Przetwarzanie Sygnałów. Zastosowanie Transformaty Falkowej w nadzorowaniu
|
|
- Elżbieta Woźniak
- 6 lat temu
- Przeglądów:
Transkrypt
1 Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka Zastosowanie Transformaty Falkowej w nadzorowaniu. Wstęp Dobrze znana i szeroko wykorzystywana w analizie sygnałów Transformata Fouriera (ang. Fourier Transform, FT) dokonuje dekompozycji sygnału na składowe sinusoidalne o różnych częstotliwościach: F jt ( ) f ( t) e dt () gdzie F() jest widmem częstotliwościowym, a f(t) badaną realizacją czasową. Podczas transformacji następuje zmiana dziedziny czasu na dziedzinę częstotliwości (Rys. ). W wyniku tej operacji informacja czasowa zostaje utracona. Jest to poważną wadą w przypadku analizy sygnałów niestacjonarnych, gdy informacja o chwili wystąpienia i czasie trwania danego zjawiska jest bardzo istotna Z tego względu transformata Fouriera jest skuteczna jedynie dla sygnałów periodycznych, regularnych i stacjonarnych. Rys.. Transformata Fouriera. Przejście z dziedziny czasu do dziedziny częstotliwości: sygnał w dziedzinie czasu (po lewej) i w dziedzinie częstotliwości (po prawej). W pewnym stopniu remedium na wady transformaty Fouriera jest zaproponowana w roku 946 przez Dennisa Gabora krótko-okresowa transformata Fouriera (ang. Short-Time Fourier Transform, STFT). Transformata ta, za pomocą przesuwanego wzdłuż sygnału okna czasowego w(t), dzieli sygnał na małe kawałki, które można uznać za stacjonarne. Następnie, kawałki te poddawane są FT (Rys. 2): F jt ( t, ) [ f ( t) w( t )] e dt (2) W ten sposób odzyskuje się, w pewnym stopniu, traconą przez FT informację czasową.
2 amplituda okno STFT częstotliwość czas czas Rys. 2. Zasada działania STFT. Główną wadą STFT jest fakt, że jakość informacji częstotliwościowej jest odwrotnie proporcjonalna do jakości informacji czasowej. Związane jest to z szerokością okna czasowego, która jest stała. Dla wąskiego okna występuje dobra rozdzielczość czasowa i słaba rozdzielczość częstotliwościowa, dla szerokiego okna sytuacja jest odwrotna. Transformata falkowa natomiast dokonuje dekompozycji sygnału na składowe falkowe o różnych częstotliwościach (skalach) i różnych pozycjach. Ponieważ falka zmienia swoją szerokość (skalę), nie występuje tu, jak w STFT, antagonizm między rozdzielczością informacji czasowej, a rozdzielczością informacji częstotliwościowej. Falkę można tu rozpatrywać w kategoriach okna o zmiennej szerokości. Dla porównania, na Rys. 3 przedstawiono rozdzielczość reprezentacji czasowej, częstotliwościowej, STFT oraz falkowej. Rys. 3. Różnice w rozdzielczości w dziedzinie: czasowej, częstotliwościowej, transformaty STFT oraz falkowej. Asymetria i nieregularne kształty niektórych falek naturalnie predysponują je do analizy sygnałów przejściowych, o gwałtownych zmianach i pikach. Sygnały takie, o wiele trudniej odwzorować za pomocą sinusoid. Ponieważ dla różnych falek uzyskuje się różne reprezentacje tego samego sygnału, kluczową sprawą jest wybór falki bazowej. Jest to bardzo ważny element całej analizy. Na Rys. 4 przedstawiono kilka najbardziej popularnych falek.
3 - - - falka Haara falka Meyera falka Coiflet 'coif6' 5.5 f. skalująca Haara f. skalująca Meyera - f. skalująca Coiflet 'coif6' falka Morleta - - falka Daubechies 'db6' falka Symlet 'sym6' 5 falka Meksykański Kapelusz - - f. skalująca Daubechies 'db6' - 5 f. skalująca Symlet 'sym6' - 5 Rys. 4. Różne rodzaje falek, oraz odpowiadające im funkcje skalujące. 2. Ciągła transformata falkowa Ciągła transformata falkowa (ang. Continous Wavelet Transform, CWT) ma postać: f ( a, b) gdzie: L 2 (R), f L 2 (R), b R, a R +. a t b f t dt a (3) Jądrem transformaty falkowej jest falka podstawowa (bazowa) L 2 (R) (ang. mother wavelet). Generalnie jest ona funkcją oscylującą, szybko zanikającą lub określoną na nośniku zwartym, o zerowej wartości średniej. Rodzina falek jest tworzona z falki podstawowej poprzez jej przesunięcie, realizowane przez parametr translacji b oraz zmianę jej skali (częstotliwości) realizowanej przez parametr skalujący a: t b a, b( t) (4) a a
4 Czynnik normalizujący a -/2 sprawia, że wszystkie falki rodziny mają taką samą energię. Wzór (3) produkuje współczynniki falkowe f(a,b), które są funkcją skali a i przesunięcia b. Współczynnik falkowy jest miarą podobieństwa (korelacji) między sygnałem f(t) a falką dla odpowiedniej skali i pozycji. Rys. 5 obrazuje procedurę obliczania tych współczynników. Falka jest przesuwania wzdłuż sygnału i dla każdej jej pozycji obliczany jest współczynnik falkowy. Po osiągnięciu końca sygnału, falka zostaje przeskalowana, powraca na początek sygnału i cała procedura się powtarza. Zestaw wszystkich współczynników f(a,b) reprezentuje sygnał f(t) w dziedzinie falkowej. t) t-k) t-2) k t-3) k Powtórz operację translacji Translacja Translacja Skalowanie Translacja Translacja t/2) Rys. 5. Procedura obliczania współczynników falkowych dla CWT. Istnieją różne metody graficznej reprezentacji ciągłej transformaty falkowej. Rys. 6 przedstawia jedną z nich: dwuwymiarową reprezentację współczynników falkowych w funkcji czasu i skali, gdzie kolor oznacza amplitudę współczynników. Analizowany jest tu sygnał skokowy, zakłócony szumem białym. W miejscach zmian wartości średniej (tj. w próbkach 5,, 5) wyraźnie widać pionowe czarne linie, które je identyfikują. Można zatem stosować tę transformatę jako detektor skokowych zmian w sygnale.
