Elementy wspo łczesnej teorii inwersji
|
|
- Lidia Julia Lipińska
- 6 lat temu
- Przeglądów:
Transkrypt
1 Elementy wspo łczesnej teorii inwersji W. Debski,
2 Zagadnienia modelowania i inwersji uogólnienie debski@igf.edu.pl: W2-1 IGF PAN,
3 Zagadnienie odwrotne - pomiary pośrednie zagadnienie odwrotne pomiar pośredni (estymacja parametrów) debski@igf.edu.pl: W2-2 IGF PAN,
4 Zagadnienia odwrotne - estymacja parametrów Modelowanie: Inwersja: m d th = G(m) d obs m est debski@igf.edu.pl: W2-3 IGF PAN,
5 Zagadnienie odwrotne (ogólnie) zagadnienie odwrotne proces wnioskowania W2-4 IGF PAN,
6 Elementy wspo łczesnej teorii inwersji Inwersja - Wnioskowanie debski@igf.edu.pl: W2-5 IGF PAN,
7 Zagadnienia odwrotne - estymacja parametrów Parametry i wielkości mierzalne System fizyczny: Parametery układu: p 1, p 2, p K m = (m 1, m 2, m M ) Przewidywane mierzalne wielkości: d = (d 1, d 2, d N ) Parametry ustalone (znane a priori): m fix = (u 1, u 2, ) debski@igf.edu.pl: W2-6 IGF PAN,
8 Przykład - propagacja fal sejsmicznych System fizyczny: r s, r r, t, v Zagadnienie lokalizacji: m = r s = (r x, r y, r z ) d = t m fix = v, r r Tomografia pr edkościowa: m = v = (v 1, v 2, v M ) d = t, m fix = r r, r s debski@igf.edu.pl: W2-7 IGF PAN,
9 Lokalizacja wstrzasów 21 48' 22 00' 22 12' 22 24' 38 24' NAF RODI FISH ANEM 38 24' UNI EGIO 38 12' CLAU 38 12' DERV 38 00' 21 48' 22 00' 22 12' 22 24' 38 00' W2-8 IGF PAN,
10 Tomografia sejsmiczna v =? debski@igf.edu.pl: W2-9 IGF PAN,
11 Liniowy problem odwrotny m = (m 1, m 2, m M ) M d = (d 1, d 2, d N ) D d(m) = G m d(m) = G(m) G(m o ) + H δm m = m o + δm debski@igf.edu.pl: W2-10 IGF PAN,
12 Liniowy problem odwrotny Podejście naiwne: m est = G 1 d obs Ale dim(g) = N M jest na ogół macierza prostokatn a debski@igf.edu.pl: W2-11 IGF PAN,
13 Liniowy problem odwrotny d = G m / G T G T d = G T G m G T G = G T G + λi m est = (G T G + λi) 1 G T d obs debski@igf.edu.pl: W2-12 IGF PAN,
14 Liniowy problem odwrotny m m apr ; d = G m apr d = G m / d d d = G (m m apr ) G T (d d) = G T G (m m apr ) G T G = G T G + λi m est = m apr +(G T G+λI) 1 G T (d obs G m apr) debski@igf.edu.pl: W2-13 IGF PAN,
15 Liniowy problem odwrotny λ - parametr dowolny = rozwiazanie jest subiektywne m est = m est (λ) 1) λ m est m apr + 1 λ GT (d obs G m apr) 2) λ 0 m est... debski@igf.edu.pl: W2-14 IGF PAN,
16 Liniowy problem odwrotny - subiektywność rozwiazania m est = m apr + (G T G + λi) 1 G T (d obs G m apr) Załóżmy, że G T G jest diagonalna 1) (G T G) ii 0 2) (G T G) ii = 0 m est = (G T G) 1 G T m est nieokreślone (d obs) debski@igf.edu.pl: W2-15 IGF PAN,
17 Liniowy problem odwrotny - ocena rozdzielczości m = (m 1, m 2,... m M ) jak dokładnie potrafimy wyznaczyć m i? czy otrzymane m i, m j sa skorelowane? m est = m apr + (G T G + λi) 1 G T (d obs G m apr) d true = G m true ; d obs = d true m est m apr = R(λ) (m true m apr ) debski@igf.edu.pl: W2-16 IGF PAN,
