Wykład5,str.1. Maszyny ze stosem ... 1,0 λ r. λ,z λ
|
|
- Edyta Laskowska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Wykład5,str1 p 0,Z 0Z 0,0 00 q λ,z λ r
2 Wykład5,str1 Słowo na wejściu: 0011 część nieprzeczytana Z p 0,Z 0Z 0,0 00 q λ,z λ r
3 Wykład5,str1 Słowo na wejściu: 0011 część nieprzeczytana 0 Z p 0,Z 0Z 0,0 00 q λ,z λ r
4 Wykład5,str1 Słowo na wejściu: 0011 część nieprzeczytana 0 0 Z p 0,Z 0Z 0,0 00 q λ,z λ r
5 Wykład5,str1 Słowo na wejściu: 0011 część nieprzeczytana 0 Z p 0,Z 0Z 0,0 00 q λ,z λ r
6 Wykład5,str1 Słowo na wejściu: 0011 część nieprzeczytana Z p 0,Z 0Z 0,0 00 q λ,z λ r
7 Wykład5,str1 Słowo na wejściu: 0011 część nieprzeczytana p 0,Z 0Z 0,0 00 q λ,z λ r
8 Wykład5,str1 Słowo na wejściu: 0011 część nieprzeczytana p 0,Z 0Z 0,0 00 q λ,z λ r Kiedy wędrówka po maszynie się zatnie, czyli nie ma już żadnej możliwości pójścia dalej, sprawdzamy, czy słowo zostało zaakceptowane; tzn, czy spełnione są następujące warunki:
9 Wykład5,str1 Słowo na wejściu: 0011 część nieprzeczytana p 0,Z 0Z 0,0 00 q λ,z λ r Kiedy wędrówka po maszynie się zatnie, czyli nie ma już żadnej możliwości pójścia dalej, sprawdzamy, czy słowo zostało zaakceptowane; tzn, czy spełnione są następujące warunki: na wejściu jest słowo puste(wszystko już przeczytane)
10 Wykład5,str1 Słowo na wejściu: 0011 część nieprzeczytana p 0,Z 0Z 0,0 00 q λ,z λ r Kiedy wędrówka po maszynie się zatnie, czyli nie ma już żadnej możliwości pójścia dalej, sprawdzamy, czy słowo zostało zaakceptowane; tzn, czy spełnione są następujące warunki: na wejściu jest słowo puste(wszystko już przeczytane); nastosiejestsłowopuste
11 Wykład5,str1 Słowo na wejściu: 0011 część nieprzeczytana p 0,Z 0Z 0,0 00 q λ,z λ r Kiedy wędrówka po maszynie się zatnie, czyli nie ma już żadnej możliwości pójścia dalej, sprawdzamy, czy słowo zostało zaakceptowane; tzn, czy spełnione są następujące warunki: na wejściu jest słowo puste(wszystko już przeczytane); nastosiejestsłowopuste; sprawdzanie zakończyło się w stanie końcowym(akceptującym)
12 Wykład5,str2 Język akceptowany: { 0 n 1 n n 1 } p 0,Z 0Z 0,0 00 q λ,z λ r
13 Wykład5,str2 Język akceptowany: { 0 n 1 n n 1 } p 0,Z 0Z 0,0 00 q λ,z λ r stan wejście 0 1 λ stos Z 0 Z 0 Z 0 p q, 0Z q q, 00 r, λ r r,λ p,λ
14 Wykład5,str3 DEFINICJA: Maszyna ze stosem M M
15 Wykład5,str3 DEFINICJA: Maszyna ze stosem M M skończonyzbiórqstanów
16 Wykład5,str3 DEFINICJA: Maszyna ze stosem M M skończonyzbiórqstanów, skończony zbiór Σ liter wejściowych
17 Wykład5,str3 DEFINICJA: Maszyna ze stosem M M skończonyzbiórqstanów, skończony zbiór Σ liter wejściowych, skończony zbiór Γ symboli stosowych
18 Wykład5,str3 DEFINICJA: Maszyna ze stosem M M skończonyzbiórqstanów, skończony zbiór Σ liter wejściowych, skończony zbiór Γ symboli stosowych, Z Γ wyróżnionysymbolstosowyoznaczającydnostosu
19 Wykład5,str3 DEFINICJA: Maszyna ze stosem M M skończonyzbiórqstanów, skończony zbiór Σ liter wejściowych, skończony zbiór Γ symboli stosowych, Z Γ wyróżnionysymbolstosowyoznaczającydnostosu, częściowafunkcjaprzejściaδ:q (Σ {λ}) Γ Q Γ (częściowa tzn może być nieokreślona dla niektórych argumentów)
20 Wykład5,str3 DEFINICJA: Maszyna ze stosem M M skończonyzbiórqstanów, skończony zbiór Σ liter wejściowych, skończony zbiór Γ symboli stosowych, Z Γ wyróżnionysymbolstosowyoznaczającydnostosu, częściowafunkcjaprzejściaδ:q (Σ {λ}) Γ Q Γ (częściowa tzn może być nieokreślona dla niektórych argumentów), wyróżnionystanpoczątkowyq 0 Q
21 Wykład5,str3 DEFINICJA: Maszyna ze stosem M M skończonyzbiórqstanów, skończony zbiór Σ liter wejściowych, skończony zbiór Γ symboli stosowych, Z Γ wyróżnionysymbolstosowyoznaczającydnostosu, częściowafunkcjaprzejściaδ:q (Σ {λ}) Γ Q Γ (częściowa tzn może być nieokreślona dla niektórych argumentów), wyróżnionystanpoczątkowyq 0 Q, wyróżniony zbiór stanów końcowych(akceptujących) F Q
