Układy i Systemy Elektromedyczne
|
|
- Radosław Żukowski
- 6 lat temu
- Przeglądów:
Transkrypt
1 UiSE - laboratorium Układy i Systemy Elektromedyczne Laboratorium 1 Stetoskop elektroniczny parametry sygnałów rejestrowanych. Opracował: dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej, Instytut Metrologii i Inżynierii Biomedycznej, Wydział Mechatroniki Politechniki Warszawskiej Warszawa, 2012
2 1 Wymagane wiadomości i umiejętności 1. Umiejętność korzystania ze środowiska obliczeniowego MATLAB [1]. 2. Podstawowe informacje na temat analizy widmowej oraz funkcji autokorelacji [2], [3]. 3. Wiadomości zawarte we wprowadzeniu do laboratorium UiSE. Podczas realizacji laboratorium przydatne mogą być słuchawki stereofoniczne najlepiej typu zamkniętego. - 2/13 -
3 2 Wstęp Celem niniejszego ćwiczenia jest zapoznanie studenta z podstawowymi parametrami sygnałów akustycznych rejestrowanych za pomocą stetoskopu. W trakcie realizacji ćwiczenia student dokona analizy widmowej, a na podstawie jej wyników parametryzacji przykładowych sygnałów akustycznych serca, płuc oraz tonów Korotkowa. 3 Spis funkcji i instrukcji przydatnych podczas realizacji ćwiczenia. Opisane w tym punkcie funkcje nie są standardowymi wbudowanymi funkcjami środowiska obliczeniowego MATLAB i zostały stworzone na potrzeby laboratorium UiSE. O ile w trakcie realizacji ćwiczenia zajdzie potrzeba skorzystania ze standardowej funkcji (polecenia) lub instrukcji MATLABa, należy zapoznać się z nią, wykorzystując wbudowany system pomocy MATLABa - polecenia help lub doc, np. help sin lub doc sin. - 3/13 -
4 [F,T,P,Ptot] = spektrogram(syg,okno,dl_okna,overlap,nfft,fp) Funkcja wyznacza spektrogram (P) oraz przebieg chwilowej mocy całkowitej (Ptot) sygnału wejściowego (syg). Parametrami wejściowymi są: 1. syg - sygnał wejściowy, 2. nfft długość (w próbkach) okna danych poddanych DTF, 3. fp - częstotliwość próbkowania sygnału wejściowego (syg), 4. okno rodzaj okna czasowego (funkcji granic): a) 'rect' okno prostokątne, b) 'hann' okno Hanna, c) 'hamming' okno Hamminga, 5. dl_okna - długość okna danych wyrażona w próbkach, 6. overlap stopień nakładania się na siebie kolejnych okien wyrażony jako ułamek długości okna (0 kolejne okna nie nakładają się na siebie, 1 całkowite nakładanie się o kolejnych okien). Parametrami wyjściowymi są: 1. F wektor opisujący oś częstotliwości dla otrzymanego spektrogramu P, 2. T wektor opisujący oś czasu dla otrzymanego spektrogramu P i całkowitej mocy chwilowej Ptot, 3. P wynikowa macierz spektrogramu, 4. Ptot wartości chwilowej mocy całkowitej sygnału syg, Przykład:... [F,T,P,Ptot] = spektrogram(s4, 'hann', 256, 0.5, 1024, 1000); subplot(3,1,1); plot(t,s4); xlim([t(1) max(t)]); xlabel('t[s]'); ylabel('amp.'); - 4/13 -
5 grid on subplot(3,1,2); imagesc(t,f,10*log10(p/max(max(p))),[-60 0]); xlabel('t[s]'); ylabel('f[hz]'); axis xy grid on %colorbar subplot(3,1,3); plot(t,10*log10(ptot/max(ptot))); xlim([t(1) max(t)]); ylim([-60 0]); xlabel('t[s]'); ylabel('ptot [db]'); grid on... Rysunek 1: Przykładowy wynik użycia funkcji spektrogram. - 5/13 -
6 [fsr, fmin, fmax]=freq_est(p, Ptot, F, lev_min, lev_max) Funkcja określa wartości chwilowej częstotliwość średniej, maksymalnej i minimalnej w sygnale na podstawia spektrogramu P tego sygnału. Częstotliwość minimalna w chwili t określona jest jako najmniejsza wartość częstotliwości f dla której spełnione jest równanie: fmin P (t, f ) df Ptot (t) lev min f =0 gdzie: P(t, f) to widmowa gęstość mocy sygnału w chwili t, Ptot(t) wartość chwilowej całkowitej mocy sygnału w chwili t, lev min współczynnik progu, którego wartość jest w zakresie <0,1>. Częstotliwość maksymalna