEG = <)DF G = 90, więc punkty E, F leżą na okręgu o średnicy DG, którego środkiem jest punkt M. Wobec tego symetralne odcinków DE i F G przecinają się w punkcie M. Z drugiej strony, symetralne odcinków DE i F G pokrywają się z symetralnymi odcinków i, a więc przecinają się w środku okręgu opisanego na trójkącie. Stąd wniosek, że punkt M, czyli środek odcinka DG, pokrywa się ze środkiem okręgu opisanego na trójkącie. To kończy dowód. 3. W każde pole tablicy należy wpisać jedną z liczb, 0, w taki sposób, aby suma liczb w każdej kolumnie była nieujemna, a suma liczb w każdym wierszu była niedodatnia. Jaką najmniejszą liczbę zer można w ten sposób wpisać w pola tablicy? Odpowiedź uzasadnij. Niech k, k,..., k będą sumami liczb znajdujących się w kolejnych kolumnach, a w, w,..., w sumami liczb znajdujących się w kolejnych wierszach. Oznaczmy ponadto przez s sumę wszystkich liczb wpisanych w pola tablicy. Z warunków zadania wynika, że k 0, k 0,..., k 0, skąd s = k +k +...+k = 0. Podobnie, skoro w 0, w 0,..., w 0, to s = w +w +...+w = 0. Łącząc powyższe nierówności, dochodzimy do wniosku, że s = 0. Zatem we wszystkich powyższych nierównościach zachodzą równości, czyli k = k =... = k = w = w =... = w = 0. Ponieważ suma liczb w każdym wierszu jest równa 0, więc w każdym wierszu jest tyle samo liczb co liczb. W każdym wierszu jest zatem parzysta liczba niezerowych liczb. Tymczasem w każdym wierszu jest, czyli nieparzysta liczba pól. Wobec tego w każdym wierszu znajduje się co najmniej jedna liczba 0, a więc w całej tablicy znajduje się co najmniej zer rys. Pozostaje zauważyć, że można uzupełnić tablicę zgodnie z warunkami zadania tak, aby znalazło się w niej dokładnie zer (rys. ). W związku z tym szukaną najmniejszą liczbą zer wpisanych w pola tablicy jest.

3 4. zworokąt D jest wpisany w okrąg, przy czym <) = 60 oraz = D. Udowodnij, że = D +D. Ponieważ <)D = 0 > 60 = <) oraz <)D = <)D, więc <)D = <)D <)D > <) <)D = <)D. Stąd > D. Na odcinku można więc wskazać taki punkt P, że P = D (rys. 3). D P 60 rys. 3 Ponieważ = D, więc łuki i D danego okręgu (niezawierające punktu ) są równej długości. Stąd wynika, że <) =<)D, gdyż są to kąty wpisane w ten sam okrąg oparte na łukach równej długości. Wobec tego trójkąty P i D są przystające (cecha bok kąt bok) i w konsekwencji P = D =. Wiemy ponadto, że <) = 60, skąd wynika, że trójkąt równoramienny P jest równoboczny. W związku z tym P = D. Ostatecznie otrzymujemy zatem co było do udowodnienia. = P +P = D +D, Uwaga W rozwiązaniu zadania wykorzystaliśmy fakt, że równość długości cięciw i D pociąga za sobą równość długości łuków i D. Więcej na temat zastosowania tego twierdzenia można przeczytać w artykule O łukach równej długości, Kwadrat nr 4 (grudzień 04). 5. Liczby całkowite a, b są dodatnie. Wykaż, że co najmniej jedną z liczb a, b, a + b można przedstawić w postaci różnicy kwadratów dwóch liczb całkowitych. Zauważmy, że każdą liczbę nieparzystą oraz każdą liczbę podzielną przez 4 można przedstawić w postaci różnicy kwadratów dwóch liczb całkowitych. Rzeczywiście, dla dowolnej liczby całkowitej n spełnione są równości n = n (n ) oraz 4n = (n+) (n ). Wystarczy zatem wykazać, że wśród liczb a, b, a+b co najmniej jedna jest nieparzysta lub podzielna przez 4. Przypuśćmy, że tak nie jest. Wtedy liczby a, b oraz a + b są parzyste i niepodzielne przez 4. W szczególności, obie liczby a i b dają resztę z dzielenia przez 4. Wtedy jednak liczba a + b jest podzielna przez 4, wbrew poczynionemu założeniu. Uzyskana sprzeczność kończy rozwiązanie zadania. 3