22 Wykład5,str3 DEFINICJA: Maszyna ze stosem M M skończonyzbiórqstanów, skończony zbiór Σ liter wejściowych, skończony zbiór Γ symboli stosowych, Z Γ wyróżnionysymbolstosowyoznaczającydnostosu, częściowafunkcjaprzejściaδ:q (Σ {λ}) Γ Q Γ (częściowa tzn może być nieokreślona dla niektórych argumentów), wyróżnionystanpoczątkowyq 0 Q, wyróżniony zbiór stanów końcowych(akceptujących) F Q DEFINICJA: Język akceptowany przez M { M L(M) def = w Σ δ q0,w,z = q,λ,λ dlapewnegoq F } gdzieδ jestuogólnionąfunkcjąprzejścia
23 a języki bezkontekstowe Wykład5,str4 TWIERDZENIE: MJęzyk akceptowany przez dowolną maszynę stosową jest bezkontekstowy
24 a języki bezkontekstowe Wykład5,str4 TWIERDZENIE: MJęzyk akceptowany przez dowolną maszynę stosową jest bezkontekstowy Uwaga: Nie każdy język bezkontekstowy jest akceptowany przez jakąś maszynę stosową; ale każdy jest akceptowany przez jakąś niedeterministyczną maszynę stosową(nierozpatrywane na tym wykładzie)
25 a języki bezkontekstowe Wykład5,str4 TWIERDZENIE: MJęzyk akceptowany przez dowolną maszynę stosową jest bezkontekstowy Uwaga: Nie każdy język bezkontekstowy jest akceptowany przez jakąś maszynę stosową; ale każdy jest akceptowany przez jakąś niedeterministyczną maszynę stosową(nierozpatrywane na tym wykładzie) Prawie każdy praktyczny język bezkontekstowy jest akceptowany przez jakąś maszynę stosową, co umożliwia kompilowanie programów komputerowych
26 Gramatyki, języki, maszyny Wykład5,str5
27 Gramatyki, języki, maszyny Wykład5,str5 gramatyki prawoliniowe bezkontekstowe języki regularne bezkontekstowe akceptory automaty maszynyzestosem
28 Gramatyki, języki, maszyny Wykład5,str5 gramatyki prawoliniowe bezkontekstowe języki regularne bezkontekstowe akceptory automaty maszynyzestosem
29 Gramatyki, języki, maszyny Wykład5,str5 gramatyki prawoliniowe bezkontekstowe języki regularne bezkontekstowe akceptory automaty maszynyzestosem
Automat ze stosem. Języki formalne i automaty. Dr inż. Janusz Majewski Katedra Informatyki
Automat ze stosem Języki formalne i automaty Dr inż. Janusz Majewski Katedra Informatyki Automat ze stosem (1) dno stosu Stos wierzchołek stosu Wejście # B B A B A B A B a b b a b a b $ q i Automat ze
Języki formalne i automaty Ćwiczenia 9
Języki formalne i automaty Ćwiczenia 9 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Maszyna Mealy'ego... 2 Maszyna Moore'a... 2 Automat ze stosem... 3 Konwersja gramatyki bezkontekstowej
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Automat ze stosem Automat ze stosem to szóstka
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 01 Modele obliczeń Jarosław Miszczak IITiS PAN Gliwice 05/10/2016 1 / 33 1 2 3 4 5 6 2 / 33 Co to znaczy obliczać? Co to znaczy obliczać? Deterministyczna maszyna Turinga
Języki, automaty i obliczenia
Języki, automaty i obliczenia Wykład 10: Maszyny Turinga Sławomir Lasota Uniwersytet Warszawski 29 kwietnia 2015 Plan Maszyny Turinga (Niedeterministyczna) maszyna Turinga M = (A, Q, q 0, F, T, B, δ) A
Metodologie programowania
Co kształtuje języki programowania? Wykład2,str.1 Metodologie programowania Koszty obliczeń: 1980 1960:sprzętdrogi,a wysiłek programistów niewielki 1970: sprzęt coraz tańszy, a programowane problemy coraz
Języki, automaty i obliczenia
Języki, automaty i obliczenia Wykład 12: Gramatyki i inne modele równoważne maszynom Turinga. Wstęp do złożoności obliczeniowej Sławomir Lasota Uniwersytet Warszawski 20 maja 2015 Plan 1 Gramatyki 2 Języki
Hierarchia Chomsky ego
Hierarchia Chomsky ego Gramatyki nieograniczone Def. Gramatyką nieograniczoną (albo typu 0) nazywamy uporządkowaną czwórkę G= gdzie: % Σ - skończony alfabet symboli końcowych (alfabet, nad którym
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 01 Od maszyn Turinga do automatów komórkowych Jarosław Miszczak IITiS PAN Gliwice 03/03/2016 1 / 16 1 2 3 Krótka historia Znaczenie 2 / 16 Czego dowiedzieliśmy się
Hierarchia Chomsky ego Maszyna Turinga
Hierarchia Chomsky ego Maszyna Turinga Języki formalne i automaty Dr inż. Janusz Majewski Katedra Informatyki Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną gdzie: G = V skończony zbiór
Wyrażenie nawiasowe. Wyrażenie puste jest poprawnym wyrażeniem nawiasowym.