jest szacowana w sposób analogiczny jak minimalna. Częstotliwość średnia w chwili t jest obliczana jako: Parametrami wejściowymi są: f śr (t)= fs/ 2 f =0 fs /2 f =0 P (t, f ) f P(t, f ) 1. P dwuwymiarowa macierz widmowej gęstości mocy (spektrogram), 2. Ptot wartości chwilowej całkowitej mocy sygnału, 3. F wektor opisujący oś częstotliwości dla otrzymanego spektrogramu P, 4. lev_min, lev_max współczynniki progu wykorzystywane do obliczenia częstotliwości minimalnej i maksymalnej, wartości tych parametrów powinny zawierać się w przedziale <0, 1>. Parametrami wyjściowymi są: 1. fsr wartości chwilowej częstotliwości średniej, 2. fmax wartości chwilowej częstotliwości maksymalnej, 3. fmin wartości chwilowej częstotliwości minimalnej, Przykład: [fsr, fmin, fmax]=freq_est(p, Ptot, F, 0.1, 0.9); figure - 6/13 -
7 plot(t,fmax,t,fsr,t,fmin); xlim([t(1) 1]); xlabel('t[s]'); ylabel('f [Hz]'); legend('fmax','fsr','fmin'); grid on; - 7/13 -
8 [swy]=power_clip(swe, twe, Ptot, Ttot, Plev) Funkcja umożliwia wyodrębnienie tych fragmentów sygnału wejściowego (swe) w których mocy chwilowa Ptot przekracza wartość progową Plev. Wektor wyjściowy zawiera wartości sygnału wejściowego w miejscach, gdzie jest spełniony warunek Ptot(t)>Plev a wartości NaN (Not a Number) w pozostałych miejscach. Parametrami wejściowymi są: 1. swe wektor zawierający wartości sygnału wejściowego, 2. twe wektor zawierający wartości czasu odpowiadające wartościom sygnału w wektorze swe, 3. Ptot wektor wartości chwilowej całkowitej mocy sygnału, 4. Ttot - wektor zawierający wartości czasu odpowiadające wartościom sygnału w wektorze Ptot, 5. F wektor opisujący oś częstotliwości dla otrzymanego spektrogramu P, 6. Plev wartość progowa wyrażona w db. Parametrami wyjściowymi są: 1. swy wektor zawierający wybrane wartości wektora swe, Przykład:... [swy]=power_clip(swe, twe, Ptot, Ttot, -20); subplot(2,1,1); plot(twe,swe); subplot(2,1,2); plot(twe,swy); /13 -
9 - 9/13 -
10 4 Przebieg ćwiczenia 4.1 Analiza odgłosów serca 1. Załadować plik serce.mat do przestrzeni roboczej (poprosić prowadzącego o wskazanie folderu zawierającego plik z danymi). Do przestrzeni roboczej powinny zostać wczytane: 1. przykładowe sygnały odgłosów serca podzielone na cztery grupy: HF, N, SN i X, 2. zmienna fs zawierająca informację o częstotliwości próbkowania wszystkich sygnałów. 2. Wybrać losowo po jednym sygnale z każdej grupy i przeanalizować go w następujący sposób: 1. Odsłuchać sygnał (sound) o ile są dostępne słuchawki. 2. Wyznaczyć spektrogram oraz całkowitą moc chwilową sygnału (spektrogram). 3. Wykorzystując wyniki uzyskane w pkt. 1 wyznaczyć wartości częstotliwości średniej, minimalnej i maksymalnej (freq_est). 4. Progując sygnał mocy chwilowej podzielić analizowany sygnał na fazy odgłosów i ciszy. 5. Zobrazować uzyskane wyniki tj. podział na fazy, spektrogram, moc chwilową, przebiegi częstotliwości minimalnej, maksymalnej i średniej. 6. Scharakteryzować poszczególne fazy tj. określić szerokość pasma, częstotliwość średnią, relatywną moc i czas trwania sygnału w poszczególnych fazach. Jaki jest powód poszerzenia widma sygnału w fazach ciszy? 4.2 Analiza odgłosów płuc 1. Załadować plik pluca.mat do przestrzeni roboczej (poprosić prowadzącego o wskazanie folderu zawierającego plik z danymi). Do przestrzeni roboczej powinny zostać wczytane: 1. przykładowe sygnały odgłosów płuc, 2. zmienna fs zawierająca informację o częstotliwości próbkowania wszystkich sygnałów. 2. Przeanalizować wszystkie sygnały płuc w następujący sposób: - 10/13 -
