Twierdzenie o splocie

Wielkość: px
Rozpocząć pokaz od strony:

Download "Twierdzenie o splocie"

Transkrypt

1 Twierdzenie o splocie g(t) = (s h) (t) G(f ) = S(f ) H(f ) (1) To twierdzenie działa też w drugą stronę: G(f ) = (S H) (f ) g(t) = s(t) h(t) (2) Zastosowania: zamiana splotu na mnożenie daje wgląd w okienkowanie łatwo zrozumieć działanie flitrów

2 Wstęp Jakie są dostępne okna w matlabie? help window Zobaczmy jak wyglądają te okienka np: przykład N = 65; w = window(@blackmanharris,n); w1 = window(@hamming,n); w2 = window(@tukeywin,n,0.2); plot(1:n,[w,w1,w2]); axis([1 N 0 1]); legend( Blackman-Harris, Hamming, Tukey );

3 Badanie własności okien Narzędzie do badania własności okienek: window Zwróćmy uwagę na własności okienek opisywane przez parametry: Leakage factor stosunek mocy w listkach bocznych do całej mocy okienka Relative sidelobe attenuation różnica wysokości od głównego piku do najwyższego listka Mainlobe width (-3dB) szerokość głównego piku na wysokości 3dB poniżej szczytu Co w świetle twierdzenia o splocie wnioskujemy o działaniu okienek?

4 Własności okien w działaniu Przygotuj sygnał np. sinus o częstości f = 10.2 Hz fazie 0, czasie trwania T = 1 s, i częstości próbkowania Fs = 100 Hz Jakie jest widmo takiego sygnalu, jakie jest widmo tego sygnalu w skali pol logarytmicznej? Zokienkuj sygnał oknami blackmanharris, hamming, tukeywin porównaj widma tla różnych okienek, zwróć uwagę na szerokość piku i występowanie listków bocznych zbadaj co się dzieje wraz ze zmianą długości sygnału

5 Okienkować możemy też w częstości Wytwórz sygnał o długości T = 2 s i częstości próbkowania Fs = 128 Hz złożony z białego szumu, przetransformuj go do dziedziny czestosci, przytnij widmo tak, aby zastało tylko coś w paśmie 10 ± 2 Hz i przetransformuj z powrotem do dziedziny czasu obejrzyj sygnał. Operację ta wykonaj przy pomocy okna prostokatnego i gausowskiego.

6 Transformata fouriera sygnału stochastycznego Bardzo często musimy oszacować widmo mocy sygnału zawierającego znaczny udział szumu. Poniższy skrypt ilustruje niepewność szacowania pików w widmie otrzymanym z transformaty fouriera dla sygnału zawierającego szum. przykład t=0:1/256:20-1/256; s=sin(2*pi*t*30); sz=randn(1,20*256); s_sz=s+sz; for i=1:20 x=s_sz(1+(i-1)*256:i*256); X=fft(x); sp=x.*conj(x)/256; Psp(:,i)=sp(1:128); end plot(psp) Proszę obejrzeć otrzymane widma. Jaka jest niepewność wniku? Czy podobny problem występuje dla sygnału bez szumu? Skonstruuj funkcję rysującą średnie widmo wraz z 95% przedziałem ufności.

7 Sygnał stochastyczny - szereg czasowy Wartości x mierzone w funkcji czasu t tworzą szereg czasowy x(t). Jeśli K jest zbiorem k zdarzeń (k K) i każde z tych zdarzeń ma przypisaną funkcję x k (t) zwaną realizacją procesu ξ(t), the stochastic process can be defined as a set of functions: ξ(t) = {x 1 (t), x 2 (t),..., x N (t)} (3) gdzie x k (t) są losowymi funkcjami czasu t. Procesy stochastyczne można opisywać prze wartości oczekiwane liczone po realizacjach. Dla przypomnienia wartość oczekiwaną liczymy tak: µ x (t 1 ) = E [ξ(t 1 )] = lim N k=1 N x k (t 1 )p(x k, t 1 ) (4) średnia µ x (t 1 ) procesu ξ(t) w chwili t 1 to suma wartośći zaobserwowanych w chwili we wszystkich realizacjach t 1 ważona przwdopodobieństwem Jarosławystąpienia Żygierewicz okienkowanie tej realizacji: sygnału i transformata Fouriera

8 Stacjonarność i ergodyczność Stacjonarność: Jeśli dla procesu stochastycznego ξ(t) wszystkie momenty są niezależne od czasu to jest on stajonarny w ścisłym sensie. Jeśli tylko średnia µ x i autokorelacja R x (τ) nie zależą od czasu to proces jest stacjonarny w słabym sensie, co dla wielu zastosowań jest wystarczające. Ergodyczność: Proces jest ergodyczny jeśli jego średnie po czasie i po realizacjach są sobie równe. Oznacza to, że dla takiego procesu jedna realizacja jest reprezentatywna i zawiera całą informację o tym procesie.