5 Rys. 6. Wizualizacja ciągłej transformaty falkowej z zastosowaniem falki db3. 3. Dyskretna transformata falkowa Transformata falkowa jest przekształceniem dwuparametrowym, odwzorowującym jednowymiarowy sygnał f(t) w dwuwymiarową tablicę współczynników c j,k : j / 2 j f ( t) c 2 2 t k (5) j, k j, k gdzie zbiór funkcji falkowych j, k ( t) jest zazwyczaj bazą ortogonalną. Zbiór wszystkich współczynników cj,k jest nazywany dyskretną transformatą falkową sygnału f(t), a wzór (5) jest transformatą odwrotną. Wprowadzając tzw. funkcję skalującą φj,k sygnał f(t) można przedstawić jako: t t f ( t) a d (6) k k k j, k j, k j k Pierwsza suma we wzorze (6) stanowi aproksymację sygnału, druga suma, wraz ze wzrostem j reprezentuje coraz bardziej szczegółowe detale sygnału.
6 Transformatę falkową można rozpatrywać w kategoriach filtrów cyfrowych. Jeżeli wyrazimy funkcję skalującą (t) i falkę jako sumę ważoną przesuniętych funkcji skalujących z wyższego poziomu (2t): t h( n) 2 2 t n (7) (t) n t h n t n ( ) 2 2 (8) to h(n) i h(n) możemy traktować jako współczynniki cyfrowego filtru FIR. n Rys. 7. Pojedynczy blok transformacyjny (po lewej) oraz cały proces dekompozycji (po prawej). Pojedynczy blok transformacyjny jest przedstawiony na Rys. 7. Filtr górno-przepustowy h(n) reprezentuje falkę podstawową i na wyjściu produkuje współczynniki falkowe (detale sygnału). Filtr dolno-przepustowy h(n) reprezentuje funkcję skalującą i na wyjściu daje aproksymację sygnału. Cały proces dekompozycji polega na przepływie sygnału przez identyczne bloki transformacyjne, tak, że wyjście z poprzedniego bloku jest wejściem do następnego bloku. Podobnie jak w przypadku CWT, istnieje szereg możliwości graficznej reprezentacji DWT. Na Rys. 8 zostały pokazane przebiegi aproksymacji i detali dla tego samego sygnału, który był analizowanego za pomocą CWT na Rys. 6. Jak widać, sygnał aproksymacji na poziomie 9 (a9) mógłby być z powodzeniem wykorzystany jako funkcja decyzyjna, dla celów rozpoznawania momentu zmiany wartości średniej zakłóconego sygnału.
7 Rys. 8. Przebiegi aproksymacji i detali. Kolumna lewa zawiera analizowany sygnał (na górze) oraz kolejne jego aproksymacje (od ado a9). W kolumnie prawej analogiczne przedstawione są detale (od ddo d9). 4. Matlab Wavelet Toolbox Matlab posiada narzędzia do analizy falkowej zgromadzone w Wavelet Toolbox. Toolbox ten w postaci graficznego interfejsu uruchamia się wpisując w linii komend: wavemenu Pojawia się wtedy następujące okno (Rys. 9):
8 Rys. 9. Menu główne Wavelet Toolbox Transformata ciągła znajduje się pod przyciskiem Continuous Wavelet -D, a transformata dyskretna pod przyciskiem Wavelet -D. Sygnał do analizy należy zapisać w formacie mat-pliku, za pomocą polecenia save: save nazwa_pliku nazwa_zmiennej W wyniku powstanie sygnał nazwa_pliku.mat zawierający zmienną nazwa_zmiennej. Następnie w oknie Continuous Wavelet -D lub Wavelet -D należy kliknąć menu File Load Signal i wybrać nazwa_pliku.mat. Na Rys. znajduje się opis parametrów ciągłej transformaty falkowej dla okna Continuous Wavelet -D (takie ustawienia zostały zastosowane na Rys. 6). Natomiast na Rys. znajduje się opis parametrów dyskretnej transformaty falkowej dla okna Wavelet -D (takie ustawienia zostały zastosowane na Rys. 8).