18 Liniowy problem odwrotny - ocena rozdzielczości R = m est i G T G G T G + λi = R ij m true j Otrzymane parametry m est sa przefitrowanymi obrazami nieznanych, prawdziwych m true. Obecność tego filtru wynika ze skończonej ilości posiadanych danych a wiec i informacji o parametrach m. debski@igf.edu.pl: W2-17 IGF PAN,
19 Liniowy problem odwrotny - ocena rozdzielczości Average R ii γ=0.001 γ=1 γ=10 γ= Cell size [cm] debski@igf.edu.pl: W2-18 IGF PAN,
20 Elementy wspo łczesnej teorii inwersji Liniowy problem odwrotny - ocena rozdzielczos ci debski@igf.edu.pl: W2-19 IGF PAN,
21 Technika algebraiczna - przykład A dwa parametry m 1, m 2 mierzone wielkości: d 1, d 2 d obs = (2, 2) m 1, m 2 =???? d 1 = m 1 + m 2 d 2 = m 1 m 2 (1) debski@igf.edu.pl: W2-20 IGF PAN,
22 Technika algebraiczna - przykład B d = G m d = 2 2 m = m 1 m 2 G = G T G = (G T G) 1G T = 1/2 1/2 1/2 1/2 m 1 = 0; m 2 = 2 debski@igf.edu.pl: W2-21 IGF PAN,
23 Technika algebraiczna - B dwa parametry m 1, m 2 mierzone wielkości: d 1, d 2... d 5 d 1 = m 1 + m 2 d 2 = m 1 m 2 d 3 = m 1 + 2m 2 (2) d obs = (2, 2, 4, 2, 4) d 4 = 2m 1 + m 2 d 5 = m 1 + 2m 2 debski@igf.edu.pl: W2-22 IGF PAN,
24 Technika algebraiczna - B d = G m d 1 d 2 d 3 d 4 d 5 = m 1 m 2 m 1 = 0; m 2 = 2 debski@igf.edu.pl: W2-23 IGF PAN,
25 Technika algebraiczna - C dwa parametry m 1, m 2 mierzona wielkość: d 1 d 1 = m 1 + m 2 d obs = 2 m 1, m 2 =???? debski@igf.edu.pl: W2-24 IGF PAN,
26 Technika algebraiczna - D dwa parametry m 1, m 2 mierzone wielkości: d 1, d 2, d 3 G = d obs = (2, 0, 4) m 1, m 2 =???? debski@igf.edu.pl: W2-25 IGF PAN,
27 Technika algebraiczna - E dwa parametry m 1, m 2 mierzone wielkości: d 1, d 2, d 3 G = d obs = (2, 10, 2) m 1, m 2 =???? debski@igf.edu.pl: W2-26 IGF PAN,
28 Inwersja - technika Back projection data d d=f(m) m model parameter debski@igf.edu.pl: W2-27 IGF PAN,
29 Back projection Projection "BackProjection" SOURCE -1 SOURCE-3 SOURCE-2 DATA W2-28 IGF PAN,
30 Elementy wspo łczesnej teorii inwersji Koniec W2-29 IGF PAN,
Elementy wspo łczesnej teorii inwersji
Elementy wspo łczesnej teorii inwersji W. Debski, 11.12.2014 Liniowy problem odwrotny m est (λ) = m apr + (G T G + λi) 1 G T ( dobs G m apr) +δ debski@igf.edu.pl: W3-1 IGF PAN, 11.12.2014 Metoda algebraiczna
Elementy wspo łczesnej teorii inwersji
Elementy wspo łczesnej teorii inwersji Metoda optymalizacyjna (2) W. Debski, 8.01.2015 Liniowy problem odwrotny m est (λ) = m apr + (G T G + λi) 1 G T ( dobs G m apr) +δ d est d o = + λ I ( G T G + λi
Elementy wspo łczesnej teorii inwersji
Elementy wspo łczesnej teorii inwersji W. Debski, 5.02.2015 Przykład - 1 (Wiek A. Tarantoli???) debski@igf.edu.pl: W6-1 IGF PAN, 5.02.2015 Pomysł na rozwiazanie debski@igf.edu.pl: W6-2 IGF PAN, 5.02.2015
Współczesna technika inwersyjna - dokad zmierzamy? Wojciech Dȩbski
Współczesna technika inwersyjna - dokad zmierzamy? Wojciech Dȩbski 24.5.2 Pomiar bezpośredni IGF, 24.5.2 IGF - Pomiar pośredni IGF, 24.5.2 IGF - 2 Interpretacja matematyczna m m + dm m d + dd d = G(m)
Metody inwersji Bayesowskiej - zaczynamy...