4 Uwaga Można wykazać, że żadnej liczby, która z dzielenia przez 4 daje resztę nie da się przedstawić w postaci różnicy kwadratów dwóch liczb całkowitych. Dowód tego stwierdzenia przebiega analogicznie do rozwiązania zadania 6 z artykułu Różnica kwadratów, Kwadrat nr 8 (sierpień 06). 6. Podstawą ostrosłupa D jest trójkąt równoboczny o boku. Ponadto Oblicz objętość ostrosłupa D. <)D = <)D = <)D = 90. Oznaczmy długości krawędzi D, D, D danego ostrosłupa odpowiednio przez a, b, c. Ponieważ <)D = <)D = 90, więc krawędź D jest prostopadła do płaszczyzny D. Potraktujmy zatem teraz ścianę D jako podstawę ostrosłupa; wtedy krawędź D jest wysokością ostrosłupa opuszczoną na tę podstawę (rys. 4). Oznaczając przez V objętość ostrosłupa D, a przez [D] pole ściany D, uzyskujemy V = 3 [D] D = 3 ab c = 6 abc. c D a b rys. 4 Ponieważ trójkąty D, D, D są prostokątne, więc korzystając z twierdzenia Pitagorasa, możemy zapisać układ równań a +b = b +c = c +a =. Wobec tego skąd a = i w konsekwencji a =. a = (a +b )+(c +a ) (b +c ) = + =, W pełni analogicznie wyznaczamy pozostałe wielkości b i c, uzyskując b = c =. Stąd otrzymujemy ostatecznie V = 6 abc = 6 = = 4. 4

5 7. Dane są takie dodatnie liczby całkowite a i b, że liczba a + b + jest dzielnikiem pierwszym liczby 4ab. Udowodnij, że a = b. Jeżeli liczba 4ab jest podzielna przez a+b+, to również liczba 4ab +(a+b+) = 4ab+a+b+ = (a+)(b+) jest podzielna przez a+b+. Ponieważ a+b+ jest liczbą pierwszą, więc jest dzielnikiem co najmniej jednego z czynników a+, b+. Dla ustalenia uwagi przyjmijmy, że a+b+ dzieli a+. Gdyby spełniona była nierówność a+, a+b+ to przekształcając ją równoważnie, uzyskalibyśmy a + a + b +, czyli b + 0. To przeczy jednak warunkowi, że liczba b jest dodatnia. Wobec tego musi być spełniona równość a+ a+b+ =, która po przekształceniach prowadzi do a = b. To kończy rozwiązania zadania. 5

XIV Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2018 r. 15 października 2018 r.)

XIV Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2018 r. 15 października 2018 r.) XIV Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna ( września 0 r. października 0 r.) Szkice rozwiązań zadań konkursowych. Liczbę naturalną n pomnożono przez, otrzymując

Bardziej szczegółowo

VII Olimpiada Matematyczna Gimnazjalistów

VII Olimpiada Matematyczna Gimnazjalistów VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (29 września 2011 r.) Rozwiązania zadań testowych 1. Istnieje taki graniastosłup, którego liczba krawędzi

Bardziej szczegółowo

X Olimpiada Matematyczna Gimnazjalistów

X Olimpiada Matematyczna Gimnazjalistów www.omg.edu.pl X Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część korespondencyjna (10 listopada 01 r. 15 grudnia 01 r.) Szkice rozwiązań zadań konkursowych 1. nia rozmieniła banknot

Bardziej szczegółowo

IX Olimpiada Matematyczna Gimnazjalistów

IX Olimpiada Matematyczna Gimnazjalistów IX Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (3 października 2013 r.) Rozwiązania zadań testowych 1. Liczba 3 9 3 27 jest a) niewymierna; b) równa 3 27;

Bardziej szczegółowo

XI Olimpiada Matematyczna Gimnazjalistów

XI Olimpiada Matematyczna Gimnazjalistów XI Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (24 września 2015 r.) Rozwiązania zadań testowych 1. Dane są takie dodatnie liczby a i b, że 30% liczby a

Bardziej szczegółowo

VII Olimpiada Matematyczna Gimnazjalistów

VII Olimpiada Matematyczna Gimnazjalistów VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa, test próbny www.omg.edu.pl (wrzesień 2011 r.) Rozwiązania zadań testowych 1. Liczba krawędzi pewnego ostrosłupa jest o

Bardziej szczegółowo

XIII Olimpiada Matematyczna Juniorów

XIII Olimpiada Matematyczna Juniorów XIII Olimpiada atematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2017 r. 16 października 2017 r.) 1. iczby a, b, c spełniają zależności Wykaż, że a 2 +b 2 = c 2. Szkice

Bardziej szczegółowo

VIII Olimpiada Matematyczna Gimnazjalistów

VIII Olimpiada Matematyczna Gimnazjalistów VIII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (18 października 01 r.) Rozwiązania zadań testowych 1. Miary α, β, γ kątów pewnego trójkąta spełniają warunek

Bardziej szczegółowo

LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów)

LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów) LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów) Zadanie 1. Dana jest liczba całkowita n 2. Wyznaczyć liczbę rozwiązań (x 1,x

Bardziej szczegółowo

XII Olimpiada Matematyczna Juniorów

XII Olimpiada Matematyczna Juniorów XII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część testowa (29 września 2016 r.) Rozwiązania zadań testowych 1. odatnia liczba a powiększona o 50% jest równa dodatniej liczbie b pomniejszonej