9 nazwa sygnału i jego długość rząd falki nazwa falki okres próbkowania tryb ustawiania osi skali(pionowej) poziom minimalny (początkowy) krok zmiany skali poziom maksymalny (końcowy) uruchomienie obliczeń Rys.. Parametry transformacji okna Continuous Wavelet -D.
10 nazwa sygnału i jego długość nazwa falki poziom dekompozycji uruchomienie obliczeń tryb wizualizacji wyników więcej opcji wizualizacji Rys. Parametry transformacji okna Wavelet -D.
11 Zamiast korzystać z interfejsu graficznego, można napisać odpowiedni program w Matlabie. Poniżej znajduje się przykładowy kod realizujący obliczanie i wyświetlanie aproksymacji i detali dla dyskretnej transformaty falkowej (uzyskujemy efekt podobny do Rys. 8). % Transformata Falkowa % Obliczanie detali i aproksymacji sygnału clear % wygenerowanie sygnału testowego N = 2; war =.3; std = sqrt(war); s = skoki(n,[ -]); sygnal = s + std*randn(n,); % transformata poziom=9; %maksymalny poziom dekompozycji falka='haar'; %rodzaj falki [C,L] = wavedec(sygnal,poziom,falka); %dyskretna transformata falkowa a9=wrcoef('a',c,l,falka,9); %aproksymacja na poziomie 9 d9=wrcoef('d',c,l,falka,9); %detale na poziomie 9 a8=wrcoef('a',c,l,falka,8); %aproksymacja na poziomie 8 d8=wrcoef('d',c,l,falka,8); %detale na poziomie 8 %... % analogicznie można obliczać detale i aproksymacje na kolejnych poziomach (niższych) %... % wizualizacja subplot(3,,),plot(sygnal),title('sygnał'),axis([ length(s) min(s) max(s)]) subplot(3,2,3),plot(a9),ylabel('a9'),title('aproksymacje') subplot(3,2,4),plot(d9),ylabel('d9'),title('detale') subplot(3,2,5),plot(a8),ylabel('a8') subplot(3,2,6),plot(d8),ylabel('d8') %... % analogicznie dla kolejnych poziomów dekompozycji % Wykonanie ćwiczenia Wygenerować sygnał ze skokową zmianą wartości średniej i sygnał ze skokową zmianą wariancji, zakłócony szumem białym. a) Dla różnych parametrów sygnałów testowych (wartości zakłócenia, poziomu skoku, wariancji, itp.) i różnych parametrów transformaty (rodzaju falki, rzędu falki, poziomu dekompozycji) wykonać kilka prób ciągłej transformaty falkowej i wyciągnąć wnioski w kwestii przydatności tej transformaty do detekcji nagłych zmian w sygnale. b) Zbadać przydatność aproksymacji w dyskretnej transformacie falkowej jako funkcji decyzyjnej, dla celów rozpoznawania momentu zmiany wartości średniej zakłóconego sygnału (rodzaj i rząd falki, poziom dekompozycji, itp. należy dobrać empirycznie). Wykonać badania statystyczne dla populacji -5 sygnałów testowych. Można się
12 oprzeć na przedstawionym powyżej kodzie Matlaba i poniższej funkcji do generowania skoków function [y,kdl] = skoki(n,amplitudy) % generowanie sygnału złożonego ze skoków % Wejścia: % N - długość sygnału % amplitudy - amplitudy skoków % Np. amplitudy = [ -5-5] % Wyjścia: % y - sygnał skokowy % kdl - długość skoku k=length(amplitudy); %liczba skoków kdl=round(n/k); y=ones(kdl,k); for i=:k y(:,i)=y(:,i)*amplitudy(i); end y=y(:); %wyrównanie sygnału do długości N N2=length(y); while(n~=n2) if N2 > N y(end)=[]; else y(end+)=y(end); end N2=length(y); end
LABORATORIUM AKUSTYKI MUZYCZNEJ. Ćw. nr 12. Analiza falkowa dźwięków instrumentów muzycznych. 1. PODSTAWY TEORETYCZNE ANALIZY FALKOWEJ.
LABORATORIUM AKUSTYKI MUZYCZNEJ. Ćw. nr 1. Analiza falkowa dźwięków instrumentów muzycznych. 1. PODSTAWY TEORETYCZNE ANALIZY FALKOWEJ. Transformacja falkowa (ang. wavelet falka) przeznaczona jest do analizy
Cyfrowe przetwarzanie i kompresja danych
Cyfrowe przetwarzanie i kompresja danych dr inż.. Wojciech Zając Wykład 5. Dyskretna transformata falkowa Schemat systemu transmisji danych wizyjnych Źródło danych Przetwarzanie Przesył Przetwarzanie Prezentacja
Akwizycja i przetwarzanie sygnałów cyfrowych
Akwizycja i przetwarzanie sygnałów cyfrowych Instytut Teleinformatyki ITI PK Kraków 21 luty 2011 Analiza czas - częstotliwość analiza częstotliwościowa: problem dla sygnału niestacjonarnego zwykła transformata
Laboratorium Przetwarzania Sygnałów
PTS - laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 4 Transformacja falkowa Opracował: - prof. dr hab. inż. Krzysztof Kałużyński Zakład Inżynierii Biomedycznej Instytut Metrologii i Inżynierii