11 1. Odsłuchać sygnał (sound) o ile są dostępne słuchawki. 2. Wyznaczyć spektrogram oraz całkowitą moc chwilową sygnału (spektrogram). 3. Wykorzystując wyniki uzyskane w pkt. 1 wyznaczyć wartości częstotliwości średniej, minimalnej i maksymalnej (freq_est). 4. Progując sygnał mocy chwilowej podzielić analizowany sygnał na fazy odgłosów i ciszy. 5. Zobrazować uzyskane wyniki tj. podział na fazy, spektrogram, moc chwilową, przebiegi częstotliwości minimalnej, maksymalnej i średniej. 6. Scharakteryzować poszczególne fazy tj. określić szerokość pasma, częstotliwość średnią, relatywną moc i czas trwania sygnału w poszczególnych fazach. 4.3 Analiza odgłosów pulsu tony Korotkowa 1. Załadować plik puls.mat do przestrzeni roboczej (poprosić prowadzącego o wskazanie folderu zawierjącego plik z danymi). Do przestrzeni roboczej powinny zostać wczytane: 1. przykładowe sygnały odgłosów tonów Korotkowa, 2. zmienna fs zawierająca informację o częstotliwości próbkowania wszystkich sygnałów. 2. Przeanalizować wszystkie sygnały tonów Korotkowa w następujący sposób: 1. Odsłuchać sygnał (sound) o ile są dostępne słuchawki. 2. Wyznaczyć spektrogram oraz całkowitą moc chwilową sygnału (spektrogram). 3. Wykorzystując wyniki uzyskane w pkt. 1 wyznaczyć wartości częstotliwości średniej, minimalnej i maksymalnej (freq_est). 4. Progując sygnał mocy chwilowej podzielić analizowany sygnał na fazy odgłosów i ciszy. 5. Zobrazować uzyskane wyniki tj. podział na fazy, spektrogram, moc chwilową, przebiegi częstotliwości minimalnej, maksymalnej i średniej. 6. Scharakteryzować poszczególne fazy tj. określić szerokość pasma, częstotliwość średnią, relatywną moc i czas trwania sygnału w poszczególnych fazach. - 11/13 -
12 5 Sprawozdanie W sprawozdaniu umieścić i skomentować wszystkie wyniki uzyskane w punkcie 4 Przebieg ćwiczenia. W szczególności należy: 1. Odpowiedzieć na pytania zawarte w sekcji 4 Przebieg ćwiczenia. 2. Zaproponować wartości parametrów toru wejściowego elektronicznego (pasmo, dynamika, częstotliwość próbkowania) stetoskopu dedykowane do rejestracji odgłosów poszczególnych typów tj. serca, płuc, tonów Korotkowa. - 12/13 -
13 6 Bibliografia [1] MathWorks - MATLAB and Simulink for Technical Computing [on-line], MathWorks, [dostęp: ]. Dostępny w internecie: [2] Zieliński, T.P., Cyfrowe przetwarzanie sygnałów - Od teorii do zastosowań, WKŁ, /13 -
Układy i Systemy Elektromedyczne
UiSE - laboratorium Układy i Systemy Elektromedyczne Laboratorium 4 Elektroniczny stetoskop - cyfrowe przetwarzanie sygnału. Opracował: dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej, Instytut
Układy i Systemy Elektromedyczne
UiSE - laboratorium Układy i Systemy Elektromedyczne Laboratorium 5 Elektroniczny stetoskop - moduł TMDXMDKDS3254. Opracował: dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej, Instytut Metrologii
Laboratorium Przetwarzania Sygnałów. Ćwiczenie 2. Analiza widmowa
PTS laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 2 Analiza widmowa Opracowali: - prof. dr hab. inż. Krzysztof Kałużyński - dr inż. Beata Leśniak-Plewińska - dr inż. Jakub Żmigrodzki Zakład
Laboratorium Przetwarzania Sygnałów Biomedycznych
Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 3 Analiza sygnału o nieznanej strukturze Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - mgr inż. Tomasz Kubik Politechnika Warszawska,
Laboratorium Przetwarzania Sygnałów
PTS - laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 4 Transformacja falkowa Opracował: - prof. dr hab. inż. Krzysztof Kałużyński Zakład Inżynierii Biomedycznej Instytut Metrologii i Inżynierii
Laboratorium Przetwarzania Sygnałów Biomedycznych
Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 1 Wydobywanie sygnałów z szumu z wykorzystaniem uśredniania Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - mgr inż. Tomasz Kubik