9 Estymowanie widma sygnału stochastycznego Generalnie widmo można estymować stosując modele parametryczne - o tym później i nieparametryczne czyli bezpośrednio z sygnału. Jak widzieliśmy w poprzednim przykładzie żeby oszacować widmo procesu stochastycznego musimy coś uśredniać: uśrednianie po realizacjach uśrednianie po czasie uśrednianie po sąsiednich binach częstości

10 Co mamy do dyspozycji? Methoda Opis Funkcja Periodogram Estymata gęstości widmowej mocy spectrum.periodogram, periodogram Welch Uśredione periodogramy spectrum.welch, w zachodzących na siebie pwelch, cpsd, fragmentach czasowych. tfestimate, Sygnał w każdym fragmencie mscohere jest okienkowany. Zakładamy ergodyczność. Multitaper Estymata oparta na kombinacji ortogonalnych okienek (tapers) spectrum.mtm, pmtm

11 periodogram [Pxx,f] = periodogram(x,window,nfft,fs, range ) Algorytm: Sekwencja periodogramu dla sygnału [x 1,..., x n ] dana jest wzorem: n 2 x k e iωk przykład randn( state,0); Fs = 1000; t = 0:1/Fs:.3; x = cos(2*pi*t*200)+0.1*randn(size(t)); periodogram(x,[], onesided,512,fs) S(ω) = 1 n k=1 Jeśli zokienkujemy nasz sygnał oknem [w 1,..., w n ] to mamy modyfikowany periodogram czyli: S(ω) = 1 n 1 n n k=1 x ke iωk 2 n k=1 w k 2 Z tego obliczana jest widmowa gęstość mocy czyli S(ω) F gdzie F = fs jak podamy fs, albo 2π kiedy nic nie podamy

12 pwelch [Pxx,f] = pwelch(x,window,noverlap,f,fs) randn( state,0); Fs = 1000; t = 0:1/Fs:.3; x = cos(2*pi*t*200)+0.1*randn(size(t)); pwelch(x,33,32,[],fs, onesided ) przykład sygnał x jest dzielony na k zachodzących na siebie segmentów każdy segment jest okienkowany z każdego segmentu liczony jest modyfikowany periodogram periodogramy są uśredniane z tej średniej obliczana jest widmowa gęstość mocy S(ω) F

13 pmtm [Pxx,Pxxc,f] = pmtm(x,nw,nfft,fs,p) sygnał okienkowany jest przez 2*nw-1 okienek stanowiących sekwencję sferoidalnych okienek. nw jest iloczynem czas-szerokość pasma częstości dla tej sekwencji okienek. Funkcja ta zwraca też (1 p)% przedział ufności na estymowane średnie widmo. randn( state,0); fs = 1000; t = 0:1/fs:0.3; x = cos(2*pi*t*200) + 0.1*randn(size(t)); [Pxx,Pxxc,f] = pmtm(x,3.5,512,fs,0.99); hpsd = dspdata.psd([pxx Pxxc], Fs,fs); plot(hpsd) przykład Sekwencje te można wytwarzać funkcją [e,v] = dpss(n,nw,k). Zbadajmy kilka przykładowych sekwencji.

14 Rozdzielczość i wariancja w różnych metodach estymacji widma Przeanalizujmy przykłady z Signal Processing Toolbox:: Spectral Estimation Method

Spis treści. Widmo mocy. Obliczanie mocy sygnału. Analiza_sygnałów_-_ćwiczenia/Fourier_4

Spis treści. Widmo mocy. Obliczanie mocy sygnału. Analiza_sygnałów_-_ćwiczenia/Fourier_4 Analiza_sygnałów_-_ćwiczenia/Fourier_4 Spis treści 1 Widmo mocy 1.1 Obliczanie mocy sygnału 1.1.1 Zadanie 1: Moc i energia sygnału w dziedzinie czasu 1.1.2 Zadanie 2: Moc i energia sygnału w dziedzinie

Bardziej szczegółowo

Stacjonarność i ergodyczność

Stacjonarność i ergodyczność Stacjonarność i ergodyczność Stacjonarność: Jeśli dla procesu stochastycznego ξ(t) wszystkie momenty są niezależne od czasu to jest on stajonarny wścisłymsensie.jeślitylkośrednia µ x i autokorelacjar x

Bardziej szczegółowo

ĆWICZENIE III ANALIZA WIDMOWA SYGNAŁÓW DYSKRETNYCH. ver.3

ĆWICZENIE III ANALIZA WIDMOWA SYGNAŁÓW DYSKRETNYCH. ver.3 1 Zakład Elektrotechniki Teoretycznej ver.3 ĆWICZEIE III AALIZA WIDMOWA SYGAŁÓW DYSKRETYCH (00) Celem ćwiczenia jest przeprowadzenie analizy widmowej dyskretnych sygnałów okresowych przy zastosowaniu szybkiego

Bardziej szczegółowo

Analiza szeregów czasowych: 2. Splot. Widmo mocy.

Analiza szeregów czasowych: 2. Splot. Widmo mocy. Analiza szeregów czasowych: 2. Splot. Widmo mocy. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2006/07 Splot Jedna z najważniejszych własności transformaty Fouriera jest to, że transformata

Bardziej szczegółowo

Analiza szeregów czasowych: 2. Splot. Widmo mocy.

Analiza szeregów czasowych: 2. Splot. Widmo mocy. Analiza szeregów czasowych: 2. Splot. Widmo mocy. P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2007/08 Splot Jedna z najważniejszych własności transformaty Fouriera jest to, że transformata

Bardziej szczegółowo

2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27

2. P (E) = 1. β B. TSIM W3: Sygnały stochastyczne 1/27 SYGNAŁY STOCHASTYCZNE Przestrzeń probabilistyczna i zmienna losowa Definicja Przestrzenią probabilistyczną (doświadczeniem) nazywamy trójkę uporządkowaną (E, B, P ), gdzie: E przestrzeń zdarzeń elementarnych;

Bardziej szczegółowo

DYSKRETNA TRANSFORMACJA FOURIERA

DYSKRETNA TRANSFORMACJA FOURIERA Laboratorium Teorii Sygnałów - DFT 1 DYSKRETNA TRANSFORMACJA FOURIERA Cel ćwiczenia Celem ćwiczenia jest przeprowadzenie analizy widmowej sygnałów okresowych za pomocą szybkiego przekształcenie Fouriera

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów. Ćwiczenie 2. Analiza widmowa