Metody inwersji Bayesowskiej - zaczynamy... W. D ebski debski@igf.edu.pl www.igf.edu.pl/ debski/ Plan wykładu Literatura i materiały pomocnicze Wprowadzenie Zagadnienia modelowania Zagadnienia odwrotne
Inverse problems - Introduction - Probabilistic approach
Inverse problems - Introduction - Probabilistic approach Wojciech Dȩbski Instytut Geofizyki PAN debski@igf.edu.pl Wydział Fizyki UW, 13.10.2004 Wydział Fizyki UW Warszawa, 13.10.2004 (1) Plan of the talk
Lokalizacja zjawisk sejsmicznych w kopalni - problemy. Lokalizacja - problemy. brak czasu w ognisku. Lokalizacja względna. niedokładne wyznaczanie
Lokalizacja zjawisk sejsmicznych w kopalni - problemy Lokalizacja - problemy niedokładne wyznaczanie brak czasu w ognisku głębokości Absolutna lokalizacja pojedynczych zjawisk Lokalizacja względna wyznaczamy
Metody inwersji Bayesowskiej -L7- IGF PAN, 21.IV.2005
Metody inwersji Bayesowskiej -L7- Podejście optymalizacyjne i probabilistyczne podobieństwa i różnice (C) G(m) d obs + λ m m apr = min d obs m apr d th = d true + ɛ obs = m true + ɛ apr = G(m) + ɛ th G(m)
Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż
Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń
Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż
Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć
Wyk lad 4 Macierz odwrotna i twierdzenie Cramera
Wyk lad 4 Macierz odwrotna i twierdzenie Cramera 1 Odwracanie macierzy I n jest elementem neutralnym mnożenia macierzy w zbiorze M n (R) tzn A I n I n A A dla dowolnej macierzy A M n (R) Ponadto z twierdzenia
ELEMENTY GEOFIZYKI. Seismologia W. D. ebski
ELEMENTY GEOFIZYKI Seismologia W. D ebski debski@igf.edu.pl Plan wykładu z geofizyki - (Seismologia) 1. Geofizyka litosfery (Sejsmologia): trz esienia Ziemi sejsmologia obserwacyjna fale sejsmiczne fizyka
5. WNIOSKOWANIE PSYCHOMETRYCZNE
5. WNIOSKOWANIE PSYCHOMETRYCZNE Model klasyczny Gulliksena Wynik otrzymany i prawdziwy Błąd pomiaru Rzetelność pomiaru testem Standardowy błąd pomiaru Błąd estymacji wyniku prawdziwego Teoria Odpowiadania
Rozkłady wielu zmiennych
Rozkłady wielu zmiennych Uogólnienie pojęć na rozkład wielu zmiennych Dystrybuanta, gęstość prawdopodobieństwa, rozkład brzegowy, wartości średnie i odchylenia standardowe, momenty Notacja macierzowa Macierz
6. Identyfikacja wielowymiarowych systemów statycznych metodanajmniejszychkwadratów
6. Identyfikacja wielowymiarowych systemów statycznych metodanajmniejszychkwadratów . Przedmiot identyfikacji System () x (2) x * a z y ( s ) x y = F (x,z)=f(x,z,a ),gdziex = F () znane, a nieznane x ()
Własności wyznacznika
Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy
Algebra liniowa II. Lista 1. 1 u w 0 1 v 0 0 1
Algebra liniowa II Lista Zadanie Udowodnić, że jeśli B b ij jest macierzą górnotrójkątną o rozmiarze m m, to jej wyznacznik jest równy iloczynowi elementów leżących na głównej przekątnej: det B b b b mm
Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16
Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego
Wykład5,str.1. Maszyny ze stosem ... 1,0 λ r. λ,z λ