Laboratorium Przetwarzania Sygnałów. Ćwiczenie 3. Filtracja i korelacja sygnałów dyskretnych
PTS laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 3 Filtracja i korelacja sygnałów dyskretnych Opracowali: - prof. dr hab. inż. Krzysztof Kałużyński - dr inż. Beata Leśniak-Plewińska - dr
Laboratorium Przetwarzania Sygnałów. Ćwiczenie 2. Filtracja i korelacja sygnałów dyskretnych
PTS laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 2 Filtracja i korelacja sygnałów dyskretnych Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - dr inż. Beata Leśniak-Plewińska
Laboratorium Techniki ultradźwiękowej w diagnostyce medycznej
TUD - laboratorium Laboratorium Techniki ultradźwiękowej w diagnostyce medycznej Ćwiczenie 1 Analiza sygnałów występujących w diagnostycznej aparaturze ultradźwiękowej (rev.1) Opracowali: dr hab inż. Krzysztof
Układy i Systemy Elektromedyczne
UiSE - laboratorium Układy i Systemy Elektromedyczne Laboratorium 2 Elektroniczny stetoskop - głowica i przewód akustyczny. Opracował: dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej, Instytut
Laboratorium Cyfrowego Przetwarzania Obrazów
Laboratorium Cyfrowego Przetwarzania Obrazów Ćwiczenie 2 Histogram i arytmetyka obrazów Opracowali: - dr inż. Beata Leśniak-Plewińska - dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej, Instytut
Laboratorium EAM. Instrukcja obsługi programu Dopp Meter ver. 1.0
Laboratorium EAM Instrukcja obsługi programu Dopp Meter ver. 1.0 Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - dr inż. Beata Leśniak-Plewińska - dr inż. Jakub Żmigrodzki Zakład Inżynierii
Laboratorium Cyfrowego Przetwarzania Obrazów
Laboratorium Cyfrowego Przetwarzania Obrazów Ćwiczenie 4 Filtracja 2D Opracowali: - dr inż. Krzysztof Mikołajczyk - dr inż. Beata Leśniak-Plewińska - dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej,
Laboratorium Przetwarzania Sygnałów
PTS - laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 6 Interpolacja i histogram obrazów Opracowali: dr inż. Krzysztof Mikołajczyk dr inż. Beata Leśniak-Plewińska Zakład Inżynierii Biomedycznej
DYSKRETNA TRANSFORMACJA FOURIERA
Laboratorium Teorii Sygnałów - DFT 1 DYSKRETNA TRANSFORMACJA FOURIERA Cel ćwiczenia Celem ćwiczenia jest przeprowadzenie analizy widmowej sygnałów okresowych za pomocą szybkiego przekształcenie Fouriera
Układy i Systemy Elektromedyczne
UiSE - laboratorium Układy i Systemy Elektromedyczne Laboratorium 3 Elektroniczny stetoskop - mikrofon elektretowy. Opracował: dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej, Instytut Metrologii
Laboratorium MATLA. Ćwiczenie 6 i 7. Mała aplikacja z GUI
Laboratorium MATLA Ćwiczenie 6 i 7 Mała aplikacja z GUI Opracowali: - dr inż. Beata Leśniak-Plewińska dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej Instytut Metrologii i Inżynierii Biomedycznej
Laboratorium Przetwarzania Sygnałów
PTS - laboratorium Laboratorium Przetwarzania Sygnałów Ćwiczenie 5 Przekształcenia geometryczne i arytmetyka obrazów Opracowali: dr inż. Krzysztof Mikołajczyk dr inż. Beata Leśniak-Plewińska Zakład Inżynierii
x(n) x(n-1) x(n-2) D x(n-n+1) h N-1
Laboratorium Układy dyskretne LTI projektowanie filtrów typu FIR Z1. apisać funkcję y = filtruj(x, h), która wyznacza sygnał y będący wynikiem filtracji sygnału x przez filtr FIR o odpowiedzi impulsowej
ĆWICZENIE III ANALIZA WIDMOWA SYGNAŁÓW DYSKRETNYCH. ver.3
1 Zakład Elektrotechniki Teoretycznej ver.3 ĆWICZEIE III AALIZA WIDMOWA SYGAŁÓW DYSKRETYCH (00) Celem ćwiczenia jest przeprowadzenie analizy widmowej dyskretnych sygnałów okresowych przy zastosowaniu szybkiego