Laboratorium Przetwarzania Sygnałów. Ćwiczenie 2. Analiza widmowa PTS laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 2 Analiza widmowa Opracowali: - prof. dr hab. inż. Krzysztof Kałużyński - dr inż. Beata Leśniak-Plewińska - dr inż. Jakub Żmigrodzki Zakład

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim CYFROWE PRZETWARZANIE SYGNAŁÓW Nazwa w języku angielskim DIGITAL SIGNAL PROCESSING Kierunek studiów

Bardziej szczegółowo

CYFROWE PRZETWARZANIE SYGNAŁÓW

CYFROWE PRZETWARZANIE SYGNAŁÓW POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI Katedra Metrologii i Systemów Diagnostycznych CYFROWE PRZETWARZANIE SYGNAŁÓW Analiza widmowa sygnałów (2) dr inż. Robert

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów Biomedycznych

Laboratorium Przetwarzania Sygnałów Biomedycznych Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 1 Wydobywanie sygnałów z szumu z wykorzystaniem uśredniania Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - mgr inż. Tomasz Kubik

Bardziej szczegółowo

uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t

uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem próbkowania t takim, że T = t N 1 t 4. 1 3. " P r ze c ie k " w idm ow y 1 0 2 4.13. "PRZECIEK" WIDMOWY Rozważmy szereg czasowy {x r } dla r = 0, 1,..., N 1 uzyskany w wyniku próbkowania okresowego przebiegu czasowego x(t) ze stałym czasem

Bardziej szczegółowo

Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe.

Zjawisko aliasingu. Filtr antyaliasingowy. Przecieki widma - okna czasowe. Katedra Mechaniki i Podstaw Konstrukcji Maszyn POLITECHNIKA OPOLSKA Komputerowe wspomaganie eksperymentu Zjawisko aliasingu.. Przecieki widma - okna czasowe. dr inż. Roland PAWLICZEK Zjawisko aliasingu

Bardziej szczegółowo

Model autoregresyjny stochastycznego szeregu czasowego

Model autoregresyjny stochastycznego szeregu czasowego Pracownia EEG / Widmowa analiza parametryczna Spis treści 1 Model autoregresyjny stochastycznego szeregu czasowego 1.1 Wstęp 1.2 Parametryczna analiza widmowa 1.3 Wybór rzędu modelu 1.4 Sygnały wielokanałowe

Bardziej szczegółowo

Definicja. x(u)h (u t)e i2πuf du. F x (t,f ;h) = Krótko czasowa transformata Fouriera Ciągłą transformata falkowa

Definicja. x(u)h (u t)e i2πuf du. F x (t,f ;h) = Krótko czasowa transformata Fouriera Ciągłą transformata falkowa Definicja Krótko czasowa transformata Fouriera(STFT) może być rozumiana jako seria transformat Fouriera wykonanych na sygnale okienkowanym, przy czym położenie okienka w czasie jest w ramach takiej serii

Bardziej szczegółowo

Układy i Systemy Elektromedyczne

Układy i Systemy Elektromedyczne UiSE - laboratorium Układy i Systemy Elektromedyczne Laboratorium 1 Stetoskop elektroniczny parametry sygnałów rejestrowanych. Opracował: dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej, Instytut

Bardziej szczegółowo

x(n) x(n-1) x(n-2) D x(n-n+1) h N-1

x(n) x(n-1) x(n-2) D x(n-n+1) h N-1 Laboratorium Układy dyskretne LTI projektowanie filtrów typu FIR Z1. apisać funkcję y = filtruj(x, h), która wyznacza sygnał y będący wynikiem filtracji sygnału x przez filtr FIR o odpowiedzi impulsowej

Bardziej szczegółowo

Ćwiczenie 11. Podstawy akwizycji i cyfrowego przetwarzania sygnałów. Program ćwiczenia:

Ćwiczenie 11. Podstawy akwizycji i cyfrowego przetwarzania sygnałów. Program ćwiczenia: Ćwiczenie 11 Podstawy akwizycji i cyfrowego przetwarzania sygnałów Program ćwiczenia: 1. Konfiguracja karty pomiarowej oraz obserwacja sygnału i jego widma 2. Twierdzenie o próbkowaniu obserwacja dwóch

Bardziej szczegółowo

Widmo akustyczne radia DAB i FM, porównanie okien czasowych Leszek Gorzelnik

Widmo akustyczne radia DAB i FM, porównanie okien czasowych Leszek Gorzelnik Widmo akustycznych sygnałów dla radia DAB i FM Pomiary widma z wykorzystaniem szybkiej transformacji Fouriera FFT sygnału mierzonego w dziedzinie czasu wykonywane są w skończonym czasie. Inaczej mówiąc

Bardziej szczegółowo

Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 8

Teoria Sygnałów. III rok Informatyki Stosowanej. Wykład 8 Teoria Synałów rok nformatyki Stosowanej Wykład 8 Analiza częstotliwościowa dyskretnych synałów cyfrowych okna widmowe (cd poprzednieo wykładu) N = 52; T =.24; %czas trwania synału w sekundach dt = T/N;

Bardziej szczegółowo

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1. 1. W p r owadze n ie 1 Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1.1. WPROWADZENIE SYGNAŁ nośnik informacji ANALIZA SYGNAŁU badanie, którego celem jest identyfikacja własności, cech, miar sygnału; odtwarzanie

Bardziej szczegółowo

Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej

Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej. Filtry FIR o skończonej odpowiedzi impulsowej (SOI) Filtracja FIR polega na tym, że sygnał wyjściowy powstaje

Bardziej szczegółowo

DYSKRETNE PRZEKSZTAŁCENIE FOURIERA C.D.