Bardziej szczegółowo

LXIX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2018 r. (pierwszy dzień zawodów)

LXIX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2018 r. (pierwszy dzień zawodów) LXIX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2018 r. (pierwszy dzień zawodów) 1. Dany jest trójkąt ostrokątny ABC, w którym AB < AC. Dwusieczna kąta

Bardziej szczegółowo

Bukiety matematyczne dla gimnazjum

Bukiety matematyczne dla gimnazjum Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 1 X 2002 Bukiet I Dany jest prostokąt o bokach wymiernych a, b, którego obwód O i pole P są całkowite. 1. Sprawdź, że zachodzi równość

Bardziej szczegółowo

LVIII Olimpiada Matematyczna

LVIII Olimpiada Matematyczna LVIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2007 r. (pierwszy dzień zawodów) Zadanie 1. W trójkącie ostrokątnym A punkt O jest środkiem okręgu opisanego,

Bardziej szczegółowo

LXI Olimpiada Matematyczna

LXI Olimpiada Matematyczna 1 Zadanie 1. LXI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 21 kwietnia 2010 r. (pierwszy dzień zawodów) Dana jest liczba całkowita n > 1 i zbiór S {0,1,2,...,n 1}

Bardziej szczegółowo

czyli tuzin zadań Wojciech Guzicki Sielpia, 22 października 2016 r.

czyli tuzin zadań Wojciech Guzicki Sielpia, 22 października 2016 r. 1 O OBLICZENIACH, czyli tuzin zadań Wojciech Guzicki W. Guzicki: O obliczeniach 2 Zadanie 1.(XVI OM) Znajdź wszystkie takie liczby pierwsze p, że 4p 2 +1i6p 2 +1sąrównieżliczbamipierwszymi. p 4p 2 +1 6p

Bardziej szczegółowo

XIII Olimpiada Matematyczna Juniorów

XIII Olimpiada Matematyczna Juniorów XIII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część testowa (8 września 017 r.) Rozwiązania zadań testowych 1. W każdym z trzech lat 018, 019 i 00 pensja pana Antoniego będzie o 5% większa

Bardziej szczegółowo

LVIII Olimpiada Matematyczna

LVIII Olimpiada Matematyczna LVIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 23 lutego 2007 r. (pierwszy dzień zawodów) Zadanie. Wielomian P (x) ma współczynniki całkowite. Udowodnić, że jeżeli

Bardziej szczegółowo

Internetowe Ko³o M a t e m a t yc z n e

Internetowe Ko³o M a t e m a t yc z n e Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 2 szkice rozwiązań zadań 1. Dana jest taka liczba rzeczywista, której rozwinięcie dziesiętne jest nieskończone

Bardziej szczegółowo

Internetowe Ko³o M a t e m a t yc z n e

Internetowe Ko³o M a t e m a t yc z n e Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 1 szkice rozwiązań zadań 1 W wierszu zapisano kolejno 2010 liczb Pierwsza zapisana liczba jest równa 7 oraz

Bardziej szczegółowo

LXV Olimpiada Matematyczna

LXV Olimpiada Matematyczna LXV Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 8 kwietnia 2014 r. (pierwszy dzień zawodów) Zadanie 1. Dane są względnie pierwsze liczby całkowite k,n 1. Na tablicy

Bardziej szczegółowo

LX Olimpiada Matematyczna

LX Olimpiada Matematyczna LX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 13 lutego 2009 r. (pierwszy dzień zawodów) Zadanie 1. Liczby rzeczywiste a 1, a 2,..., a n (n 2) spełniają warunek a 1

Bardziej szczegółowo

LXIII Olimpiada Matematyczna

LXIII Olimpiada Matematyczna 1 Zadanie 1. LXIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 17 lutego 2012 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych a, b, c, d układ równań a

Bardziej szczegółowo

G i m n a z j a l i s t ó w

G i m n a z j a l i s t ó w Ko³o Matematyczne G i m n a z j a l i s t ó w Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 10 szkice rozwiazań zadań 1. Rozwiąż układ równań: (x+y)(x+y +z) = 72 (y +z)(x+y +z) = 120 (z +x)(x+y

Bardziej szczegółowo

Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów

Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Liga zadaniowa 2012/2013 Seria X (kwiecień 2013) rozwiązania zadań 46. Na szachownicy 75 75 umieszczono 120 kwadratów 3 3 tak, że każdy pokrywa 9 pól.