Ćwiczenie 11. Podstawy akwizycji i cyfrowego przetwarzania sygnałów. Program ćwiczenia:
Ćwiczenie 11 Podstawy akwizycji i cyfrowego przetwarzania sygnałów Program ćwiczenia: 1. Konfiguracja karty pomiarowej oraz obserwacja sygnału i jego widma 2. Twierdzenie o próbkowaniu obserwacja dwóch
Laboratorium Przetwarzania Sygnałów Biomedycznych
PSB - laboratorium Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 5 Analiza sygnału świergotowego przy zastosowaniu transformacji Hilberta Opracowali: - prof. dr hab. inż. Krzysztof Kałużyński
Laboratorium Elektroniczna aparatura Medyczna
EAM - laboratorium Laboratorium Elektroniczna aparatura Medyczna Ćwiczenie REOMETR IMPEDANCYJY Opracował: dr inŝ. Piotr Tulik Zakład InŜynierii Biomedycznej Instytut Metrologii i InŜynierii Biomedycznej
Laboratorium Techniki ultradźwiękowej w diagnostyce medycznej
TUD - laboratorium Laboratorium Techniki ultradźwiękowej w diagnostyce medycznej Ćwiczenie 1 Analiza sygnałów występujących w diagnostycznej aparaturze ultradźwiękowej (rev.2) Opracowali: prof. nzw. dr
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:
Laboratorium Cyfrowego Przetwarzania Obrazów
Laboratorium Cyfrowego Przetwarzania Obrazów Ćwiczenie 5 Segmentacja Opracowali: - dr inż. Krzysztof Mikołajczyk - dr inż. Beata Leśniak-Plewińska - dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej,
ĆWICZENIE nr 3. Badanie podstawowych parametrów metrologicznych przetworników analogowo-cyfrowych
Politechnika Łódzka Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych WWW.DSOD.PL LABORATORIUM METROLOGII ELEKTRONICZNEJ ĆWICZENIE nr 3 Badanie podstawowych parametrów metrologicznych przetworników
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:
KARTA PRZEDMIOTU. zaliczenie na ocenę WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI
Wydział Mechaniczny PWR KARTA PRZEDMIOTU Nazwa w języku polskim: Mikrosystemy w pomiarach Nazwa w języku angielskim: Microsystems in measurements Kierunek studiów (jeśli dotyczy): Mechatronika Stopień
PRZETWARZANIE SYGNAŁÓW LABORATORIUM
2018 AK 1 / 5 PRZETWARZANIE SYGNAŁÓW LABORATORIUM Ćw. 0 Wykonujący: Grupa dziekańska: MATLAB jako narzędzie w przetwarzaniu sygnałów Grupa laboratoryjna: (IMIĘ NAZWISKO, nr albumu) Punkty / Ocena Numer
Laboratorium Przetwarzania Sygnałów Biomedycznych
Laboratorium Przetwarzania Sygnałów Biomedycznych Ćwiczenie 2 Analiza sygnału EKG przy użyciu transformacji falkowej Opracowali: - prof. nzw. dr hab. inż. Krzysztof Kałużyński - inż. Tomasz Kubik Politechnika
Laboratorium Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przetwarzaniem sygnałów w MATLAB. 2. Program ćwiczenia. Przykład 1 Wprowadź
Podstawy Informatyki 1 Laboratorium 9 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z przetwarzaniem sygnałów w MATLAB 2. Program ćwiczenia Przykład 1 Wprowadź fo = 4; %frequency of the sine wave
Podstawy Przetwarzania Sygnałów
Adam Szulc 188250 grupa: pon TN 17:05 Podstawy Przetwarzania Sygnałów Sprawozdanie 6: Filtracja sygnałów. Filtry FIT o skończonej odpowiedzi impulsowej. 1. Cel ćwiczenia. 1) Przeprowadzenie filtracji trzech
SPRZĘTOWA REALIZACJA FILTRÓW CYFROWYCH TYPU SOI
1 ĆWICZENIE VI SPRZĘTOWA REALIZACJA FILTRÓW CYFROWYCH TYPU SOI (00) Celem pracy jest poznanie sposobu fizycznej realizacji filtrów cyfrowych na procesorze sygnałowym firmy Texas Instruments TMS320C6711
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1C400027 Temat ćwiczenia:
CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera)
I. Wprowadzenie do ćwiczenia CYFROWE PRZTWARZANIE SYGNAŁÓW (Zastosowanie transformacji Fouriera) Ogólnie termin przetwarzanie sygnałów odnosi się do nauki analizowania zmiennych w czasie procesów fizycznych.