Wyrażenie nawiasowe Wyrażeniem nawiasowym nazywamy dowolny skończony ciąg nawiasów. Każdemu nawiasowi otwierającemu odpowiada dokładnie jeden nawias zamykający. Poprawne wyrażenie nawiasowe definiujemy
Jaki język zrozumie automat?
Jaki język zrozumie automat? Wojciech Dzik Instytut Matematyki Uniwersytet Śląski Katowice wojciech.dzik@us.edu.pl 7. Forum Matematyków Polskich, 12-17 września 2016, Olsztyn Prosty Automat do kawy Przemawiamy
Języki, automaty i obliczenia
Języki, automaty i obliczenia Wykład 11: Obliczalność i nieobliczalność Sławomir Lasota Uniwersytet Warszawski 6 maja 2015 Plan 1 Problemy częściowo rozstrzygalne 2 Problemy rozstrzygalne 3 Funkcje (częściowo)
Imię, nazwisko, nr indeksu
Imię, nazwisko, nr indeksu (kod) (9 punktów) Wybierz 9 z poniższych pytań i wybierz odpowiedź tak/nie (bez uzasadnienia). Za prawidłowe odpowiedzi dajemy +1 punkt, za złe -1 punkt. Punkty policzymy za
Języki formalne i automaty Ćwiczenia 7
Języki formalne i automaty Ćwiczenia 7 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Automaty... 2 Cechy automatów... 4 Łączenie automatów... 4 Konwersja automatu do wyrażenia
Klasyczne i kwantowe podejście do teorii automatów i języków formalnych p.1/33
Klasyczne i kwantowe podejście do teorii automatów i języków formalnych mgr inż. Olga Siedlecka olga.siedlecka@icis.pcz.pl Zakład Informatyki Stosowanej i Inżynierii Oprogramowania Instytut Informatyki
JĘZYKI FORMALNE I METODY KOMPILACJI
Stefan Sokołowski JĘZYKI FORMALNE I METODY KOMPILACJI Inst Informatyki Stosowanej, PWSZ Elbląg, 2018/2019 JĘZYKI FORMALNE reguły gry Wykład1,str1 Zasadnicze informacje: http://iispwszelblagpl/ stefan/dydaktyka/jezform
Definiowanie języka przez wyrażenie regularne(wr)
Wykład3,str1 Definiowanie języka przez wyrażenie regularne(wr) DEFINICJA: (wyrażenia regularne) M(specjalneznakinienależącedoalfabetu:{,},, ) literyalfabetusąwr złożeniawrsąwr: jeśliw 1 iw 2 sąwr,to{w
Zadanie 1. (6 punktów) Słowo w nazwiemy anagramem słowa v jeśli w można otrzymać z v poprzez zamianę kolejności liter. Niech
Zadanie 1. (6 punktów) Słowo w nazwiemy anagramem słowa v jeśli w można otrzymać z v poprzez zamianę kolejności liter. Niech anagram(l) = {w : w jest anagaramem v dla pewnego v L}. (a) Czy jeśli L jest
JĘZYKIFORMALNE IMETODYKOMPILACJI
Stefan Sokołowski JĘZYKIFORMALNE IMETODYKOMPILACJI Inst. Informatyki Stosowanej, PWSZ Elbląg, 2009/2010 JĘZYKI FORMALNE reguły gry Wykład1,2X2009,str.1 Zasadnicze informacje: http://iis.pwsz.elblag.pl/
KATEDRA INFORMATYKI TECHNICZNEJ. Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych. ćwiczenie 204
Opracował: prof. dr hab. inż. Jan Kazimierczak KATEDA INFOMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie 204 Temat: Hardware'owa implementacja automatu skończonego pełniącego
Zadanie 1. Czy prawdziwa jest następująca implikacja? Jeśli L A jest językiem regularnym, to regularnym językiem jest też. A = (A, Q, q I, F, δ)
Zadanie 1. Czy prawdziwa jest następująca implikacja? Jeśli L A jest językiem regularnym, to regularnym językiem jest też L = {vw : vuw L dla pewnego u A takiego, że u = v + w } Rozwiązanie. Niech A =
R O Z D Z I A Ł V I I
R O Z D Z I A Ł V I I 1. Podstawowe definicje RozwaŜane w poprzednim rozdziale automaty Rabina-Scotta były urządzeniami o bardzo ograniczonej zdolności przechowywania informacji. Rzeczywista pojemność
1 Automaty niedeterministyczne
Szymon Toruńczyk 1 Automaty niedeterministyczne Automat niedeterministyczny A jest wyznaczony przez następujące składniki: Alfabet skończony A Zbiór stanów Q Zbiór stanów początkowych Q I Zbiór stanów
Maszyna Turinga języki
Maszyna Turinga języki Teoria automatów i języków formalnych Dr inż. Janusz Majewski Katedra Informatyki Maszyna Turinga (1) b b b A B C B D A B C b b Q Zależnie od symbolu obserwowanego przez głowicę
Maszyna Turinga. Algorytm. czy program???? Problem Hilberta: Przykłady algorytmów. Cechy algorytmu: Pojęcie algorytmu