2. Próbkowanie Sygnały okresowe (16). Trygonometryczny szereg Fouriera (17). Częstotliwość Nyquista (20).
SPIS TREŚCI ROZDZIAŁ I SYGNAŁY CYFROWE 9 1. Pojęcia wstępne Wiadomości, informacje, dane, sygnały (9). Sygnał jako nośnik informacji (11). Sygnał jako funkcja (12). Sygnał analogowy (13). Sygnał cyfrowy
Podstawy Przetwarzania Sygnałów
Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech
EKSTRAKCJA CECH TWARZY ZA POMOCĄ TRANSFORMATY FALKOWEJ
Janusz Bobulski Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska ul. Dąbrowskiego 73 42-200 Częstochowa januszb@icis.pcz.pl EKSTRAKCJA CECH TWARZY ZA POMOCĄ TRANSFORMATY FALKOWEJ
Zastosowanie falek w przetwarzaniu obrazów
Informatyka, S2 sem. Letni, 2013/2014, wykład#1 Zastosowanie falek w przetwarzaniu obrazów dr inż. Paweł Forczmański Katedra Systemów Multimedialnych, Wydział Informatyki ZUT 1 / 61 Alfréd Haar Alfréd
Laboratorium Przetwarzania Sygnałów Biomedycznych
Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 2 Analiza sygnału EKG przy użyciu transformacji falkowej Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - inż. Tomasz Kubik Politechnika
Cyfrowe przetwarzanie sygnałów. Wykład 10. Transformata cosinusowa. Falki. Transformata falkowa. dr inż. Robert Kazała
Cyfrowe przetwarzanie sygnałów Wykład 10 Transformata cosinusowa. Falki. Transformata falkowa. dr inż. Robert Kazała 1 Transformata cosinusowa Dyskretna transformacja kosinusowa, (DCT ang. discrete cosine
Laboratorium Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przetwarzaniem sygnałów w MATLAB. 2. Program ćwiczenia. Przykład 1 Wprowadź
Podstawy Informatyki 1 Laboratorium 9 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przetwarzaniem sygnałów w MATLAB 2. Program ćwiczenia Przykład 1 Wprowadź fo = 4; %frequency of the sine wave
CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera)
I. Wprowadzenie do ćwiczenia CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) Ogólnie termin przetwarzanie sygnałów odnosi się do nauki analizowania zmiennych w czasie procesów fizycznych.
TRANSFORMATA FALKOWA 2D. Oprogramowanie Systemów Obrazowania 2016/2017
TRANSFORMATA FALKOWA 2D Oprogramowanie Systemów Obrazowania 2016/2017 Wielorozdzielczość - dekompozycja sygnału w ciąg sygnałów o coraz mniejszej rozdzielczości na wielu poziomach gdzie: s l+1 - aproksymata
TRANSFORMATA FALKOWA. Joanna Świebocka-Więk
TRANSFORMATA FALKOWA Joanna Świebocka-Więk Plan prezentacji 1. Fala a falka czyli porównanie transformaty Fouriera i falkowej 2. Funkcja falkowa a funkcja skalująca 3. Ciągła transformata falkowa 1. Skala
Podstawy MATLABA, cd.
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka Podstawy MATLABA, cd. 1. Wielomiany 1.1. Definiowanie
AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ
AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ ELEMETY ELEKTRONIKI LABORATORIUM Kierunek NAWIGACJA Specjalność Transport morski Semestr II Ćw. 1 Poznawanie i posługiwanie się programem Multisim 2001 Wersja
PL B1. Sposób i układ pomiaru całkowitego współczynnika odkształcenia THD sygnałów elektrycznych w systemach zasilających
RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 210969 (13) B1 (21) Numer zgłoszenia: 383047 (51) Int.Cl. G01R 23/16 (2006.01) G01R 23/20 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)
Politechnika Świętokrzyska. Laboratorium. Cyfrowe przetwarzanie sygnałów. Ćwiczenie 6. Transformata cosinusowa. Krótkookresowa transformata Fouriera.