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1C400027 Temat ćwiczenia:
WOJSKOWA AKADEMIA TECHNICZNA
WOJSKOWA AKADEMIA TECHNICZNA LABORATORIUM CYFROWE PRZETWARZANIE SYGNAŁÓW Stopień, imię i nazwisko prowadzącego Imię oraz nazwisko słuchacza Grupa szkoleniowa Data wykonania ćwiczenia dr inż. Andrzej Wiśniewski
SYMULACJA KOMPUTEROWA SYSTEMÓW
SYMULACJA KOMPUTEROWA SYSTEMÓW ZASADY ZALICZENIA I TEMATY PROJEKTÓW Rok akademicki 2015 / 2016 Spośród zaproponowanych poniżej tematów projektowych należy wybrać jeden i zrealizować go korzystając albo
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:
MIKROFALOWEJ I OPTOFALOWEJ
E-LAB: LABORATORIUM TECHNIKI MIKROFALOWEJ I OPTOFALOWEJ Krzysztof MADZIAR Grzegorz KĘDZIERSKI, Jerzy PIOTROWSKI, Jerzy SKULSKI, Agnieszka SZYMAŃSKA, Piotr WITOŃSKI, Bogdan GALWAS Instytut Mikroelektroniki
Laboratorium MATLA. Ćwiczenie 1
Laboratorium MATLA Ćwiczenie 1 Opracowali: - dr inż. Beata Leśniak-Plewińska - dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej, Instytut Metrologii i Inżynierii Biomedycznej, Wydział Mechatroniki
Laboratorium Cyfrowego Przetwarzania Obrazów
Laboratorium Cyfrowego Przetwarzania Obrazów Ćwiczenie 3 Interpolacja i przekształcenia geometryczne obrazów Opracowali: - dr inż. Beata Leśniak-Plewińska - dr inż. Jakub Żmigrodzki Zakład Inżynierii Biomedycznej,
III. Przebieg ćwiczenia. 1. Generowanie i wizualizacja przebiegów oraz wyznaczanie ich podstawowych parametrów
POLITECHNIKA RZESZOWSKA KATEDRA METROLOGII I SYSTEMÓW DIAGNOSTYCZNYCH LABORATORIUM GRAFICZNE ŚRODOWISKA PROGRAMOWANIA S.P. WPROWADZENIE DO UŻYTKOWANIA ŚRODOWISKA VEE (1) I. Cel ćwiczenia Celem ćwiczenia
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 6 AUTOMATYKA II rok Kierunek Transport Temat: Transmitancja operatorowa. Badanie odpowiedzi układów automatyki. Opracował
Analiza właściwości filtra selektywnego
Ćwiczenie 2 Analiza właściwości filtra selektywnego Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra selektywnego 2 rzędu i zakresami jego parametrów. 2. Analiza widma sygnału prostokątnego..
7. Szybka transformata Fouriera fft
7. Szybka transformata Fouriera fft Dane pomiarowe sygnałów napięciowych i prądowych często obarczone są dużym błędem, wynikającym z istnienia tak zwanego szumu. Jedną z metod wspomagających analizę sygnałów
Transformacje i funkcje statystyczne
Generacja okien: win = window(@fwin,n); Generacja okien gui: wintool; Rodzaje niektórych okien: @bartlett - Bartletta. @blackman - Blackmana. @chebwin - Czebyszewa. @gausswin - gausowskie. @hamming - Hamminga.