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom rozszerzony

Próbny egzamin maturalny z matematyki Poziom rozszerzony Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Zadanie 1 (4 pkt) Rozwiąż równanie: w przedziale 1 pkt Przekształcenie równania do postaci: 2 pkt Przekształcenie równania

Bardziej szczegółowo

KONKURS MATEMATYCZNY dla uczniów gimnazjów województwa mazowieckiego w roku szkolnym 2017/2018. Model odpowiedzi i schematy punktowania

KONKURS MATEMATYCZNY dla uczniów gimnazjów województwa mazowieckiego w roku szkolnym 2017/2018. Model odpowiedzi i schematy punktowania UWAGA KONKURS MATEMATYCZNY dla uczniów gimnazjów województwa mazowieckiego w roku szkolnym 07/08 Model odpowiedzi i schematy punktowania Za każde poprawne rozwiązanie, inne niż przewidziane w schemacie

Bardziej szczegółowo

Treści zadań Obozu Naukowego OMG

Treści zadań Obozu Naukowego OMG STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OMG 2016 rok SZCZYRK 2016 Pierwsze zawody indywidualne Treści

Bardziej szczegółowo

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1 Wszelkie prawa zastrzeżone. Rozpowszechnianie, wypożyczanie i powielanie niniejszych testów w jakiejkolwiek formie surowo zabronione. W przypadku złamania zakazu mają zastosowanie przepisy dotyczące naruszenia

Bardziej szczegółowo

Treści zadań Obozu Naukowego OMJ

Treści zadań Obozu Naukowego OMJ STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ JUNIORÓW Treści zadań Obozu Naukowego OMJ Poziom OM 2017 rok SZCZYRK 2017 Olimpiada Matematyczna Juniorów jest wspó³finansowana

Bardziej szczegółowo

XIV Olimpiada Matematyczna Juniorów

XIV Olimpiada Matematyczna Juniorów XIV Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część testowa (27 września 2018 r.) Rozwiązania zadań testowych 1. W sklepie U Bronka cena spodni była równa cenie sukienki. Cenę spodni najpierw

Bardziej szczegółowo

Treści zadań Obozu Naukowego OMG

Treści zadań Obozu Naukowego OMG STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OM 2015 rok SZCZYRK 2015 Pierwsze zawody indywidualne Treści

Bardziej szczegółowo

Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów

Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Liga zadaniowa 202/203 Seria VI (grudzień 202) rozwiązania zadań 26. Udowodnij, że istnieje 0 00 kolejnych liczb całkowitych dodatnich nie większych

Bardziej szczegółowo

9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie

9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie 9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (c.d).

Bardziej szczegółowo

Przykładowe rozwiązania

Przykładowe rozwiązania Przykładowe rozwiązania (E. Ludwikowska, M. Zygora, M. Walkowiak) Zadanie 1. Rozwiąż równanie: w przedziale. ( ) ( ) ( )( ) ( ) ( ) ( ) Uwzględniając, że x otrzymujemy lub lub lub. Zadanie. Dany jest czworokąt

Bardziej szczegółowo

Bukiety matematyczne dla gimnazjum

Bukiety matematyczne dla gimnazjum Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 5 IX rok 2003/2004 Bukiet 1 1. W trójkącie ABC prosta równoległa do boku AB przecina boki AC i BC odpowiednio w punktach D i E. Zauważ,

Bardziej szczegółowo

A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla

A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla Zadanie 1 Liczba jest równa A. B. C. 10 D. Odpowiedź B. Zadanie 2 Liczba jest równa A. 3 B. 2 C. D. Odpowiedź D. Zadanie 3. Liczba jest równa Odpowiedź D. Zadanie 4. Liczba osobników pewnego zagrożonego

Bardziej szczegółowo

Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl styczniowy Poziom: szkoły ponadgimnazjalne, 10 punktów za każde zadanie

Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl styczniowy Poziom: szkoły ponadgimnazjalne, 10 punktów za każde zadanie Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl styczniowy oziom: szkoły ponadgimnazjalne, 0 punktów za każde zadanie Zadanie Znajdź dwa dzielniki pierwsze liczby - Można skorzystać z artykułu

Bardziej szczegółowo

W. Guzicki Zadanie 28 z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie 28 z Informatora Maturalnego poziom rozszerzony 1 W. uzicki Zadanie 8 z Informatora Maturalnego poziom rozszerzony 1 Zadanie 8. any jest sześcian (zobacz rysunek) o krawędzi równej 1. unkt S jest środkiem krawędzi. Odcinek W jest wysokością ostrosłupa

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom podstawowy

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom podstawowy KRYTERIA OCENIANIA ODPOWIEDZI Matematyka Poziom podstawowy Marzec 09 Zadania zamknięte Za każdą poprawną odpowiedź zdający otrzymuje punkt. Poprawna odpowiedź. D 8 9 8 7. D. C 9 8 9 8 8 9 8 9 8 ( 89 )

Bardziej szczegółowo

Internetowe Kółko Matematyczne 2003/2004

Internetowe Kółko Matematyczne 2003/2004 Internetowe Kółko Matematyczne 003/004 http://www.mat.uni.torun.pl/~kolka/ Zadania dla szkoły średniej Zestaw I (5 IX) Zadanie 1. Które liczby całkowite można przedstawić w postaci różnicy kwadratów dwóch

Bardziej szczegółowo

XXV Rozkosze Łamania Głowy konkurs matematyczny dla klas I i III szkół ponadgimnazjalnych. zestaw A klasa I