DYSKRETNE PRZEKSZTAŁCENIE FOURIERA C.D. CPS 6 DYSKRETE PRZEKSZTAŁCEIE FOURIERA C.D. Twierdzenie o przesunięciu Istnieje ważna właściwość DFT, znana jako twierdzenie o przesunięciu. Mówi ono, że: Przesunięcie w czasie okresowego ciągu wejściowego

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów Biomedycznych

Laboratorium Przetwarzania Sygnałów Biomedycznych Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 3 Analiza sygnału o nieznanej strukturze Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - mgr inż. Tomasz Kubik Politechnika Warszawska,

Bardziej szczegółowo

Kartkówka 1 Opracowanie: Próbkowanie częstotliwość próbkowania nie mniejsza niż podwojona szerokość przed spróbkowaniem.

Kartkówka 1 Opracowanie: Próbkowanie częstotliwość próbkowania nie mniejsza niż podwojona szerokość przed spróbkowaniem. Znowu prosta zasada - zbierzmy wszystkie zagadnienia z tych 3ech kartkówek i opracujmy - może się akurat przyda na dopytkę i uda się zaliczyć labki :) (dodatkowo można opracowania z tych rzeczy z doc ów

Bardziej szczegółowo

Przekształcenie Fouriera i splot

Przekształcenie Fouriera i splot Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Przekształcenie Fouriera i splot Wstęp Na tym wykładzie: przekształcenie Fouriera

Bardziej szczegółowo

Algorytmy detekcji częstotliwości podstawowej

Algorytmy detekcji częstotliwości podstawowej Algorytmy detekcji częstotliwości podstawowej Plan Definicja częstotliwości podstawowej Wybór ramki sygnału do analizy Błędy oktawowe i dokładnej estymacji Metody detekcji częstotliwości podstawowej czasowe

Bardziej szczegółowo

Szeregi czasowe, analiza zależności krótkoi długozasięgowych

Szeregi czasowe, analiza zależności krótkoi długozasięgowych Szeregi czasowe, analiza zależności krótkoi długozasięgowych Rafał Weron rweron@im.pwr.wroc.pl Definicje Mając dany proces {X t } autokowariancję definiujemy jako : γ(t, t ) = cov(x t, X t ) = = E[(X t

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 2 Badanie funkcji korelacji w przebiegach elektrycznych.

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego. Ćwiczenie 2 Badanie funkcji korelacji w przebiegach elektrycznych. Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie Badanie unkcji korelacji w przebiegach elektrycznych. Cel ćwiczenia: Celem ćwiczenia jest zbadanie unkcji korelacji w okresowych sygnałach

Bardziej szczegółowo

Akustyka muzyczna ANALIZA DŹWIĘKÓW MUZYCZNYCH

Akustyka muzyczna ANALIZA DŹWIĘKÓW MUZYCZNYCH Akustyka muzyczna ANALIZA DŹWIĘKÓW MUZYCZNYCH Dźwięk muzyczny Dźwięk muzyczny sygnał wytwarzany przez instrument muzyczny. Najważniejsze parametry: wysokość związana z częstotliwością podstawową, barwa

Bardziej szczegółowo

ZAJĘCIA II. Zmienne losowe, sygnały stochastyczne, zakłócenia pomiarowe

ZAJĘCIA II. Zmienne losowe, sygnały stochastyczne, zakłócenia pomiarowe ZAJĘCIA II Zmienne losowe, sygnały stochastyczne, zakłócenia pomiarowe Po co statystyka w identyfikacji? Zmienne losowe i ich parametry Korelacja zmiennych losowych Rozkłady wielowymiarowe i sygnały stochastyczne

Bardziej szczegółowo

Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, Spis treści

Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, Spis treści Automatyczne rozpoznawanie mowy - wybrane zagadnienia / Ryszard Makowski. Wrocław, 2011 Spis treści Przedmowa 11 Rozdział 1. WPROWADZENIE 13 1.1. Czym jest automatyczne rozpoznawanie mowy 13 1.2. Poziomy

Bardziej szczegółowo

Analiza szeregów czasowych: 3. Filtr Wienera

Analiza szeregów czasowych: 3. Filtr Wienera Analiza szeregów czasowych: 3. Filtr Wienera P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ semestr letni 2006/07 Filtr Wienera ( filtr optymalny ) Przypuśćmy, że pewien układ (fizyczny, biologiczny,

Bardziej szczegółowo

F K E K. 10log( ) [ ] [ ] ( ) 2 [ ] Ćwiczenie 2. Periodogramowe estymatory widma gęstości mocy sygnałów stacjonarnych

F K E K. 10log( ) [ ] [ ] ( ) 2 [ ] Ćwiczenie 2. Periodogramowe estymatory widma gęstości mocy sygnałów stacjonarnych Laboratorium KAS Ćw. 2. Periodogramowe estymatory widma gęstości mocy... M. Blok 2008-10-20 1/11 Ćwiczenie 2. Periodogramowe estymatory widma gęstości mocy sygnałów stacjonarnych 2.1. WSTĘP Celem tego

Bardziej szczegółowo

Sygnały stochastyczne

Sygnały stochastyczne Sygnały stochastyczne Zmienne losowe E zbiór zdarzeń elementarnych (zbiór możliwych wyniów esperymentu) e E zdarzenie elementarne (wyni esperymentu) B zbiór wybranych podzbiorów zbioru E β B zdarzenie

Bardziej szczegółowo

Transformacje i funkcje statystyczne

Transformacje i funkcje statystyczne Generacja okien: win = window(@fwin,n); Generacja okien gui: wintool; Rodzaje niektórych okien: @bartlett - Bartletta. @blackman - Blackmana. @chebwin - Czebyszewa. @gausswin - gausowskie. @hamming - Hamminga.