Problem Hilberta: 9 Czy istnieje ogólna mechaniczna procedura, która w zasadzie pozwoliłaby nam po kolei rozwiązać wszystkie matematyczne problemy (należące do odpowiednio zdefiniowanej klasy)? 2 Przykłady
Grupy pytań na egzamin inżynierski na kierunku Informatyka
Grupy pytań na egzamin inżynierski na kierunku Informatyka Dla studentów studiów dziennych Należy wybrać dwie grupy pytań. Na egzaminie zadane zostaną 3 pytania, każde z innego przedmiotu, pochodzącego
Włączenie analizy leksykalnej do analizy składniowej jest nietrudne; po co więc jest wydzielona?
Po co wydziela się analizę leksykalną? Wykład7,str1 Włączenie analizy leksykalnej do analizy składniowej jest nietrudne; po co więc jest wydzielona? 1 Analiza leksykalna jest prostsza niż składniowa leksyka
(j, k) jeśli k j w przeciwnym przypadku.
Zadanie 1. (6 punktów) Rozważmy język słów nad alfabetem {1, 2, 3}, w których podciąg z pozycji parzystych i podciąg z pozycji nieparzystych są oba niemalejące. Na przykład 121333 należy do języka, a 2111
Języki formalne i automaty Ćwiczenia 1
Języki formalne i automaty Ćwiczenia Autor: Marcin Orchel Spis treści Spis treści... Wstęp teoretyczny... 2 Wprowadzenie do teorii języków formalnych... 2 Gramatyki... 5 Rodzaje gramatyk... 7 Zadania...
Języki, automaty i obliczenia
Języki, automaty i obliczenia Wykład 9: Własności języków bezkontekstowych Sławomir Lasota Uniwersytet Warszawski 27 kwietnia 2016 Plan 1 Pompowanie języków bezkontekstowych 2 Własności domknięcia 3 Obrazy
JĘZYKI FORMALNE I METODY KOMPILACJI
Stefan Sokołowski JĘZYKI FORMALNE I METODY KOMPILACJI Inst Informatyki Stosowanej, PWSZ Elbląg, 2012/2013 JĘZYKI FORMALNE reguły gry Wykład1i2,str1 Zasadnicze informacje: http://iispwszelblagpl/ stefan/dydaktyka/jezform
Parsery LL(1) Teoria kompilacji. Dr inż. Janusz Majewski Katedra Informatyki
Parsery LL() Teoria kompilacji Dr inż. Janusz Majewski Katedra Informatyki Zadanie analizy generacyjnej (zstępującej, top-down) symbol początkowy już terminale wyprowadzenie lewostronne pierwszy od lewej
JĘZYKI FORMALNE I METODY KOMPILACJI
Stefan Sokołowski JĘZYKI FORMALNE I METODY KOMPILACJI Inst Informatyki Stosowanej, PWSZ Elbląg, 2015/2016 JĘZYKI FORMALNE reguły gry Wykład1,str1 Zasadnicze informacje: http://iispwszelblagpl/ stefan/dydaktyka/jezform
Dopełnienie to można wyrazić w następujący sposób:
1. (6 punktów) Czy dla każdego regularnego L, język f(l) = {w : każdy prefiks w długości nieparzystej należy do L} też jest regularny? Odpowiedź. Tak, jęsli L jest regularny to też f(l). Niech A będzie
Efektywność Procedur Obliczeniowych. wykład 5
Efektywność Procedur Obliczeniowych wykład 5 Modele procesu obliczeń (8) Jedno-, wielotaśmowa MT oraz maszyna RAM są równoważne w przypadku, jeśli dany problem jest rozwiązywany przez jeden model w czasie
2.2. Gramatyki, wyprowadzenia, hierarchia Chomsky'ego
2.2. Gramatyki, wyprowadzenia, hierarchia Chomsky'ego Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną G = gdzie: N zbiór symboli nieterminalnych, T zbiór symboli terminalnych, P zbiór
Uproszczony schemat działania kompilatora
Uproszczony schemat działania kompilatora Wykład7,str.1 program źródłowy ciąg leksemów drzewo wywodu drzewo i tablice symboli analiza leksykalna analiza syntaktyczna analiza semantyczna KOMPILATOR generacja
Turing i jego maszyny
Turing Magdalena Lewandowska Politechnika Śląska, wydział MS, semestr VI 20 kwietnia 2016 1 Kim był Alan Turing? Biografia 2 3 Mrówka Langtona Bomba Turinga 4 Biografia Kim był Alan Turing? Biografia Alan
Gramatyki, wyprowadzenia, hierarchia Chomsky ego. Gramatyka
Gramatyki, wyprowadzenia, hierarchia Chomsky ego Teoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Gramatyka Gramatyką G nazywamy czwórkę uporządkowaną gdzie: G =
Maszyny Turinga i problemy nierozstrzygalne. Maszyny Turinga i problemy nierozstrzygalne
Maszyny Turinga Maszyna Turinga jest automatem ta±mowym, skª da si z ta±my (tablicy symboli) potencjalnie niesko«czonej w prawo, zakªadamy,»e w prawie wszystkich (tzn. wszystkich poza sko«czon liczb )