Wykład5,str1 p 0,Z 0Z 0,0 00 q λ,z λ r Wykład5,str1 Słowo na wejściu: 0011 część nieprzeczytana Z p 0,Z 0Z 0,0 00 q λ,z λ r Wykład5,str1 Słowo na wejściu: 0011 część nieprzeczytana 0 Z p 0,Z 0Z 0,0 00
Wektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń
Postać Jordana macierzy
Rozdział 8 Postać Jordana macierzy Niech F = R lub F = C Macierz J r λ) F r r postaci λ 1 0 0 0 λ 1 J r λ) = 0 λ 1 0 0 λ gdzie λ F nazywamy klatką Jordana stopnia r Oczywiście J 1 λ) = [λ Definicja 81
Wektory i wartości własne
Treść wykładu Podprzestrzenie niezmiennicze... Twierdzenie Cayley Hamiltona Podprzestrzenie niezmiennicze Definicja Niech f : V V będzie przekształceniem liniowym. Podprzestrzeń W V nazywamy niezmienniczą
Zaawansowane metody numeryczne
Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany
Fizyka źródła sejsmicznego cz
Fizyka źródła sejsmicznego cz eść I Wojciech Dȩbski IGF PAN Warszawa 8.05.2017 Sejsmologia Źródło sejsmiczne Sejsmologia rozważa dwie klasy problemów: Struktura i budowa Ziemi w różnych skalach: globalnej
Zestaw 12- Macierz odwrotna, układy równań liniowych
Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami Załóżmy, że macierz jest macierzą kwadratową stopnia n. Mówimy, że macierz tego samego wymiaru jest macierzą odwrotną
Metody oceny stanu zagrożenia tąpaniami wyrobisk górniczych w kopalniach węgla kamiennego. Praca zbiorowa pod redakcją Józefa Kabiesza
Metody oceny stanu zagrożenia tąpaniami wyrobisk górniczych w kopalniach węgla kamiennego Praca zbiorowa pod redakcją Józefa Kabiesza GŁÓWNY INSTYTUT GÓRNICTWA Katowice 2010 Spis treści 1. Wprowadzenie
Wykład 14. Elementy algebry macierzy
Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,
Równania różniczkowe liniowe wyższych rzędów o stałych współcz
Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym
dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;
Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia
Ekonometria. Przepływy międzygałęziowe. Model Leontiefa. Jakub Mućk. Katedra Ekonomii Ilościowej. Przepływy międzygałęziowe Model Leontiefa
Ekonometria Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 10 1 / 22 Outline 1 2 Jakub Mućk Ekonometria Ćwiczenia 10 2 / 22 Oznaczenia i definicje Numeracja gałęzi: i, j = 1, 2,,
POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH
POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko
Maciej DWORNIK, Andrzej LEŚNIAK Akademia Górniczo Hutnicza, Wydział Geologii, Geofizyki i Ochrony Środowiska, Kraków
Materiały Warsztatów str. 197 209 Maciej DWORNIK, Andrzej LEŚNIAK Akademia Górniczo Hutnicza, Wydział Geologii, Geofizyki i Ochrony Środowiska, Kraków Porównanie efektywności podstawowych technik inwersji
Przekształcanie równań stanu do postaci kanonicznej diagonalnej
Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przygotowanie: Dariusz Pazderski Liniowe przekształcenie równania stanu Rozważmy liniowe równanie stanu i równanie wyjścia układu niesingularnego
Modele DSGE. Jerzy Mycielski. Maj Jerzy Mycielski () Modele DSGE Maj / 11
Modele DSGE Jerzy Mycielski Maj 2008 Jerzy Mycielski () Modele DSGE Maj 2008 1 / 11 Modele DSGE DSGE - Dynamiczne, stochastyczne modele równowagi ogólnej (Dynamic Stochastic General Equilibrium Model)