Politechnika Świętokrzyska Laboratorium Cyfrowe przetwarzanie sygnałów Ćwiczenie 6 Transformata cosinusowa. Krótkookresowa transformata Fouriera. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów
Definicja. x(u)h (u t)e i2πuf du. F x (t,f ;h) = Krótko czasowa transformata Fouriera Ciągłą transformata falkowa
Definicja Krótko czasowa transformata Fouriera(STFT) może być rozumiana jako seria transformat Fouriera wykonanych na sygnale okienkowanym, przy czym położenie okienka w czasie jest w ramach takiej serii
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 10. Dyskretyzacja
Przekształcenie Fouriera obrazów FFT
Przekształcenie ouriera obrazów T 6 P. Strumiłło, M. Strzelecki Przekształcenie ouriera ourier wymyślił sposób rozkładu szerokiej klasy funkcji (sygnałów) okresowych na składowe harmoniczne; taką reprezentację
ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU
ANALIZA SEMANTYCZNA OBRAZU I DŹWIĘKU obraz dr inż. Jacek Naruniec Analiza Składowych Niezależnych (ICA) Independent Component Analysis Dąży do wyznaczenia zmiennych niezależnych z obserwacji Problem opiera
FFT i dyskretny splot. Aplikacje w DSP
i dyskretny splot. Aplikacje w DSP Marcin Jenczmyk m.jenczmyk@knm.katowice.pl Wydział Matematyki, Fizyki i Chemii 10 maja 2014 M. Jenczmyk Sesja wiosenna KNM 2014 i dyskretny splot 1 / 17 Transformata
8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT)
8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) Ćwiczenie polega na wykonaniu analizy widmowej zadanych sygnałów metodą FFT, a następnie określeniu amplitud i częstotliwości głównych składowych
Falki, transformacje falkowe i ich wykorzystanie
Falki, transformacje falkowe i ich wykorzystanie Wstęp Praca próbuje opisać czym jest falka oraz podać zastosowania falek w praktyce. Na wstępie w Postaci matematycznej falki zaprezentujemy czym jest problem
Akustyka muzyczna ANALIZA DŹWIĘKÓW MUZYCZNYCH
Akustyka muzyczna ANALIZA DŹWIĘKÓW MUZYCZNYCH Dźwięk muzyczny Dźwięk muzyczny sygnał wytwarzany przez instrument muzyczny. Najważniejsze parametry: wysokość związana z częstotliwością podstawową, barwa
Przekształcenia widmowe Transformata Fouriera. Adam Wojciechowski
Przekształcenia widmowe Transformata Fouriera Adam Wojciechowski Przekształcenia widmowe Odmiana przekształceń kontekstowych, w których kontekstem jest w zasadzie cały obraz. Za pomocą transformaty Fouriera
DYSKRETNA TRANSFORMACJA FOURIERA
Laboratorium Teorii Sygnałów - DFT 1 DYSKRETNA TRANSFORMACJA FOURIERA Cel ćwiczenia Celem ćwiczenia jest przeprowadzenie analizy widmowej sygnałów okresowych za pomocą szybkiego przekształcenie Fouriera
TRANSFORMATA FALKOWA WYBRANYCH SYGNAŁÓW SYMULACYJNYCH
1-2013 PROBLEMY EKSPLOATACJI 27 Izabela JÓZEFCZYK, Romuald MAŁECKI Politechnika Warszawska, Płock TRANSFORMATA FALKOWA WYBRANYCH SYGNAŁÓW SYMULACYJNYCH Słowa kluczowe Sygnał, dyskretna transformacja falkowa,
Opis efektów kształcenia dla modułu zajęć
Nazwa modułu: Teoria i przetwarzanie sygnałów Rok akademicki: 2013/2014 Kod: EEL-1-524-s Punkty ECTS: 6 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Elektrotechnika
Metody Przetwarzania Danych Meteorologicznych Ćwiczenia 14
Danych Meteorologicznych Sylwester Arabas (ćwiczenia do wykładu dra Krzysztofa Markowicza) Instytut Geofizyki, Wydział Fizyki Uniwersytetu Warszawskiego 18. stycznia 2010 r. Zadanie 14.1 : polecenie znalezienie
Kompresja dźwięku w standardzie MPEG-1
mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 7, strona 1. Kompresja dźwięku w standardzie MPEG-1 Ogólne założenia kompresji stratnej Zjawisko maskowania psychoakustycznego Schemat blokowy
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Przetwarzanie Sygnałów Studia Podyplomowe, Automatyka i Robotyka. Wstęp teoretyczny Zmienne losowe Zmienne losowe
Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej
Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej. Filtry FIR o skończonej odpowiedzi impulsowej (SOI) Filtracja FIR polega na tym, że sygnał wyjściowy powstaje
ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH
ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH Generowanie podstawowych przebiegów okresowych sawtooth() przebieg trójkątny (wierzhołki +/-1, okres 2 ) square() przebieg kwadratowy (okres 2 ) gauspuls()przebieg sinusoidalny
Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II. Podstawy MATLABA, cz2.
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II Podstawy MATLABA, cz2. 1. Wielomiany
ELEMENTY AUTOMATYKI PRACA W PROGRAMIE SIMULINK 2013
SIMULINK część pakietu numerycznego MATLAB (firmy MathWorks) służąca do przeprowadzania symulacji komputerowych. Atutem programu jest interfejs graficzny (budowanie układów na bazie logicznie połączonych
Zastosowanie analizy falkowej do wykrywania uszkodzeń łożysk tocznych
Paweł EWERT 1, Anna DOROSŁAWSKA 2 Politechnika Wrocławska, Wydział Elektryczny, Katedra Maszyn, Napędów i Pomiarów Elektrycznych (1), Politechnika Wrocławska (2) doi:10.15199/48.2017.01.72 Zastosowanie
Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej
Ćwiczenie 6 Projektowanie filtrów cyfrowych o skończonej i nieskończonej odpowiedzi impulsowej 1. Filtry FIR o skończonej odpowiedzi impulsowej (SOI) Filtracja FIR polega na tym, że sygnał wyjściowy powstaje
Rys 1 Schemat modelu masa- sprężyna- tłumik
Rys 1 Schemat modelu masa- sprężyna- tłumik gdzie: m-masa bloczka [kg], ẏ prędkośćbloczka [ m s ]. 3. W kolejnym energię potencjalną: gdzie: y- przemieszczenie bloczka [m], k- stała sprężystości, [N/m].