Minimalizacja automatów niedeterministycznych na słowach skończonych i nieskończonych
Szczepan Hummel Minimalizacja automatów niedeterministycznych na słowach skończonych i nieskończonych 24.11.2005 1. Minimalizacja automatów deterministycznych na słowach skończonych (DFA) [HU] relacja
ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW
ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW NIEDETERMINISTYCZNE MASZYNY TURINGA Bartosz Zieliński Katedra Fizyki Teoretycznej i Informatyki Zima 2011-2012 NIEDETERMINISTYCZNE MASZYNY TURINGA DEFINICJA: NIEDETERMINISTYCZNA
Odmiany maszyny Turinga. dr hab. inż. Joanna Józefowska, prof. PP 1
Odmiany maszyny Turinga 1 Uniwersalna maszyna Turinga Uniwersalna maszyna U nad alfabetem A k jest to maszyna definiująca funkcje: f U, n+1 = {((w(i 1, I 2,..., I n )),y) w - opis maszyny T za pomocą słowa,
10110 =
1. (6 punktów) Niedeterministyczny automat skończony nazwiemy jednoznacznym, jeśli dla każdego akceptowanego słowa istnieje dokładnie jeden bieg akceptujący. Napisać algorytm sprawdzający, czy niedeterministyczny
Matematyczna wieża Babel. 3. Gramatyki o językach bezkontekstowych materiały do ćwiczeń
Matematyczna wieża Babel. 3. Gramatyki o językach bezkontekstowych materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 21 marca 2019 1 Gramatyki! Gramatyka to taki przepis
Przykład: Σ = {0, 1} Σ - zbiór wszystkich skończonych ciagów binarnych. L 1 = {0, 00, 000,...,1, 11, 111,... } L 2 = {01, 1010, 001, 11}
Języki Ustalmy pewien skończony zbiór symboli Σ zwany alfabetem. Zbiór Σ zawiera wszystkie skończone ciagi symboli z Σ. Podzbiór L Σ nazywamy językiem a x L nazywamy słowem. Specjalne słowo puste oznaczamy
Maszyna Turinga (Algorytmy Część III)
Maszyna Turinga (Algorytmy Część III) wer. 9 z drobnymi modyfikacjami! Wojciech Myszka 2018-12-18 08:22:34 +0100 Upraszczanie danych Komputery są coraz szybsze i sprawniejsze. Na potrzeby rozważań naukowych
Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych
Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru
Lista 5 Gramatyki bezkontekstowe i automaty ze stosem
Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Teoretyczne Podstawy Informatyki Lista 5 Gramatyki bezkontekstowe i automaty ze stosem 1 Wprowadzenie 1.1 Gramatyka bezkontekstowa
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Gramatyki bezkontekstowe I Gramatyką bezkontekstową
złożony ze słów zerojedynkowych o długości co najmniej 3, w których druga i trzecia litera od końca sa
Zadanie 1. Rozważmy jezyk złożony ze słów zerojedynkowych o długości co najmniej 3, w których druga i trzecia litera od końca sa równe. Narysować diagram minimalnego automatu deterministycznego akceptujacego
Gramatyki rekursywne
Gramatyki bezkontekstowe, rozbiór gramatyczny eoria automatów i języków formalnych Dr inŝ. Janusz Majewski Katedra Informatyki Gramatyki rekursywne Niech będzie dana gramatyka bezkontekstowa G =
Maszyna Turinga, ang. Turing Machine (TM)
Maszyna Turinga, ang. Turing Machine (TM) Alan Turing wybitny angielski matematyk, logik i kryptolog, jeden z najważniejszych twórców informatyki teoretycznej, któremu zawdzięczamy pojęcie maszyny Turinga
R O Z D Z I A Ł V I I I
R O Z D Z I A Ł V I I I 1. Definicja maszyny Turinga Najprostszym narzędziem do rozpoznawania języków jest automat skończony. Nie ma on pamięci zewnętrznej, a jedynie wewnętrzną. Informacją pamiętaną z
JĘZYKI FORMALNE I AUTOMATY SKOŃCZONE
ZBIÓR ZADAŃ do WYKŁADU prof. Tdeusz Krsińskiego JĘZYKI FORMALNE I AUTOMATY SKOŃCZONE rozdził 2. Automty skończone i języki regulrne Wyrżeni i języki regulrne Zdnie 2.1. Wypisz wszystkie słow nleżące do
Modele Obliczeń. Wykład 1 - Wprowadzenie. Marcin Szczuka. Instytut Matematyki, Uniwersytet Warszawski
Modele Obliczeń Wykład 1 - Wprowadzenie Marcin Szczuka Instytut Matematyki, Uniwersytet Warszawski Wykład fakultatywny w semestrze zimowym 2014/2015 Marcin Szczuka (MIMUW) Modele Obliczeń 2014/2015 1 /
Minimalizacja automatów niezupełnych.