MACIERZE I WYZNACZNIKI
Wykłady z matematyki inżynierskiej IMiF UTP 07 MACIERZ DEFINICJA. Macierza o m wierszach i n kolumnach nazywamy przyporza dkowanie każdej uporza dkowanej parze liczb naturalnych (i, j), gdzie 1 i m, 1
WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI
WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskiego 8, 04-703 Warszawa tel. (0)
CZĘŚĆ I. PRZYGOTOWANIE PROCESU BADAŃ MARKETINGOWYCH. 1.2.1. Faza identyfikacji problemów decyzyjnych lub okoliczności sprzyjających
Badania marketingowe. Podstawy metodyczne Autor: Stanisław Kaczmarczyk Wstęp CZĘŚĆ I. PRZYGOTOWANIE PROCESU BADAŃ MARKETINGOWYCH Rozdział 1. Badania marketingowe a zarządzanie 1.1. Rozwój praktyki i teorii
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe. P. F. Góra
Wstęp do metod numerycznych Eliminacja Gaussa Równania macierzowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Co można zrobić z układem równań... tak, aby jego rozwiazania się nie zmieniły? Rozważam
Badania marketingowe. Podstawy metodyczne Stanisław Kaczmarczyk
Badania marketingowe. Podstawy metodyczne Stanisław Kaczmarczyk Badania marketingowe stanowią jeden z najważniejszych elementów działań marketingowych w każdym przedsiębiorstwie. Dostarczają decydentom
KARTA MODUŁU / KARTA PRZEDMIOTU
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Cyfrowe przetwarzanie sygnałów pomiarowych_e2s
1 Warunkowe wartości oczekiwane
Warunkowe wartości oczekiwane W tej serii zadań rozwiążemy różne zadania związane z problemem warunkowania.. (Eg 48/) Załóżmy, że X, X, X 3, X 4 są niezależnymi zmiennymi losowymi o jednakowym rozkładzie
Uogólniona Metoda Momentów
Uogólniona Metoda Momentów Momenty z próby daż a do momentów teoretycznych (Prawo Wielkich Liczb) plim 1 n y i = E (y) n i=1 Klasyczna Metoda Momentów (M M) polega na szacowaniu momentów teoretycznych
Komputerowa analiza zagadnień różniczkowych 3. Numeryczne zagadnienie własne
Komputerowa analiza zagadnień różniczkowych 3. Numeryczne zagadnienie własne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Wektory i wartości własne definicje Niech A C N N. Jeżeli
LABORATORIUM Z FIZYKI
LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)
SPIS TREŚCI. Od Autora. Wykaz ważniejszych oznaczeń. 1. Wstęp 1_. 2. Fale i układy akustyczne Drgania układów mechanicznych 49. Literatura..
SPIS TREŚCI Od Autora XI Wykaz ważniejszych oznaczeń Xlii 1. Wstęp 1_ Literatura.. 9 2. Fale i układy akustyczne 11 2.1. Fale akustyczne 11 2.2. Energia fali i natężenie dźwięku 14 2.3. Fala kulista i
Układy równań liniowych, macierze, Google
Układ równań linowych { x+2y = 6, 3x y = 4 (0) Spotkania z Matematyka Układy równań liniowych, macierze, Google Aleksander Denisiuk denisjuk@matman.uwm.edu.pl Uniwersytet Warmińsko-Mazurski w Olsztynie
Zastosowania wyznaczników
Zastosowania wyznaczników Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 7.wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa, listopad 2012 1 / 17
Prawdopodobieństwo i statystyka
Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.