Teoria sygnałów Signal Theory. Elektrotechnika I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)
. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Teoria sygnałów Signal Theory A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW
POLITECHNIKA POZNAŃSKA
POLITECHNIKA POZNAŃSKA INSTYTUT ELEKTROTECHNIKI I ELEKTRONIKI PRZEMYSŁOWEJ Zakład Elektrotechniki Teoretycznej i Stosowanej Laboratorium Podstaw Telekomunikacji Ćwiczenie nr 1 Temat: Pomiar widma częstotliwościowego
Temat ćwiczenia. Analiza częstotliwościowa
POLIECHNIKA ŚLĄSKA W YDZIAŁ RANSPORU emat ćwiczenia Analiza częstotliwościowa Analiza częstotliwościowa sygnałów. Wprowadzenie Analizę częstotliwościową stosuje się powszechnie w wielu dziedzinach techniki.
Transformata Fouriera
Transformata Fouriera Program wykładu 1. Wprowadzenie teoretyczne 2. Algorytm FFT 3. Zastosowanie analizy Fouriera 4. Przykłady programów Wprowadzenie teoretyczne Zespolona transformata Fouriera Jeżeli
9. Dyskretna transformata Fouriera algorytm FFT
Transformata Fouriera ma szerokie zastosowanie w analizie i syntezie układów i systemów elektronicznych, gdyż pozwala na połączenie dwóch sposobów przedstawiania sygnałów reprezentacji w dziedzinie czasu
POSZUKIWANIE FALKOWYCH MIAR POTENCJAŁU INFORMACYJNEGO OBRAZÓW CYFROWYCH JAKO WSKAŹNIKÓW JAKOŚCI WIZUALNEJ
Krystian Pyka POSZUKIWANIE FALKOWYCH MIAR POTENCJAŁU INFORMACYJNEGO OBRAZÓW CYFROWYCH JAKO WSKAŹNIKÓW JAKOŚCI WIZUALNEJ Streszczenie. W pracy przedstawiono wyniki badań nad wykorzystaniem falek do analizy
SPRZĘTOWA REALIZACJA FILTRÓW CYFROWYCH TYPU SOI
1 ĆWICZENIE VI SPRZĘTOWA REALIZACJA FILTRÓW CYFROWYCH TYPU SOI (00) Celem pracy jest poznanie sposobu fizycznej realizacji filtrów cyfrowych na procesorze sygnałowym firmy Texas Instruments TMS320C6711
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Teoria sterowania MATLAB funkcje zewnętrzne (m-pliki, funkcje) Materiały pomocnicze do ćwiczeń laboratoryjnych
Diagnostyka obrazowa
Diagnostyka obrazowa Ćwiczenie szóste Transformacje obrazu w dziedzinie częstotliwości 1. Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z podstawowymi przekształceniami
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 1. WSTĘP DO
Akademia Górniczo-Hutnicza
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Kalibracja systemu wizyjnego z użyciem pakietu Matlab Kraków, 2011 1. Cel kalibracji Cel kalibracji stanowi wyznaczenie parametrów określających
Informatyka I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013
Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3.
Przedmowa Wykaz oznaczeń Wykaz skrótów 1. Sygnały i ich parametry 1 1.1. Pojęcia podstawowe 1 1.2. Klasyfikacja sygnałów 2 1.3. Sygnały deterministyczne 4 1.3.1. Parametry 4 1.3.2. Przykłady 7 1.3.3. Sygnały
Akademia Górniczo-Hutnicza
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Kalibracja stereowizyjnego systemu wizyjnego z użyciem pakietu Matlab Kraków, 2011 1. System stereowizyjny Stereowizja jest działem szeroko
Zygmunt Wróbel i Robert Koprowski. Praktyka przetwarzania obrazów w programie Matlab
Zygmunt Wróbel i Robert Koprowski Praktyka przetwarzania obrazów w programie Matlab EXIT 2004 Wstęp 7 CZĘŚĆ I 9 OBRAZ ORAZ JEGO DYSKRETNA STRUKTURA 9 1. Obraz w programie Matlab 11 1.1. Reprezentacja obrazu
7. Szybka transformata Fouriera fft
7. Szybka transformata Fouriera fft Dane pomiarowe sygnałów napięciowych i prądowych często obarczone są dużym błędem, wynikającym z istnienia tak zwanego szumu. Jedną z metod wspomagających analizę sygnałów
LABORATORIUM Sygnałów, Modulacji i Systemów ĆWICZENIE 2: Modulacje analogowe
Protokół ćwiczenia 2 LABORATORIUM Sygnałów, Modulacji i Systemów Zespół data: ĆWICZENIE 2: Modulacje analogowe Imię i Nazwisko: 1.... 2.... ocena: Modulacja AM 1. Zestawić układ pomiarowy do badań modulacji
Diagnostyka obrazowa
Diagnostyka obrazowa Ćwiczenie szóste Transformacje obrazu w dziedzinie częstotliwości 1 Cel ćwiczenia Ćwiczenie ma na celu zapoznanie uczestników kursu Diagnostyka obrazowa z podstawowymi przekształceniami
Ćwiczenie 3. Właściwości przekształcenia Fouriera
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 3. Właściwości przekształcenia Fouriera 1. Podstawowe właściwości przekształcenia
POLITECHNIKA OPOLSKA
POLITECHNIKA OPOLSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN MECHATRONIKA Instrukcja do ćwiczeń laboratoryjnych Analiza sygnałów czasowych Opracował: dr inż. Roland Pawliczek Opole 2016 1 2 1. Cel
przetworzonego sygnału
Synteza falek ortogonalnych na podstawie oceny przetworzonego sygnału Instytut Informatyki Politechnika Łódzka 28 lutego 2012 Plan prezentacji 1 Sformułowanie problemu 2 3 4 Historia przekształcenia falkowego
WPROWADZENIE DO ŚRODOWISKA SCICOS
Politechnika Gdańska Wydział Elektrotechniki i Automatyki WPROWADZENIE DO ŚRODOWISKA SCICOS Materiały pomocnicze do ćwiczeń laboratoryjnych Oryginał: Modeling and Simulation in Scilab/Scicos Stephen L.
BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat
BIBLIOTEKA PROGRAMU R - BIOPS Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat Biblioteka biops zawiera funkcje do analizy i przetwarzania obrazów. Operacje geometryczne (obrót, przesunięcie,
Transformaty. Kodowanie transformujace
Transformaty. Kodowanie transformujace Kodowanie i kompresja informacji - Wykład 10 10 maja 2009 Szeregi Fouriera Każda funkcję okresowa f (t) o okresie T można zapisać jako f (t) = a 0 + a n cos nω 0
Przekształcenia sygnałów losowych w układach
INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Sygnały i kodowanie Przekształcenia sygnałów losowych w układach Warszawa 010r. 1. Cel ćwiczenia: Ocena wpływu charakterystyk
przedmiot kierunkowy (podstawowy / kierunkowy / inny HES) obieralny (obowiązkowy / nieobowiązkowy) polski semestr VI
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2018/2019
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA II rok Kierunek Transport Temat: Transmitancja operatorowa. Badanie odpowiedzi układów automatyki. Opracował
Celem ćwiczenia jest zapoznanie się z podstawowymi funkcjami i pojęciami związanymi ze środowiskiem AutoCAD 2012 w polskiej wersji językowej.
W przygotowaniu ćwiczeń wykorzystano m.in. następujące materiały: 1. Program AutoCAD 2012. 2. Graf J.: AutoCAD 14PL Ćwiczenia. Mikom 1998. 3. Kłosowski P., Grabowska A.: Obsługa programu AutoCAD 14 i 2000.
P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H
W O J S K O W A A K A D E M I A T E C H N I C Z N A W Y D Z I A Ł E L E K T R O N I K I Drukować dwustronnie P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H Grupa... Data wykonania
Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI)
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe
Cyfrowe Przetwarzanie Obrazów i Sygnałów
Cyfrowe Przetwarzanie Obrazów i Sygnałów Laboratorium EX3 Globalne transformacje obrazów Joanna Ratajczak, Wrocław, 2018 1 Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z własnościami globalnych
III. Przebieg ćwiczenia. 1. Generowanie i wizualizacja przebiegów oraz wyznaczanie ich podstawowych parametrów
POLITECHNIKA RZESZOWSKA KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH LABORATORIUM GRAFICZNE ŚRODOWISKA PROGRAMOWANIA S.P. WPROWADZENIE DO UŻYTKOWANIA ŚRODOWISKA VEE (1) I. Cel ćwiczenia Celem ćwiczenia
Laboratorium Przetwarzania Sygnałów Biomedycznych
Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 1 Wydobywanie sygnałów z szumu z wykorzystaniem uśredniania Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - mgr inż. Tomasz Kubik
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:
Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego.
Strona 1 z 38 Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego. Alicja Rzeszótko alicja@cbk.waw.pl 2 czerwca 2006 1 Omówienie danych 3 Strona główna Strona 2 z 38 2
Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego.
Strona 1 z 27 Zmiany fazy/okresu oscylacji Chandlera i rocznej we współrzędnych bieguna ziemskiego. Alicja Rzeszótko Wiesław Kosek Waldemar Popiński Seminarium Sekcji Dynamiki Ziemi Komitetu Geodezji PAN
AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ
AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ ELEMETY ELEKTRONIKI LABORATORIUM Kierunek NAWIGACJA Specjalność Transport morski Semestr II Ćw. 2 Filtry analogowe układy całkujące i różniczkujące Wersja opracowania
Kodowanie transformacyjne. Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG
Kodowanie transformacyjne Plan 1. Zasada 2. Rodzaje transformacji 3. Standard JPEG Zasada Zasada podstawowa: na danych wykonujemy transformacje która: Likwiduje korelacje Skupia energię w kilku komponentach
Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transform
Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. March 20, 2013 Dyskretne układy liniowe. Funkcja splotu. Równania różnicowe. Transformata Z. Sygnał i system Sygnał jest opisem
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA (KSS)
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA (KSS) Temat: Platforma Systemowa Wonderware cz. 2 przemysłowa baza danych,
DYSKRETNE PRZEKSZTAŁCENIE FOURIERA C.D.
CPS 6 DYSKRETE PRZEKSZTAŁCEIE FOURIERA C.D. Twierdzenie o przesunięciu Istnieje ważna właściwość DFT, znana jako twierdzenie o przesunięciu. Mówi ono, że: Przesunięcie w czasie okresowego ciągu wejściowego
Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji
Katedra Automatyzacji Laboratorium Podstaw Automatyzacji Produkcji Laboratorium Podstaw Automatyzacji Opracowanie: mgr inż. Krystian Łygas, inż. Wojciech Danilczuk Na podstawie materiałów Prof. dr hab.