Bardziej szczegółowo

Teoria Sygnałów. Inżynieria Obliczeniowa II rok 2018/19. Wykład 10. ( t) Wykorzystanie transformacji Fouriera w analizie korelacyjnej

Teoria Sygnałów. Inżynieria Obliczeniowa II rok 2018/19. Wykład 10. ( t) Wykorzystanie transformacji Fouriera w analizie korelacyjnej Teoria Synałów Inżynieria Obliczeniowa II rok 208/9 Wykład 0 Wykorzystanie transformacji Fouriera w analizie korelacyjnej Na początek krótkie przypomnienie podstawowych definicji: Funkcja autokorelacji

Bardziej szczegółowo

Politechnika Wrocławska

Politechnika Wrocławska Politechnika Wrocławska Wydział Elektryczny Instytut Podstaw Elektrotechniki i Elektrotechnologii Zakład Elektrotechniki Teoretycznej ANALIZA SYGNAŁÓW OKRESOWYCH METODAMI STATYSTYK WYŻSZYCH RZĘDÓW Praca

Bardziej szczegółowo

Podstawy Przetwarzania Sygnałów

Podstawy Przetwarzania Sygnałów Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech

Bardziej szczegółowo

Przetwarzanie sygnałów biomedycznych

Przetwarzanie sygnałów biomedycznych Przetwarzanie sygnałów biomedycznych dr hab. inż. Krzysztof Kałużyński, prof. PW Człowiek- najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Bardziej szczegółowo

Spis treści. Metody nieparametryczne. Transformacja Fouriera

Spis treści. Metody nieparametryczne. Transformacja Fouriera Spis treści 1 Metody nieparametryczne 1.1 Transformacja Fouriera 1.2 Bliżej życia 1.3 Splot 2 Transformacja Z 3 Filtry 4 Metody parametryczne 5 Analiza danych wielokanałowych 5.1 Koherencje 5.2 Związki

Bardziej szczegółowo

Cyfrowe Przetwarzanie Obrazów i Sygnałów

Cyfrowe Przetwarzanie Obrazów i Sygnałów Cyfrowe Przetwarzanie Obrazów i Sygnałów Laboratorium EX Lokalne transformacje obrazów Joanna Ratajczak, Wrocław, 28 Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z własnościami lokalnych

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów

Laboratorium Przetwarzania Sygnałów PTS - laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 4 Transformacja falkowa Opracował: - prof. dr hab. inż. Krzysztof Kałużyński Zakład Inżynierii Biomedycznej Instytut Metrologii i Inżynierii

Bardziej szczegółowo

Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej

Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej 1. Filtry FIR o skończonej odpowiedzi impulsowej (SOI) Filtracja FIR polega na tym, że sygnał wyjściowy powstaje

Bardziej szczegółowo

PRZETWARZANIE SYGNAŁÓW

PRZETWARZANIE SYGNAŁÓW PRZEWARZANIE SYGNAŁÓW SEMESR V Człowiek- nalepsza inwestyca Proekt współfinansowany przez Unię Europeską w ramach Europeskiego Funduszu Społecznego Wykład II Wprowadzenie Podstawy teoretyczne przetwarzania

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN MECHATRONIKA Instrukcja do ćwiczeń laboratoryjnych Analiza sygnałów czasowych Opracował: dr inż. Roland Pawliczek Opole 2016 1 2 1. Cel

Bardziej szczegółowo

Laboratorium Cyfrowego Przetwarzania Sygnałów. Preskrypt do v.2014z ćwiczenie nr 5 z 10 (Analiza i przetwarzanie sygnałów stochastycznych)

Laboratorium Cyfrowego Przetwarzania Sygnałów. Preskrypt do v.2014z ćwiczenie nr 5 z 10 (Analiza i przetwarzanie sygnałów stochastycznych) Laboratorium Cyfrowego Przetwarzania Sygnałów Preskrypt do v.2014z ćwiczenie nr 5 z 10 (Analiza i przetwarzanie sygnałów stochastycznych) na prawach rękopisu Lista Autorów Zakład Teorii Obwodów i Sygnałów

Bardziej szczegółowo

1 s(t) 2 t s(t) 2 dt 1. s(t) 2

1 s(t) 2 t s(t) 2 dt 1. s(t) 2 Rozdział 3 Pomiędzy czasem a częstością 3.1 Zasada nieoznaczoności Zasada nieoznaczoności (Heisenberga) w mechanice kwantowej nie opisuje granic dokładności pomiarów, lecz fakt, że cząstka nie może jednocześnie

Bardziej szczegółowo

CYFROWE PRZETWARZANIE SYGNAŁÓW

CYFROWE PRZETWARZANIE SYGNAŁÓW POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI Katedra Metrologii i Systemów Diagnostycznych CYFROWE PRZETWARZANIE SYGNAŁÓW Analiza korelacyjna sygnałów dr hab. inż.

Bardziej szczegółowo

Metoda dopplerowska impulsowa (Pulsed Wave)

Metoda dopplerowska impulsowa (Pulsed Wave) Spis treści 1 Metoda dopplerowska impulsowa (Pulsed Wave) 1.1 Demodulacja sygnału RF 1.1.1 1.2 Estymator autokorelacyjny 1.2.1 Rys teoretyczny 1.2.1.1 Estymator Millera-Rochwargera 1.2.2 1.3 Prezentacja

Bardziej szczegółowo

Filtrowanie a sploty. W powyższym przykładzie proszę zwrócić uwagę na efekty brzegowe. Wprowadzenie Projektowanie filtru Zadania

Filtrowanie a sploty. W powyższym przykładzie proszę zwrócić uwagę na efekty brzegowe. Wprowadzenie Projektowanie filtru Zadania Filtrowanie a sploty idea x=[2222222222] %sygnałstochastycznyodługości5próbek h=[1111]/4; %Filtruśredniającypo4sąsiednichelementach y=conv(h,x)%zaaplikowaniefiltruhdosygnałux W powyższym przykładzie proszę