Formy kwadratowe. Rozdział 10
Rozdział 10 Formy kwadratowe Rozważmy rzeczywistą macierz symetryczną A R n n Definicja 101 Funkcję h : R n R postaci h (x) = x T Ax (101) nazywamy formą kwadratową Macierz symetryczną A występującą w
Węglowego. Title: Pasywna tomografia sejsmiczna obszaru Górnośląskiego Zagłębia. Author: Wojciech Dębski, Łukasz Rudziński
Title: Pasywna tomografia sejsmiczna obszaru Górnośląskiego Zagłębia Węglowego Author: Wojciech Dębski, Łukasz Rudziński Citation style: Dębski Wojciech, Rudziński Łukasz. (21). Pasywna tomografia sejsmiczna
Analiza szeregów czasowych: 5. Liniowe modele stochastyczne
Analiza szeregów czasowych: 5. Liniowe modele stochastyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2006/07 Dwa rodzaje modelowania 1. Modelowanie z pierwszych zasad. Znamy prawa
Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE. Joanna Sawicka
Szacowanie optymalnego systemu Bonus-Malus przy pomocy Pseudo-MLE Joanna Sawicka Plan prezentacji Model Poissona-Gamma ze składnikiem regresyjnym Konstrukcja optymalnego systemu Bonus- Malus Estymacja
D1. Algebra macierzy. D1.1. Definicje
D1. Algebra macierzy W niniejszym dodatku podamy podstawowe operacje macierzowe oraz niektóre techniki algebry macierzowej nie dbając szczególnie o formalizm matematyczny. Zakres jest wystarczający dla
Zaawansowane metody numeryczne
Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz
Analityczne metody detekcji uszkodzeń
Instytut Sterowania i Systemów Informatycznych Universytet Zielonogórski Wykład 5 Model procesu Rozważmy czasowo-dyskretny model liniowy gdzie: k dyskretny czas, x(k) R n wektor stanu, x(k + 1) = Ax(k)
Macierze. Układy równań.
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Macierze Układy równań 1 Macierze Jeżeli każdej uporządkowanej parze liczb naturalnych (i, j), 1 i m, 1 j n jest przyporządkowana dokładnie
Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems)
Komputerowa analiza zagadnień różniczkowych 10. Dwupunktowe problemy brzegowe (BVP, Boundary Value Problems) P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Wprowadzenie Rozważmy
Badania marketingowe : podstawy metodyczne / Stanisław Kaczmarczyk. - wyd. 4. Warszawa, 2011
Badania marketingowe : podstawy metodyczne / Stanisław Kaczmarczyk. - wyd. 4. Warszawa, 2011 Spis treści Wstęp 13 CZĘŚĆ I. Przygotowanie procesu badań marketingowych 17 Rozdział 1. Badania marketingowe
Wprowadzenie do teorii ekonometrii. Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe
Wprowadzenie do teorii ekonometrii Wykład 1 Warunkowa wartość oczekiwana i odwzorowanie liniowe Zajęcia Wykład Laboratorium komputerowe 2 Zaliczenie EGZAMIN (50%) Na egzaminie obowiązują wszystkie informacje
Miary splątania kwantowego
kwantowego Michał Kotowski michal.kotowski1@gmail.com K MISMaP, Uniwersystet Warszawski Studenckie Koło Fizyki UW (SKFiz UW) 24 kwietnia 2010 kwantowego Spis treści 1 2 Stany czyste i mieszane Matematyczny
Statystyka i eksploracja danych
Wykład XII: Zagadnienia redukcji wymiaru danych 12 maja 2014 Definicja Niech X będzie zmienną losową o skończonym drugim momencie. Standaryzacją zmiennej X nazywamy zmienną losową Z = X EX Var (X ). Definicja
Układy równań i równania wyższych rzędów
Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska
WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 13 i 14 - Statystyka bayesowska Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 13 i 14 1 / 15 MODEL BAYESOWSKI, przykład wstępny Statystyka
Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe
Komputerowa analiza zagadnień różniczkowych 3. Metody Eulera, metody punktu środkowego i metody trapezowe P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2011 Problem Cauchy ego dy dx = f(x, y) (1) y(x
Wykład 13 Mechanika Kwantowa
Wykład 13 Mechanika Kwantowa Maciej J. Mrowiński mrow@if.pw.edu.pl Wydział Fizyki Politechnika Warszawska 25 maja 2016 Maciej J. Mrowiński (IF PW) Wykład 13 25 maja 2016 1 / 21 Wprowadzenie Sprawy organizacyjne
x x 1. Przedmiot identyfikacji System x (1) x (2) : x (s) a 1 a 2 : a s mierzone, a = zestaw współczynników konkretyzujacych F ()
. Przedmiot identyfikacji System () x (2) x * a z y ( s ) x y = F (x,z)=f(x,z,a ),gdziex = F () znane, a nieznane x () x (2) x (s) mierzone, a = a a 2 a s zestaw współczynników konkretyzujacych F () informacja
METODY STATYSTYCZNE W BIOLOGII
METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne
Podstawy opracowania wyników pomiarów z elementami analizy niepewności statystycznych
Podstawy opracowania wyników pomiarów z elementami analizy niepewności statystycznych Dr inż. Marcin Zieliński I Pracownia Fizyczna dla Biotechnologii, wtorek 8:00-10:45 Konsultacje Zakład Fizyki Jądrowej
Agata Boratyńska Statystyka aktuarialna... 1
Agata Boratyńska Statystyka aktuarialna... 1 ZADANIA NA ĆWICZENIA Z TEORII WIAROGODNOŚCI Zad. 1. Niech X 1, X 2,..., X n będą niezależnymi zmiennymi losowymi z rozkładu wykładniczego o wartości oczekiwanej
Wyk lad 9 Baza i wymiar przestrzeni liniowej
Wyk lad 9 Baza i wymiar liniowej Baza liniowej Niech V bedzie nad cia lem K Powiemy, że zbiór wektorów {α,, α n } jest baza V, jeżeli wektory α,, α n sa liniowo niezależne oraz generuja V tzn V = L(α,,
Przekształcenia liniowe
Algebra Przekształcenia liniowe Aleksandr Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych zamiejscowy ośrodek dydaktyczny w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra
Weryfikacja hipotez statystycznych
Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta
METODY STATYSTYCZNE W BIOLOGII
METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne
Zagadnienia na egzamin poprawkowy z matematyki w klasie III zsz. 5. Statystyka-średnia arytmetyczna, średnia ważona, mediana, dominanata.
Zagadnienia na egzamin poprawkowy z matematyki w klasie III zsz 1. Wzajemne położenia prostych, płaszczyzn w przestrzeni. 2. Graniastosłupy- podział, pole powierzchni i objętość. 3. Ostrosłupy- podział,
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne
Zaawansowane metody numeryczne Komputerowa analiza zagadnień różniczkowych 4. Równania różniczkowe zwyczajne podstawy teoretyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Wstęp
Praca dyplomowa magisterska
Praca dyplomowa magisterska Implementacja algorytmów filtracji adaptacyjnej o strukturze transwersalnej na platformie CUDA Dyplomant: Jakub Kołakowski Opiekun pracy: dr inż. Michał Meller Plan prezentacji
Natalia Neherbecka. 11 czerwca 2010
Natalia Neherbecka 11 czerwca 2010 1 1. Konsekwencje heteroskedastyczności i autokorelacji 2. Uogólniona MNK 3. Stosowalna Uogólniona MNK 4. Odporne macierze wariancji i kowariancji b 2 1. Konsekwencje
WYKŁAD 2. Problem regresji - modele liniowe
Wrocław University of Technology WYKŁAD 2 Problem regresji - modele liniowe Maciej Zięba Politechnika Wrocławska Regresja Regresja (ang. Regression): Dysponujemy obserwacjami z odpowiadającymi im wartościami
Analiza szeregów czasowych: 7. Liniowe modele stochastyczne
Analiza szeregów czasowych: 7. Liniowe modele stochastyczne P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2005/06 Liniowe modele stochastyczne Niech {y n } N n=1 będzie pewnym ciagiem danych