Minimalizacja automatów niezupełnych. Automatem zredukowanym nazywamy automat, który jest zdolny do wykonywania tej samej pracy, którą może wykonać dany automat, przy czym ma on mniejszą liczbę stanów.
Zadanie analizy leksykalnej
Analiza leksykalna 1 Teoria kompilacji Dr inŝ. Janusz Majewski Katedra Informatyki Zadanie analizy leksykalnej Przykład: We: COST := ( PRICE + TAX ) * 0.98 Wy: id 1 := ( id 2 + id 3 ) * num 4 Tablica symboli:
Jȩzyki, automaty, zlożoność obliczeniowa
Jȩzyki, automaty, zlożoność obliczeniowa Joanna Jȩdrzejowicz Andrzej Szepietowski 23 października 2007 Przedmowa Podręcznik niniejszy jest przeznaczony dla studentów drugiego roku kierunku informatyki
Elementy Teorii Obliczeń
Wykład 2 Instytut Matematyki i Informatyki Akademia Jana Długosza w Częstochowie 10 stycznia 2009 Maszyna Turinga uwagi wstępne Maszyna Turinga (1936 r.) to jedno z najpiękniejszych i najbardziej intrygujacych
Języki formalne i automaty Ćwiczenia 4
Języki formalne i automaty Ćwiczenia 4 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Sposób tworzenia deterministycznego automatu skończonego... 4 Intuicyjne rozumienie konstrukcji
Matematyczna wieża Babel. 4. Ograniczone maszyny Turinga o językach kontekstowych materiały do ćwiczeń
Matematyczna wieża Babel. 4. Ograniczone maszyny Turinga o językach kontekstowych materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 4 kwietnia 2019 1 Dodajmy kontekst! Rozważaliśmy
Języki formalne i automaty Ćwiczenia 6
Języki formalne i automaty Ćwiczenia 6 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Wyrażenia regularne... 2 Standardy IEEE POSIX Basic Regular Expressions (BRE) oraz Extended
Języki formalne i automaty Ćwiczenia 3
Języki formalne i automaty Ćwiczenia 3 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Algorytm LL(1)... 2 Definicja zbiorów FIRST1 i FOLLOW1... 3 Konstrukcja tabeli parsowania
Paradygmaty i języki programowania. Analiza leksykalna Skaner, RE, DAS, NAS, ε- NAS
Paradygmaty i języki programowania Analiza leksykalna Skaner, RE, DAS, NAS, - NAS Etapy pracy kompilatora Character stream [Lexical Analyzer] token stream [Syntax Analyzer] syntax tree [SemanFc Analyzer]
R O Z D Z I A Ł V I. Automaty skończenie-stanowe
R O Z D Z I A Ł V I Automaty skończenie-stanowe. Podstawowe definicje Dotychczas mówiliśmy jedynie o gramatykach jako o generatorach języków. Obecnie zajmiemy się akceptorami języków, jakimi są automaty.