Bardziej szczegółowo

8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT)

8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) 8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) Ćwiczenie polega na wykonaniu analizy widmowej zadanych sygnałów metodą FFT, a następnie określeniu amplitud i częstotliwości głównych składowych

Bardziej szczegółowo

Optyka Fourierowska. Wykład 11 Apodyzacja, superrozdzielczość i odtwarzanie utraconych informacji

Optyka Fourierowska. Wykład 11 Apodyzacja, superrozdzielczość i odtwarzanie utraconych informacji Optyka Fourierowska Wykład 11 Apodyzacja, superrozdzielczość i odtwarzanie utraconych informacji Dyfrakcja a obrazowanie W obrazowaniu optycznym dyfrakcja jest głównym zjawiskiem ograniczającym moc rozdzielczą

Bardziej szczegółowo

Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy

Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy Grupa: wtorek 18:3 Tomasz Niedziela I. CZĘŚĆ ĆWICZENIA 1. Cel i przebieg ćwiczenia. Celem ćwiczenia

Bardziej szczegółowo

Wersja do wydruku - bez części teoretycznej

Wersja do wydruku - bez części teoretycznej Jacek Misiurewicz Krzysztof Kulpa Piotr Samczyński Mateusz Malanowski Piotr Krysik Łukasz Maślikowski Damian Gromek Artur Gromek Marcin K. Bączyk Zakład Teorii Obwodów i Sygnałów Instytut Systemów Elektronicznych

Bardziej szczegółowo

Podstawy Transmisji Przewodowej Wykład 1

Podstawy Transmisji Przewodowej Wykład 1 Podstawy Transmisji Przewodowej Wykład 1 Grzegorz Stępniak Instytut Telekomunikacji, PW 24 lutego 2012 Instytut Telekomunikacji, PW 1 / 26 1 Informacje praktyczne 2 Wstęp do transmisji przewodowej 3 Multipleksacja

Bardziej szczegółowo

LABORATORIUM PODSTAW TELEKOMUNIKACJI

LABORATORIUM PODSTAW TELEKOMUNIKACJI WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego w Warszawie Wydział Elektroniki LABORATORIUM PODSTAW TELEKOMUNIKACJI Grupa Podgrupa Data wykonania ćwiczenia Ćwiczenie prowadził... Skład podgrupy:

Bardziej szczegółowo

Estymacja punktowa i przedziałowa

Estymacja punktowa i przedziałowa Temat: Estymacja punktowa i przedziałowa Kody znaków: żółte wyróżnienie nowe pojęcie czerwony uwaga kursywa komentarz 1 Zagadnienia 1. Statystyczny opis próby. Idea estymacji punktowej pojęcie estymatora

Bardziej szczegółowo

SMOP - wykład. Rozkład normalny zasady przenoszenia błędów. Ewa Pawelec

SMOP - wykład. Rozkład normalny zasady przenoszenia błędów. Ewa Pawelec SMOP - wykład Rozkład normalny zasady przenoszenia błędów Ewa Pawelec 1 iepewność dla rozkładu norm. Zamiast dodawania całych zakresów uwzględniamy prawdopodobieństwo trafienia dwóch wartości: P x 1, x

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Lądowej obowiązuje studentów rozpoczynających studia w roku akademickim 01/015 Kierunek studiów: Transport Forma sudiów:

Bardziej szczegółowo

Wnioskowanie statystyczne. Statystyka w 5

Wnioskowanie statystyczne. Statystyka w 5 Wnioskowanie statystyczne tatystyka w 5 Rozkłady statystyk z próby Próba losowa pobrana z populacji stanowi realizacje zmiennej losowej jak ciąg zmiennych losowych (X, X,... X ) niezależnych i mających

Bardziej szczegółowo

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI)

Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe

Bardziej szczegółowo

ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH

ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH Generowanie podstawowych przebiegów okresowych sawtooth() przebieg trójkątny (wierzhołki +/-1, okres 2 ) square() przebieg kwadratowy (okres 2 ) gauspuls()przebieg sinusoidalny

Bardziej szczegółowo

KARTA MODUŁU / KARTA PRZEDMIOTU

KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Cyfrowe przetwarzanie sygnałów pomiarowych_e2s

Bardziej szczegółowo

Systemy akwizycji i przesyłania informacji

Systemy akwizycji i przesyłania informacji Politechnika Rzeszowska im. Ignacego Łukasiewicza w Rzeszowie Wydział Elektryczny Kierunek: Informatyka Systemy akwizycji i przesyłania informacji Projekt zaliczeniowy Temat pracy: Okna wygładzania ZUMFL

Bardziej szczegółowo

Analiza sygnałów biologicznych

Analiza sygnałów biologicznych Analiza sygnałów biologicznych Paweł Strumiłło Zakład Elektroniki Medycznej Instytut Elektroniki PŁ Co to jest sygnał? Funkcja czasu x(t) przenosząca informację o stanie lub działaniu układu (systemu),

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3.

Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3. Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3. Sygnały deterministyczne 4 1.3.1. Parametry 4 1.3.2. Przykłady 7 1.3.3. Sygnały

Bardziej szczegółowo

Sposoby opisu i modelowania zakłóceń kanałowych

Sposoby opisu i modelowania zakłóceń kanałowych INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń

Bardziej szczegółowo

ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM

ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM ELEKTRONIKA W EKSPERYMENCIE FIZYCZNYM D. B. Tefelski Zakład VI Badań Wysokociśnieniowych Wydział Fizyki Politechnika Warszawska, Koszykowa 75, 00-662 Warszawa, PL 7 marca 2011 Zakłócenia i szumy elektryczne,

Bardziej szczegółowo

METODY ANALIZY SYGNAŁÓW WIBROAKUSTYCZNYCH

METODY ANALIZY SYGNAŁÓW WIBROAKUSTYCZNYCH INSTYTUT KONSTRUKCJI MASZYN LABORATORIUM METODY ANALIZY SYGNAŁÓW WIBROAKUSTYCZNYCH Methods of analyzing vibro-acoustics signal Zakres ćwiczenia: 1. Rodzaje sygnałów. 2. Metody analizy sygnałów w dziedzinie

Bardziej szczegółowo

Układy stochastyczne

Układy stochastyczne Instytut Informatyki Uniwersytetu Śląskiego 21 stycznia 2009 Definicja Definicja Proces stochastyczny to funkcja losowa, czyli funkcja matematyczna, której wartości leżą w przestrzeni zdarzeń losowych.

Bardziej szczegółowo

Dyskretne przekształcenie Fouriera cz. 2

Dyskretne przekształcenie Fouriera cz. 2 Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Dyskretne przekształcenie Fouriera cz. 2 Twierdzenie o przesunięciu Istnieje ważna właściwość DFT, znana jako twierdzenie o przesunięciu. Mówi ono, że: przesunięcie

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne 13. Elementy statystki matematycznej I Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 17.01.2019 1 / 30 Zagadnienia statystki Przeprowadzamy

Bardziej szczegółowo

Transformata Fouriera i analiza spektralna

Transformata Fouriera i analiza spektralna Transformata Fouriera i analiza spektralna Z czego składają się sygnały? Sygnały jednowymiarowe, częstotliwość Liczby zespolone Transformata Fouriera Szybka Transformata Fouriera (FFT) FFT w 2D Przykłady

Bardziej szczegółowo

Obliczanie niepewności rozszerzonej metodą analityczną opartą na splocie rozkładów wielkości wejściowych

Obliczanie niepewności rozszerzonej metodą analityczną opartą na splocie rozkładów wielkości wejściowych Obliczanie niepewności rozszerzonej metodą analityczną opartą na splocie rozkładów wejściowych Paweł Fotowicz * Przedstawiono ścisłą metodę obliczania niepewności rozszerzonej, polegającą na wyznaczeniu

Bardziej szczegółowo

(u) y(i) f 1. (u) H(z -1 )

(u) y(i) f 1. (u) H(z -1 ) IDETYFIKACJA MODELI WIEERA METODAMI CZĘSTOTLIWOŚCIOWYMI Opracowanie: Anna Zamora Promotor: dr hab. inż. Jarosław Figwer Prof. Pol. Śl. MODELE WIEERA MODELE WIEERA Modele obietów nieliniowych Modele nierozłączne

Bardziej szczegółowo

LABORATORIUM AKUSTYKI MUZYCZNEJ. Ćw. nr 12. Analiza falkowa dźwięków instrumentów muzycznych. 1. PODSTAWY TEORETYCZNE ANALIZY FALKOWEJ.

LABORATORIUM AKUSTYKI MUZYCZNEJ. Ćw. nr 12. Analiza falkowa dźwięków instrumentów muzycznych. 1. PODSTAWY TEORETYCZNE ANALIZY FALKOWEJ. LABORATORIUM AKUSTYKI MUZYCZNEJ. Ćw. nr 1. Analiza falkowa dźwięków instrumentów muzycznych. 1. PODSTAWY TEORETYCZNE ANALIZY FALKOWEJ. Transformacja falkowa (ang. wavelet falka) przeznaczona jest do analizy

Bardziej szczegółowo

Recenzja rozprawy doktorskiej mgr Ziemowita Klimondy

Recenzja rozprawy doktorskiej mgr Ziemowita Klimondy Warszawa, dnia 29 kwietnia 2013r. dr hab. inż. Krzysztof Kałużyński, prof.nzw. PW Instytut Metrologii i Inżynierii Biomedycznej PW ul.boboli 8, 02-525 Warszawa Recenzja rozprawy doktorskiej mgr Ziemowita

Bardziej szczegółowo

... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu...

... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu... 4 Prognozowanie historyczne Prognozowanie - przewidywanie przyszłych zdarzeń w oparciu dane - podstawowy element w podejmowaniu decyzji... prognozowanie nie jest celem samym w sobie a jedynie narzędziem

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów Biomedycznych

Laboratorium Przetwarzania Sygnałów Biomedycznych PSB - laboratorium Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 5 Analiza sygnału świergotowego przy zastosowaniu transformacji Hilberta Opracowali: - prof. dr hab. inż. Krzysztof Kałużyński

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Laboratorium Przetwarzania Sygnałów. Ćwiczenie 3. Filtracja i korelacja sygnałów dyskretnych

Laboratorium Przetwarzania Sygnałów. Ćwiczenie 3. Filtracja i korelacja sygnałów dyskretnych PTS laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 3 Filtracja i korelacja sygnałów dyskretnych Opracowali: - prof. dr hab. inż. Krzysztof Kałużyński - dr inż. Beata Leśniak-Plewińska - dr

Bardziej szczegółowo

Przetwarzanie Sygnałów. Zastosowanie Transformaty Falkowej w nadzorowaniu

Przetwarzanie Sygnałów. Zastosowanie Transformaty Falkowej w nadzorowaniu Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka Zastosowanie Transformaty Falkowej

Bardziej szczegółowo

Metoda największej wiarygodności

Metoda największej wiarygodności Metoda największej wiarygodności Próbki w obecności tła Funkcja wiarygodności Iloraz wiarygodności Pomiary o różnej dokładności Obciążenie Informacja z próby i nierówność informacyjna Wariancja minimalna