XXV Rozkosze Łamania Głowy konkurs matematyczny dla klas I i III szkół ponadgimnazjalnych. zestaw A klasa I XXV Rozkosze Łamania Głowy konkurs matematyczny dla klas I i III szkół ponadgimnazjalnych zestaw A klasa I 1. Zbiór wszystkich środków okręgów (leżących na jednej płaszczyźnie) przechodzących przez: a)

Bardziej szczegółowo

LVII Olimpiada Matematyczna

LVII Olimpiada Matematyczna Zadanie 1. LVII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 5 kwietnia 2006 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych a, b, c, d, e układ równań

Bardziej szczegółowo

STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ JUNIORÓW SZCZYRK 2017

STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ JUNIORÓW SZCZYRK 2017 STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ JUNIORÓW Obóz Naukowy OMJ Poziom OMJ 207 rok SZCZYRK 207 Olimpiada Matematyczna Juniorów jest wspó³finansowana ze œrodków

Bardziej szczegółowo

Tematy: zadania tematyczne

Tematy: zadania tematyczne Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.

Bardziej szczegółowo

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015

EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015 EGZAMIN MATURALNY W ROKU SZKOLNYM 0/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 0 Egzamin maturalny z matematyki nowa formuła Klucz

Bardziej szczegółowo

Test kwalifikacyjny na I Warsztaty Matematyczne

Test kwalifikacyjny na I Warsztaty Matematyczne Test kwalifikacyjny na I Warsztaty Matematyczne Na pytania odpowiada się tak lub nie poprzez wpisanie odpowiednio T bądź N w pole obok pytania. W danym trzypytaniowym zestawie możliwa jest dowolna kombinacja

Bardziej szczegółowo

2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia.

2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia. 1. Wykaż, że liczba 2 2 jest odwrotnością liczby 1 2. 2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia. 3. Wykaż, że dla każdej liczby całkowitej

Bardziej szczegółowo

Zestaw zadań dotyczących liczb całkowitych

Zestaw zadań dotyczących liczb całkowitych V Zestaw zadań dotyczących liczb całkowitych Opracowanie Monika Fabijańczyk ROZDZIAŁ 1 Cechy podzielności Poniższe zadania zostały wybrane z różnych zbiorów zadań, opracowań, konkursów matematycznych.

Bardziej szczegółowo

XIII Konkurs Matematyczny o Puchar Dyrektora V LO w Bielsku-Białej

XIII Konkurs Matematyczny o Puchar Dyrektora V LO w Bielsku-Białej XIII Konkurs Matematyczny o Puchar Dyrektora V LO w Bielsku-Białej 2 grudnia 2010 r. eliminacje czas: 90 minut Przed Tobą test składający się z 27 zadań. Do każdego zadania podano cztery odpowiedzi, z

Bardziej szczegółowo

LXV Olimpiada Matematyczna

LXV Olimpiada Matematyczna Zadanie 1. LXV Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia pierwszego I i II seria (1 września 2013 r. 4 listopada 2013 r.) Wykazać, że jeśli liczby całkowite a, b, c spełniają

Bardziej szczegółowo

Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów

Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Liga zadaniowa 0/03 Seria IV październik 0 rozwiązania zadań 6. Dla danej liczby naturalnej n rozważamy wszystkie sumy postaci a b a b 3 a 3 b 3 a b...n

Bardziej szczegółowo

6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.).

6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.). 6. Liczby wymierne i niewymierne. Niewymierność pierwiastków i logarytmów (c.d.). 0 grudnia 008 r. 88. Obliczyć podając wynik w postaci ułamka zwykłego a) 0,(4)+ 3 3,374(9) b) (0,(9)+1,(09)) 1,() c) (0,(037))

Bardziej szczegółowo

LV Olimpiada Matematyczna

LV Olimpiada Matematyczna LV Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 15 kwietnia 004 r. (pierwszy dzień zawodów) Zadanie 1. Punkt D leży na boku AB trójkąta ABC. Okręgi styczne do prostych

Bardziej szczegółowo

Uwaga. 1. Jeśli uczeń poda tylko rozwiązania ogólne, to otrzymuje 4 punkty.

Uwaga. 1. Jeśli uczeń poda tylko rozwiązania ogólne, to otrzymuje 4 punkty. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KRYTERIA OCENIANIA-POZIOM ROZSZERZONY Zadanie 1. (4 pkt) Rozwiąż równanie: w przedziale. 1 pkt Przekształcenie równania

Bardziej szczegółowo

MATEMATYKA Przed próbną maturą. Sprawdzian 3. (poziom podstawowy) Rozwiązania zadań

MATEMATYKA Przed próbną maturą. Sprawdzian 3. (poziom podstawowy) Rozwiązania zadań MTMTYK Przed próbną maturą. Sprawdzian. (poziom podstawowy) Rozwiązania zadań Zadanie. ( pkt) P.. Uczeń używa wzorów skróconego mnożenia na (a ± b) oraz a b. Zapisujemy równość w postaci (a b) + (c d)