WEKTORY I WARTOŚCI WŁASNE MACIERZY. = λ c (*) problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej
WEKTORY I WARTOŚCI WŁASNE MACIERZY Ac λ c (*) ( A λi) c nietrywialne rozwiązanie gdy det A λi problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej A - macierzowa
O pewnych związkach teorii modeli z teorią reprezentacji
O pewnych związkach teorii modeli z teorią reprezentacji na podstawie referatu Stanisława Kasjana 5 i 12 grudnia 2000 roku 1. Elementy teorii modeli Będziemy rozważać język L składający się z przeliczalnej
REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO. Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój
1 REGRESJA LINIOWA Z UOGÓLNIONĄ MACIERZĄ KOWARIANCJI SKŁADNIKA LOSOWEGO Aleksander Nosarzewski Ekonometria bayesowska, prowadzący: dr Andrzej Torój 2 DOTYCHCZASOWE MODELE Regresja liniowa o postaci: y
Metoda największej wiarygodności
Rozdział Metoda największej wiarygodności Ogólnie w procesie estymacji na podstawie prób x i (każde x i może być wektorem) wyznaczamy parametr λ (w ogólnym przypadku również wektor) opisujący domniemany
Wyk lad 5 W lasności wyznaczników. Macierz odwrotna
Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy
10. Metody obliczeniowe najmniejszych kwadratów
10. Metody obliczeniowe najmniejszych kwadratów 1. Dowód twierdzenia o faktoryzacji macierzy Twierdzenie 1 Każdadodatniookreślon aisymetryczn amacierzm można przedstawíc wpostaci M = PP T gdzie P jest
Diagonalizacja macierzy i jej zastosowania
Diagonalizacja macierzy i jej zastosowania Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 9. wykład z algebry liniowej Warszawa, grudzień 2011 Mirosław Sobolewski (UW) Warszawa, grudzień
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE I GIMNAZJUM
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE I GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który
w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak
Równania różniczkowe czastkowe w teorii funkcji. Dwa s lynne problemy. Micha l Jasiczak Horyzonty 2014 Podstawowy obiekt wyk ladu: funkcje holomorficzne wielu zmiennych Temat: dwa problemy, których znane
teoria i przykłady zastosowań
: teoria i przykłady zastosowań Katedra Sterowania i Pomiarów Zachodniopomorski Uniwersytet Technologiczny w Szczecinie e-mail: emirsaj@zut.edu.pl Zielona Góra, 22 listopada 21 Spis treści 1 O jakie równanie
UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne
UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a + a +... + ann b a + a +... + ann b... an + an+... + annn bn który
O ŚREDNIEJ STATYSTYCZNEJ
Od średniej w modelu gaussowskim do kwantyli w podstawowym modelu nieparametrycznym IMPAN 1.X.2009 Rozszerzona wersja wykładu: O ŚREDNIEJ STATYSTYCZNEJ Ryszard Zieliński XII Międzynarodowe Warsztaty dla
ELEMENTY GEOFIZYKI. Atmosfera W. D. ebski
ELEMENTY GEOFIZYKI Atmosfera W. D ebski debski@igf.edu.pl Plan wykładu z geofizyki - (Atmosfera) 1. Fizyka atmosfery: struktura atmosfery skład chemiczny atmosfery meteorologia - chmury atmosfera a kosmos
Ekonometria. Metodologia budowy modelu. Jerzy Mycielski. Luty, 2011 WNE, UW. Jerzy Mycielski (WNE, UW) Ekonometria Luty, / 18
Ekonometria Metodologia budowy modelu Jerzy Mycielski WNE, UW Luty, 2011 Jerzy Mycielski (WNE, UW) Ekonometria Luty, 2011 1 / 18 Sprawy organizacyjne Dyżur: środa godz. 14-15 w sali 302. Strona internetowa
2 Rodziny zbiorów. 2.1 Algebry i σ - algebry zbiorów. M. Beśka, Wstęp do teorii miary, rozdz. 2 11
M. Beśka, Wstęp do teorii miary, rozdz. 2 11 2 Rodziny zbiorów 2.1 Algebry i σ - algebry zbiorów Niech X będzie niepustym zbiorem. Rodzinę indeksowaną zbiorów {A i } i I 2 X nazywamy rozbiciem zbioru X