Równania różniczkowe liniowe rzędu pierwszego
Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to
Teoretyczne podstawy informatyki
Teoretyczne podstawy informatyki Wykład 10b: Wzorce i automaty. http://hibiscus.if.uj.edu.pl/~erichter/dydaktyka2009/tpi-2009 Prof. dr hab. Elżbieta Richter-Wąs 1 Wzorce i automaty Problematyka wzorców
ZYKI BEZKONTEKSTOWE (KLASA
Spis treści 6. JĘZYKI BEZKONTEKSTOWE (KLASA "2")... 2 6.1. GRAMATYKI BEZKONTEKSTOWE... 2 6.2. AUTOMATY ZE STOSEM... 12 7. DETERMINISTYCZNE JĘZYKI BEZKONTEKSTOWE I ICH AKCEPTORY... 16 7.1. GRAMATYKI I JĘZYKI
Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność
Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność Łukasz Kuszner pokój 209, WETI http://www.kaims.pl/ kuszner/ kuszner@eti.pg.gda.pl Oficjalna strona wykładu http://www.kaims.pl/
TEORIA ZŁOŻONOŚCI PROBLEMY I ALGORYTMY OGRANICZENIE DOLNE I GÓRNE PROJEKTOWANIE ALGORYTMÓW I METODY SZTUCZNEJ INTELIGENCJI
PROJEKTOWANIE ALGORYTMÓW I METODY SZTUCZNEJ INTELIGENCJI TEORIA ZŁOŻONOŚCI I MASZYNA TURINGA TEORIA ZŁOŻONOŚCI Teoria złożoności poszukuje rozwiązania dla problemów, które są algorytmicznie trudne do rozwiązania
Algorytmy sztucznej inteligencji
www.math.uni.lodz.pl/ radmat Przeszukiwanie z ograniczeniami Zagadnienie przeszukiwania z ograniczeniami stanowi grupę problemów przeszukiwania w przestrzeni stanów, które składa się ze: 1 skończonego
Algorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące.
Algorytmy Równoległe i Rozproszone Część X - Algorytmy samostabilizujące. Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/
Matematyczne podstawy informatyki Mathematical Foundations of Computational Sciences. Matematyka Poziom kwalifikacji: II stopnia
Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyczne podstawy informatyki Mathematical Foundations of Computational Sciences
5. JĘZYKI BEZKONTEKSTOWE (KLASA "2") GRAMATYKI BEZKONTEKSTOWE AUTOMATY ZE STOSEM DETERMINISTYCZNE JĘZYKI BEZKONTEKSTOWE I
5. JĘZYKI BEZKONTEKSTOWE (KLASA "2")...2 5.1. GRAMATYKI BEZKONTEKSTOWE...2 5.2. AUTOMATY ZE STOSEM...12 6. DETERMINISTYCZNE JĘZYKI BEZKONTEKSTOWE I ICH AKCEPTORY...16 6.1. GRAMATYKI I JĘZYKI LR...16 7.
Uzgadnianie formuł rachunku predykatów
Składanie podstawień Plan wykładu Uzgadnianie Logika obliczeniowa Instytut Informatyki Plan wykładu Składanie podstawień 1 Składanie podstawień Podstawienie Motywacja Złożenie podstawień 2 Uzgadnianie
JAO - lematy o pompowaniu dla jezykow bezkontekstowy
JAO - lematy o pompowaniu dla jezykow bezkontekstowych Postać normalna Chomsky ego Gramatyka G ze zbiorem nieterminali N i zbiorem terminali T jest w postaci normalnej Chomsky ego wtw gdy każda produkcja
Opisy efektów kształcenia dla modułu
Nazwa modułu: Teoria automatów i języków Rok akademicki: 2013/2014 Kod: AMA-2-044-BS-s Punkty ECTS: 6 Wydział: Matematyki Stosowanej Kierunek: Matematyka Specjalność: (bez wyboru specjalności) Poziom studiów:
Języki formalne i automaty Ćwiczenia 8
Języki formalne i automaty Ćwiczenia 8 Autor: Marcin Orchel Spis treści Spis treści... 1 Wstęp teoretyczny... 2 Konwersja NFA do DFA... 2 Minimalizacja liczby stanów DFA... 4 Konwersja automatu DFA do
Logika stosowana. Ćwiczenia Złożoność obliczeniowa problemu spełnialności. Marcin Szczuka. Instytut Informatyki, Uniwersytet Warszawski
Logika stosowana Ćwiczenia Złożoność obliczeniowa problemu spełnialności Marcin Szczuka Instytut Informatyki, Uniwersytet Warszawski Wykład fakultatywny w semestrze zimowym 2015/2016 Marcin Szczuka (MIMUW)
Automaty Büchi ego i równoważne modele obliczeń
Politechnika Krakowska im. Tadeusza Kościuszki Wydział Fizyki, Matematyki i Informatyki Kierunek Matematyka Paulina Barbara Rozwód Automaty Büchi ego i równoważne modele obliczeń praca magisterska studia
Programowanie liniowe
Programowanie liniowe Łukasz Kowalik Instytut Informatyki, Uniwersytet Warszawski April 8, 2016 Łukasz Kowalik (UW) LP April 8, 2016 1 / 15 Problem diety Tabelka wit. A (µg) wit. B1 (µg) wit. C (µg) (kcal)
ZLOŻONOŚĆ OBLICZENIOWA - WYK. 2