Bardziej szczegółowo

Internetowe Ko³o M a t e m a t yc z n e

Internetowe Ko³o M a t e m a t yc z n e Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 3 szkice rozwiązań zadań 1. Plansza do gry składa się z 15 ustawionych w rzędzie kwadratów. Pierwszy z graczy

Bardziej szczegółowo

Projekt Zobaczę-dotknę-wiem i umiem, dofinansowany przez Fundację mbanku w partnerstwie z Fundacją Dobra Sieć

Projekt Zobaczę-dotknę-wiem i umiem, dofinansowany przez Fundację mbanku w partnerstwie z Fundacją Dobra Sieć Kartka papieru i własności trójkątów. Ćwiczenie 1 Uczniowie ustalają ile znają rodzajów trójkątów. Podział ze względu na miary kątów Podział ostrokątny prostokątny rozwartokątny ze względu na długości

Bardziej szczegółowo

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018. Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory

Bardziej szczegółowo

Rozwiązania zadań otwartych i schematy oceniania Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Rozwiązania zadań otwartych i schematy oceniania Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zadań zamkniętych 5 6 7 8 9 0 5 6 7 8 9 0 A D B B C D C C D D A B D B B A C B C A Zadanie. (0-) Rozwiąż nierówność

Bardziej szczegółowo

Jednoznaczność rozkładu na czynniki pierwsze I

Jednoznaczność rozkładu na czynniki pierwsze I Jednoznaczność rozkładu na czynniki pierwsze I 1. W Biwerlandii w obiegu są monety o nominałach 5 eciepecie i 8 eciepecie. Jaką najmniejszą (dodatnią) kwotę można zapłacić za zakupy, jeżeli sprzedawca

Bardziej szczegółowo

V Międzyszkolny Konkurs Matematyczny

V Międzyszkolny Konkurs Matematyczny V Międzyszkolny Konkurs Matematyczny im. Stefana Banacha dla uczniów szkół średnich Zespół Szkół Nr 1 im. Adama Mickiewicza w Lublińcu 42-700 Lubliniec, ul. Sobieskiego 22 18. kwiecień 2011 rok 1. W trapezie

Bardziej szczegółowo

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 11 Zadania planimetria

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 11 Zadania planimetria 1 TEST WSTĘPNY 1. (1p) Wysokość rombu o boku długości 6 i kącie ostrym 60 o jest równa: A. 6 3 B. 6 C. 3 3 D. 3 2. (1p) W trójkącie równoramiennym długość ramienia wynosi 10 a podstawa 16. Wysokość opuszczona

Bardziej szczegółowo

Zadania na dowodzenie Opracowała: Ewa Ślubowska

Zadania na dowodzenie Opracowała: Ewa Ślubowska Egzamin Gimnazjalny Zadania na dowodzenie Opracowała: Ewa Ślubowska W nauczaniu matematyki ważne jest rozwijanie różnych aktywności umysłu. Ma temu służyć min. rozwiązywanie jednego zadania czy dowodzenie

Bardziej szczegółowo

Matematyka rozszerzona matura 2017

Matematyka rozszerzona matura 2017 Matematyka rozszerzona matura 017 Zadanie 1 Liczba ( 3 + 3) jest równa A. B. 4 C. 3 D. 3 ( 3 + 3) = 3 ( 3)( + 3) + + 3 = A. 3 4 3 + + 3 = 4 1 = 4 = Zadanie. Nieskończony ciąg liczbowy jest określony wzorem

Bardziej szczegółowo

Bank zadań na egzamin pisemny (wymagania podstawowe; na ocenę dopuszczającą i dostateczną)

Bank zadań na egzamin pisemny (wymagania podstawowe; na ocenę dopuszczającą i dostateczną) Bank zadań na egzamin pisemny (wymagania podstawowe; na ocenę dopuszczającą i dostateczną) Zadania zamknięte (jedna poprawna odpowiedź) 1 punkt Wyrażenia algebraiczne Zadanie 1. Wartość wyrażenia 3 x 3x

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII

Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII Wymagania edukacyjne niezbędne do otrzymania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki dla klasy VIII Temat 1. System rzymski. 2. Własności liczb naturalnych. 3. Porównywanie

Bardziej szczegółowo

Internetowe Kółko Matematyczne 2003/2004

Internetowe Kółko Matematyczne 2003/2004 Internetowe Kółko Matematyczne 2003/2004 http://www.mat.uni.torun.pl/~kolka/ Zadania dla gimnazjum Zestaw I (12 IX) Zadanie 1. Znajdź cyfry A, B, C, spełniające równość: a) AB A = BCB, b) AB A = CCB. Zadanie

Bardziej szczegółowo

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH Nr zad Odp. 1 4 5 6 7 8 9 10 11 1 1 14 B B C A D D A B C A B D C C Nr zad Odp. 15