Filtracja obrazu operacje kontekstowe
Filtracja obrazu operacje kontekstowe Główne zadania filtracji Usunięcie niepożądanego szumu z obrazu Poprawa ostrości Usunięcie określonych wad obrazu Poprawa obrazu o złej jakości technicznej Rekonstrukcja
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 9. Dobór nastaw
Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZENIE 7. Splot liniowy i kołowy sygnałów
Andrzej Leśnicki Laboratorium CPS Ćwiczenie 7 1/7 ĆWICZEIE 7 Splot liniowy i kołowy sygnałów 1. Cel ćwiczenia Operacja splotu jest jedną z najczęściej wykonywanych operacji na sygnale. Każde przejście
Andrzej Leśnicki Laboratorium CPS Ćwiczenie 6 1/8 ĆWICZENIE 6. Dyskretne przekształcenie Fouriera DFT
Andrzej Leśnicki Laboratorium CPS Ćwiczenie 6 1/8 ĆWICZEIE 6 Dyskretne przekształcenie Fouriera DFT 1. Cel ćwiczenia Dyskretne przekształcenie Fouriera ( w skrócie oznaczane jako DFT z ang. Discrete Fourier
Teoria sterowania - studia niestacjonarne AiR 2 stopień
Teoria sterowania - studia niestacjonarne AiR stopień Kazimierz Duzinkiewicz, dr hab. Inż. Katedra Inżynerii Systemów Sterowania Wykład 4-06/07 Transmitancja widmowa i charakterystyki częstotliwościowe
W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,
Bierne obwody RC. Filtr dolnoprzepustowy. Filtr dolnoprzepustowy jest układem przenoszącym sygnały o małej częstotliwości bez zmian, a powodującym tłumienie i opóźnienie fazy sygnałów o większych częstotliwościach.
Pałkowa analiza sygnałów
Remigiusz J. RAK, Andrzej MAJKOWSKI Politechnika Warszawska, Instytut Elektrotechniki Teoretycznej i Systemów Informacyjno-Pomiarowych Pałkowa analiza sygnałów Streszczenie. Cechą charakterystyczną lalkowej
Laboratorium Przetwarzania Sygnałów Biomedycznych
Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 3 Analiza sygnału o nieznanej strukturze Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - mgr inż. Tomasz Kubik Politechnika Warszawska,
Analiza porównawcza wybranych transformat w kontekście zobrazowania zaszumionego sygnału harmonicznego
Bi u l e t y n WAT Vo l. LXIV, Nr 3, 2015 Analiza porównawcza wybranych transformat w kontekście zobrazowania zaszumionego sygnału harmonicznego Artur Zacniewski Akademia Marynarki Wojennej w Gdyni, Wydział
Algorytmy sztucznej inteligencji
Algorytmy sztucznej inteligencji Dynamiczne sieci neuronowe 1 Zapis macierzowy sieci neuronowych Poniżej omówione zostaną części składowe sieci neuronowych i metoda ich zapisu za pomocą macierzy. Obliczenia
Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)
Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne
Cyfrowe Przetwarzanie Obrazów i Sygnałów
Cyfrowe Przetwarzanie Obrazów i Sygnałów Laboratorium EX Lokalne transformacje obrazów Joanna Ratajczak, Wrocław, 28 Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z własnościami lokalnych
Ćwiczenie 11. Podstawy akwizycji i cyfrowego przetwarzania sygnałów. Program ćwiczenia:
Ćwiczenie 11 Podstawy akwizycji i cyfrowego przetwarzania sygnałów Program ćwiczenia: 1. Konfiguracja karty pomiarowej oraz obserwacja sygnału i jego widma 2. Twierdzenie o próbkowaniu obserwacja dwóch
Transformata Fouriera i analiza spektralna
Transformata Fouriera i analiza spektralna Z czego składają się sygnały? Sygnały jednowymiarowe, częstotliwość Liczby zespolone Transformata Fouriera Szybka Transformata Fouriera (FFT) FFT w 2D Przykłady
KARTA MODUŁU / KARTA PRZEDMIOTU
Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Cyfrowe przetwarzanie sygnałów pomiarowych_e2s
Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II. Podstawy SIMULINKA
Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki Modelowanie Systemów Dynamicznych Studia zaoczne, Automatyka i Robotyka, rok II Podstawy SIMULINKA Simulink jest
Dostawa oprogramowania. Nr sprawy: ZP /15
........ (pieczątka adresowa Oferenta) Zamawiający: Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu, ul. Staszica,33-300 Nowy Sącz. Strona: z 5 Arkusz kalkulacyjny określający minimalne parametry techniczne
Ćwiczenie 0 : Wprowadzenie do cyfrowego przetwarzania sygnałów. wyświetla listę tematów pomocy. wyświetla okno pomocy (Help / Product Help)
Wybr ane za gadnienia elektr oniki współczesnej Ćwiczenie 0 : Wprowadzenie do cyfrowego przetwarzania sygnałów. 1 Cel ćwiczenia Pierwsze zajęcia laboratoryjne z zakresu przetwarzania sygnałów mają na celu