ZLOŻONOŚĆ OBLICZENIOWA - WYK. 2 1. Twierdzenie Sipsera: Dla dowolnej maszyny M działającej w pamięci S(n) istnieje maszyna M taka, że: L(M) = L(M ), M działa w pamięci S(n), M ma własność stopu. Dowód:
iks plus trzy dzielone na dwa iks razy iks plus pięć
ELIMINACJE SZKOLNE RACHUNEK LAMBDA NOTATKI Z WYKŁADU - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW
ZŁOŻONOŚĆ OBLICZENIOWA ALGORYTMÓW RELACJE MIEDZY KLASAMI ZŁOŻONOŚCI Bartosz Zieliński Katedra Fizyki Teoretycznej i Informatyki Zima 2011-2012 KLASY ZŁOŻONOŚCI KLASE ZŁOŻONOŚCI OPISUJE SIE PODAJAC: Model
Analiza leksykalna 1. Teoria kompilacji. Dr inż. Janusz Majewski Katedra Informatyki
Analiza leksykalna 1 Teoria kompilacji Dr inż. Janusz Majewski Katedra Informatyki Zadanie analizy leksykalnej Kod źródłowy (ciąg znaków) Analizator leksykalny SKANER Ciąg symboli leksykalnych (tokenów)
JAO - Języki, Automaty i Obliczenia - Wykład 2. JAO - Języki, Automaty i Obliczenia - Wykład 2
Dowodzenie nieregularności języka [lemat o pompowaniu] Jeśli L regularny to istnieje stała c spełniająca : jeżeli z L, z c to istnieje dekompozycja w = u v x tak, że uv i x L dla każdego i 0 [lemat o skończonej
Wykład nr 3 Techniki Mikroprocesorowe. dr inż. Artur Cichowski
Wykład nr 3 Techniki Mikroprocesorowe dr inż. Artur Cichowski Automat skończony jest przetwornikiem ciągu symboli wejściowych na ciąg symboli wyjściowych. Zbiory symboli wejściowych x X i wyjściowych y
Języki formalne i gramatyki
J.Nawrocki, M. Antczak, A. Hoffa, S. Wąsik Plik źródłowy: 08cw10-jfig.doc; Data: 2008-10-22 13:29:00 Ćwiczenie nr 10 Języki formalne i gramatyki Wprowadzenie 1. Napisz analizator leksykalny (LEX) i analizator
3.4. Przekształcenia gramatyk bezkontekstowych
3.4. Przekształcenia gramatyk bezkontekstowych Definicje Niech będzie dana gramatyka bezkontekstowa G = G BK Symbol X (N T) nazywamy nieużytecznym w G G BK jeśli nie można w tej gramatyce
Prawdopodobieństwo i statystyka
Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja
Teoretyczne podstawy informatyki
1 Wykład cz. 2 dyżur: środa 9.00-10.00 czwartek 10.00-11.00 ul. Wieniawskiego 17/19, pok.10 e-mail: joanna.jozefowska@cs.put poznan.pl materiały do wykładów: http://www.cs.put.poznan.pl/jjozefowska/ hasło:
Logika Stosowana. Wykład 2 - Logika modalna Część 3. Marcin Szczuka. Instytut Informatyki UW. Wykład monograficzny, semestr letni 2017/2018
Logika Stosowana Wykład 2 - Logika modalna Część 3 Marcin Szczuka Instytut Informatyki UW Wykład monograficzny, semestr letni 2017/2018 Marcin Szczuka (MIMUW) Logika Stosowana 2018 1 / 36 Plan wykładu
Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.
Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej
AUTOMATY SKOŃCZONE. Automat skończony przedstawiamy formalnie jako uporządkowaną piątkę:
AUTOMATY SKOŃCZONE DETERMINISTYCZNY AUTOMAT SKOŃCZONY - DAS Automat skończony jest modelem matematycznym systemu o dyskretnych wejściach i wyjściach. System taki w danej chwili może znajdować się w jednym
Obliczenia inspirowane Naturą
Obliczenia inspirowane Naturą Wykład 02 Jarosław Miszczak IITiS PAN Gliwice 06/10/2016 1 / 31 Czego dowiedzieliśmy się na poprzednim wykładzie? 1... 2... 3... 2 / 31 1 2 3 3 / 31 to jeden z pierwszych
Temat: Zastosowanie wyrażeń regularnych do syntezy i analizy automatów skończonych
Opracował: dr inż. Zbigniew Buchalski KATEDRA INFORMATYKI TECHNICZNEJ Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych ćwiczenie Temat: Zastosowanie wyrażeń regularnych do syntezy i analizy automatów
1. Maszyna Turinga, gramatyki formalne i ONP
1. Maszyna uringa, gramatyki formalne i OP 1.1.Maszyna uringa Automat skończony składa się ze skończonego zbioru stanów i zbioru przejść ze stanu do stanu, zachodzących przy różnych symbolach wejściowych
JIP. Analiza składni, gramatyki
JIP Analiza składni, gramatyki Książka o różnych językach i paradygmatach 2 Polecam jako obowiązkową lekturę do przeczytania dla wszystkich prawdziwych programistów! Podsumowanie wykładu 2 3 Analiza leksykalna