Bardziej szczegółowo

I Liceum Ogólnokształcące w Warszawie

I Liceum Ogólnokształcące w Warszawie I Liceum Ogólnokształcące w Warszawie Imię i Nazwisko Klasa Nauczyciel PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Liczba punktów Wynik procentowy Informacje dla ucznia 1 Sprawdź, czy zestaw

Bardziej szczegółowo

w edukacji matematycznej uczniów

w edukacji matematycznej uczniów Zadania Wykaż, udowodnij w edukacji matematycznej uczniów szkół podstawowych i klas gimnazjalnych Zadania pochodzą z materiałów CKE, egzaminów próbnych i zbiorów zadań GWO, Operon, Nowa Era, WSiP Opracowanie

Bardziej szczegółowo

Trójkąty jako figury geometryczne płaskie i ich najważniejsze elementy

Trójkąty jako figury geometryczne płaskie i ich najważniejsze elementy Artykuł pobrano ze strony eioba.pl Trójkąty jako figury geometryczne płaskie i ich najważniejsze elementy Trójkąt jest wielokątem o trzech bokach Suma miar kątów wewnętrznych trójkąta jest równa 180. +

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY MATEMATYKA KLASA 8 DZIAŁ 1. LICZBY I DZIAŁANIA zna znaki używane do zapisu liczb w systemie rzymskim; zna zasady zapisu liczb w systemie rzymskim; umie zapisać

Bardziej szczegółowo

Ćwiczenia z Geometrii I, czerwiec 2006 r.

Ćwiczenia z Geometrii I, czerwiec 2006 r. Waldemar ompe echy przystawania trójkątów 1. unkt leży na przekątnej kwadratu (rys. 1). unkty i R są rzutami prostokątnymi punktu odpowiednio na proste i. Wykazać, że = R. R 2. any jest trójkąt ostrokątny,

Bardziej szczegółowo

Jarosław Wróblewski Matematyka dla Myślących, 2008/09

Jarosław Wróblewski Matematyka dla Myślących, 2008/09 9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (dokończenie).

Bardziej szczegółowo

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel

Bardziej szczegółowo

Matura 2014 z WSiP Arkusz egzaminacyjny z matematyki Poziom podstawowy

Matura 2014 z WSiP Arkusz egzaminacyjny z matematyki Poziom podstawowy Wypełnia uczeń Numer PESEL Kod ucznia Matura 0 z WSiP Arkusz egzaminacyjny z matematyki Poziom podstawowy Informacje dla ucznia. Sprawdź, czy zestaw egzaminacyjny zawiera stron. Ewentualny brak stron lub

Bardziej szczegółowo

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty

Bardziej szczegółowo

V Konkurs Matematyczny Politechniki Białostockiej

V Konkurs Matematyczny Politechniki Białostockiej V Konkurs Matematyczny Politechniki Białostockiej Rozwiązania - klasy drugie 1. Znaleźć wszystkie pary liczb całkowitych (x, y) spełniające nierówności x + 1 + y 4 x + y 4 5 x 4 + y 1 > 4. Ważne jest zauważenie,

Bardziej szczegółowo

Matura próbna 2014 z matematyki-poziom podstawowy

Matura próbna 2014 z matematyki-poziom podstawowy Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE VIII Uczeń na ocenę dopuszczającą: - zna znaki używane do zapisu liczb w systemie rzymskim, - umie zapisać i odczytać liczby naturalne dodatnie w systemie rzymskim

Bardziej szczegółowo

Treści zadań Obozu Naukowego OMG

Treści zadań Obozu Naukowego OMG STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OMG 2015 rok SZCZYRK 2015 Treści zadań Pierwsze zawody indywidualne

Bardziej szczegółowo

LXII Olimpiada Matematyczna

LXII Olimpiada Matematyczna 1 Zadanie 1. LXII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 18 lutego 2011 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych układ równań { (x y)(x 3 +y

Bardziej szczegółowo

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste

Bardziej szczegółowo

Obozowa liga zadaniowa (seria I wskazówki)

Obozowa liga zadaniowa (seria I wskazówki) Obozowa liga zadaniowa (seria I wskazówki) 1. Rozstrzygnij, która liczba jest większa: 9 czy 3 1? 9 < 30 8 10 < 9 10 3 0 < 3 1.. Rozstrzygnij, która liczba jest większa: 81 czy 3 49? 81 > 80 56 10 > 43

Bardziej szczegółowo

Zadanie 9. ( 5 pkt. ) Niech r i R oznaczają odpowiednio długości promieni okręgów wpisanego i opisanego na ośmiokącie foremnym.