Bardziej szczegółowo

Rachunek Prawdopodobieństwa Anna Janicka

Rachunek Prawdopodobieństwa Anna Janicka Rachunek Prawdopodobieństwa Anna Janicka wykład XIV, 24.01.2017 ŁAŃCUCHYMARKOWA CD. KRÓTKIE INFO O RÓŻNYCH WAŻNYCH ROZKŁADACH Plan na dzisiaj Łańcuchy Markowa cd. Różne ważne rozkłady prawdopodobieństwa,

Bardziej szczegółowo

Wykład 2: Szeregi Fouriera

Wykład 2: Szeregi Fouriera Rachunek prawdopodobieństwa MAP64 Wydział Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab. A. Jurlewicz Wykład : Szeregi Fouriera Definicja. Niech f(t) będzie funkcją określoną na R, okresową

Bardziej szczegółowo

CYFROWE PRZETWARZANIE SYGNAŁÓW

CYFROWE PRZETWARZANIE SYGNAŁÓW POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI Katedra Metrologii i Systemów Diagnostycznych CYFROWE PRZETWARZANIE SYGNAŁÓW Sygnały stochastyczne, parametry w dziedzinie

Bardziej szczegółowo

O ŚREDNIEJ STATYSTYCZNEJ

O ŚREDNIEJ STATYSTYCZNEJ O ŚREDNIEJ STATYSTYCZNEJ Ryszard Zieliński XII Międzynarodowe Warsztaty dla Młodych Matematyków Rachunek Prawdopodobieństwa i Statystyka Kraków, 20 26 IX 2009 r. WYNIKI OBSERWACJI X 1, X 2,..., X n WYNIKI

Bardziej szczegółowo

1 Estymacja i analiza względnych zmian gęstości energii sygnału EEG w przestrzeni czasczęstość

1 Estymacja i analiza względnych zmian gęstości energii sygnału EEG w przestrzeni czasczęstość Pracownia EEG / Czas-częstość Spis treści 1 Estymacja i analiza względnych zmian gęstości energii sygnału EEG w przestrzeni czasczęstość 1.1 Zasada nieoznaczoności dla przestrzeni czas-częstość 1.2 Estymatory

Bardziej szczegółowo

Zaawansowane algorytmy DSP

Zaawansowane algorytmy DSP Zastosowania Procesorów Sygnałowych dr inż. Grzegorz Szwoch greg@multimed.org p. 732 - Katedra Systemów Multimedialnych Zaawansowane algorytmy DSP Wstęp Cztery algorytmy wybrane spośród bardziej zaawansowanych

Bardziej szczegółowo

Wnioskowanie bayesowskie

Wnioskowanie bayesowskie Wnioskowanie bayesowskie W podejściu klasycznym wnioskowanie statystyczne oparte jest wyłącznie na podstawie pobranej próby losowej. Możemy np. estymować punktowo lub przedziałowo nieznane parametry rozkładów,

Bardziej szczegółowo

ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 1. Modelowanie i analiza widmowa dyskretnych sygnałów losowych

ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM. Ćwiczenie 1. Modelowanie i analiza widmowa dyskretnych sygnałów losowych ADAPTACYJNE PRZETWARZANIE SYGNAŁÓW LABORATORIUM Ćwiczenie 1 Modelowanie i analiza widmowa dyskretnych sygnałów losowych 1. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie studentów z wybranymi algorytmami

Bardziej szczegółowo

Statystyka w przykładach

Statystyka w przykładach w przykładach Tomasz Mostowski Zajęcia 10.04.2008 Plan Estymatory 1 Estymatory 2 Plan Estymatory 1 Estymatory 2 Własności estymatorów Zazwyczaj w badaniach potrzebujemy oszacować pewne parametry na podstawie

Bardziej szczegółowo

Laboratorium Techniki ultradźwiękowej w diagnostyce medycznej

Laboratorium Techniki ultradźwiękowej w diagnostyce medycznej TUD - laboratorium Laboratorium Techniki ultradźwiękowej w diagnostyce medycznej Ćwiczenie 1 Analiza sygnałów występujących w diagnostycznej aparaturze ultradźwiękowej (rev.2) Opracowali: prof. nzw. dr

Bardziej szczegółowo

Od neuronu do sieci: modelowanie układu nerwowego

Od neuronu do sieci: modelowanie układu nerwowego Od neuronu do sieci: modelowanie układu nerwowego Stochastyczne modele generacji iglic Kodowanie informacji w układzie nerwowym dr Daniel Wójcik Na podstawie podręcznika THEORETICAL NEUROSCIENCE Petera

Bardziej szczegółowo

12. Przynależność do grupy przedmiotów: Blok przedmiotów matematycznych

12. Przynależność do grupy przedmiotów: Blok przedmiotów matematycznych (pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: Rachunek prawdopodobieństwa i statystyka matematyczna 2. Kod przedmiotu: RPiS 3. Karta przedmiotu ważna od roku akademickiego:

Bardziej szczegółowo

LABORATORIUM CYFROWEGO PRZETWARZANIA SYGNAŁÓW. Ćwiczenie 3

LABORATORIUM CYFROWEGO PRZETWARZANIA SYGNAŁÓW. Ćwiczenie 3 Wydział Elektryczny ZTMAiPC LABORATORIUM CYFROWEGO PRZETWARZAIA SYGAŁÓW Ćwiczenie 3 Dyskretne sygnały stochastyczne - analiza widmowa i korelacyjna. Cel ćwiczenia Opanowanie podstawowych pojęć: funkcji

Bardziej szczegółowo

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem: PPS 2 kartkówka 1 RÓWNANIE RÓŻNICOWE Jest to dyskretny odpowiednik równania różniczkowego. Równania różnicowe to pewne związki rekurencyjne określające w sposób niebezpośredni wartość danego wyrazu ciągu.

Bardziej szczegółowo