Zadanie 9. ( 5 pkt. ) Niech r i R oznaczają odpowiednio długości promieni okręgów wpisanego i opisanego na ośmiokącie foremnym. Międzyszkolne Zawody Matematyczne Klasa I z rozszerzonym programem nauczania matematyki Etap rejonowy 3..005 Czas rozwiązywania zadań - 50 minut. Zadanie. ( pkt. ) Ustal zbiór tych liczb naturalnych dodatnich,

Bardziej szczegółowo

VII POWIATOWY KONKURS MATEMATYCZNY SZKÓŁ GIMNAZJALNYCH W POGONI ZA INDEKSEM ZADANIA PRZYGOTOWAWCZE ROZWIĄZANIA I ODPOWIEDZI. rok szkolny 2016/2017

VII POWIATOWY KONKURS MATEMATYCZNY SZKÓŁ GIMNAZJALNYCH W POGONI ZA INDEKSEM ZADANIA PRZYGOTOWAWCZE ROZWIĄZANIA I ODPOWIEDZI. rok szkolny 2016/2017 1. 30. Tak 3. ----- 4. Równanie nie ma rozwiązania. Lewa strona nie równa się prawej dla żadnej pary liczb, y ponieważ prawa strona jest nieparzysta a prawa parzysta. Należy wykazać parzystości stron równania

Bardziej szczegółowo

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2). 1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum

Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE

WYMAGANIA EDUKACYJNE SZKOŁA PODSTAWOWA W RYCZOWIE WYMAGANIA EDUKACYJNE niezbędne do uzyskania poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z MATEMATYKI w klasie 8 Szkoły Podstawowej str. 1 Wymagania edukacyjne

Bardziej szczegółowo

KONKURS MATEMATYCZNY. Model odpowiedzi i schematy punktowania

KONKURS MATEMATYCZNY. Model odpowiedzi i schematy punktowania KONKURS MATEMATYCZNY dla uczniów gimnazjów oraz oddziałów gimnazjalnych województwa mazowieckiego w roku szkolnym 2018/2019 Model odpowiedzi i schematy punktowania Za każde poprawne i pełne rozwiązanie,

Bardziej szczegółowo

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY Rozwiązania zadań Arkusz maturalny z matematyki nr POZIOM PODSTAWOWY Zadanie (pkt) Sposób I Skoro liczba jest środkiem przedziału, więc odległość punktu x od zapisujemy przy pomocy wartości bezwzględnej.

Bardziej szczegółowo

LXIII Olimpiada Matematyczna

LXIII Olimpiada Matematyczna 1 LXIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2012 r. (pierwszy dzień zawodów) Zadanie 1. Rozstrzygnąć, czy istnieje taka dodatnia liczba wymierna

Bardziej szczegółowo

Zadania, które zaproponowałem na różne konkursy Olimpiada Matematyczna. bc(b 3 + c 3 ) + c4 + a 4. ca(c 3 + a 3 ) 1. c + ca + cab 1 ( 1

Zadania, które zaproponowałem na różne konkursy Olimpiada Matematyczna. bc(b 3 + c 3 ) + c4 + a 4. ca(c 3 + a 3 ) 1. c + ca + cab 1 ( 1 Zadania, które zaproponowałem na różne konkursy Olimpiada Matematyczna. (57-II-3) Liczby dodatnie a, b, c spełniają warunek ab + bc + ca = abc. Dowieść, że a 4 + b 4 ab(a 3 + b 3 ) + b4 + c 4 bc(b 3 +

Bardziej szczegółowo

Zadania otwarte krótkiej odpowiedzi na dowodzenie

Zadania otwarte krótkiej odpowiedzi na dowodzenie Zadania otwarte krótkiej odpowiedzi na dowodzenie Zadanie 1. Na bokach trójkąta równobocznego ABC tak wybrano punkty E, F oraz D, że AE = BF = CD = 1 AB (rysunek obok). a) Udowodnij, że trójkąt EFD jest

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Kod ucznia Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2017/2018 04.01.2018 1. Test konkursowy zawiera 20 zadań. Są to zadania zamknięte i otwarte. Na ich rozwiązanie

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne

Katalog wymagań programowych na poszczególne stopnie szkolne rozpoznaje figury podobne zna własności figur podobnych rozpoznaje trójkąty prostokątne podobne Rozdział 6. Figury podobne zna cechy podobieństwa trójkątów prostokątnych podobnych podaje skalę podobieństwa

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 51. ( pkt) Rozwiąż równanie 3 x = 1. 1 x Zadanie 5. ( pkt) x+ 3y = 5 Rozwiąż układ równań. x y = 3 Zadanie 53. ( pkt) Rozwiąż nierówność x + 6x 7 0. ZNI OTWRTE KRÓTKIEJ OPOWIEZI Zadanie 54. ( pkt)

Bardziej szczegółowo

Kod ucznia: Wodzisław Śl., 11 kwietnia 2018r.

Kod ucznia: Wodzisław Śl., 11 kwietnia 2018r. Kod ucznia: Wodzisław Śl., 11 kwietnia 018r. XVI POWIATOWY KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PONADGIMNAZJALNYCH POD PATRONATEM STAROSTY POWIATU WODZISŁAWSKIEGO ORGANIZOWANY PRZEZ POWIATOWY OŚRODEK

Bardziej szczegółowo