Cyfrowe Przetwarzanie Obrazów i Sygnałów
Cyfrowe Przetwarzanie Obrazów i Sygnałów Laboratorium EX Lokalne transformacje obrazów Joanna Ratajczak, Wrocław, 28 Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z własnościami lokalnych
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1C400027 Temat ćwiczenia:
MATLAB ŚRODOWISKO MATLABA OPIS, PODSTAWY
MATLAB ŚRODOWISKO MATLABA OPIS, PODSTAWY Poszukiwanie znaczeń funkcji i skryptów funkcja help >> help % wypisuje linki do wszystkich plików pomocy >> help plot % wypisuje pomoc dotyczą funkcji plot Znaczenie
Egzamin / zaliczenie na ocenę*
WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr 4 do ZW 33/01 KARTA PRZEDMIOTU Nazwa w języku polskim CYFROWE PRZETWARZANIE SYGNAŁÓW Nazwa w języku angielskim DIGITAL SIGNAL PROCESSING Kierunek studiów
Wprowadzenie do środowiska
Wprowadzenie do środowiska www.mathworks.com Piotr Wróbel piotr.wrobel@igf.fuw.edu.pl Pok. B 4.22 Metody numeryczne w optyce 2017 Czym jest Matlab Matlab (matrix laboratory) środowisko obliczeniowe oraz
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA
WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI INSTYTUT AUTOMATYKI I INFORMATYKI KIERUNEK AUTOMATYKA I ROBOTYKA STUDIA STACJONARNE I STOPNIA PRZEDMIOT : : LABORATORIUM PODSTAW AUTOMATYKI 1. WSTĘP DO
Sposoby opisu i modelowania zakłóceń kanałowych
INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Podstawy Telekomunikacji Sposoby opisu i modelowania zakłóceń kanałowych Warszawa 2010r. 1. Cel ćwiczeń: Celem ćwiczeń
Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI)
Politechnika Wrocławska Wydział Elektroniki Mikrosystemów i Fotoniki Przetwarzanie sygnałów laboratorium ETD5067L Ćwiczenie 4. Filtry o skończonej odpowiedzi impulsowej (SOI) 1. Filtracja cyfrowa podstawowe
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania
Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Teoria sterowania MATLAB funkcje zewnętrzne (m-pliki, funkcje) Materiały pomocnicze do ćwiczeń laboratoryjnych
ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH
ANALIZA SYGNAŁÓ W JEDNÓWYMIARÓWYCH Generowanie podstawowych przebiegów okresowych sawtooth() przebieg trójkątny (wierzhołki +/-1, okres 2 ) square() przebieg kwadratowy (okres 2 ) gauspuls()przebieg sinusoidalny
Twierdzenie o splocie
Twierdzenie o splocie g(t) = (s h) (t) G(f ) = S(f ) H(f ) (1) To twierdzenie działa też w drugą stronę: G(f ) = (S H) (f ) g(t) = s(t) h(t) (2) Zastosowania: zamiana splotu na mnożenie daje wgląd w okienkowanie
P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H
W O J S K O W A A K A D E M I A T E C H N I C Z N A W Y D Z I A Ł E L E K T R O N I K I Drukować dwustronnie P R Z E T W A R Z A N I E S Y G N A Ł Ó W B I O M E T R Y C Z N Y C H Grupa... Data wykonania
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej. Instrukcja do zajęć laboratoryjnych z przedmiotu:
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Architektura i Programowanie Procesorów Sygnałowych Numer
LABORATORIUM PODSTAW TELEKOMUNIKACJI
WOJSKOWA AKADEMIA TECHNICZNA im. Jarosława Dąbrowskiego w Warszawie Wydział Elektroniki LABORATORIUM PODSTAW TELEKOMUNIKACJI Grupa Podgrupa Data wykonania ćwiczenia Ćwiczenie prowadził... Skład podgrupy:
LABORATORIUM AKUSTYKI MUZYCZNEJ. Ćw. nr 12. Analiza falkowa dźwięków instrumentów muzycznych. 1. PODSTAWY TEORETYCZNE ANALIZY FALKOWEJ.
LABORATORIUM AKUSTYKI MUZYCZNEJ. Ćw. nr 1. Analiza falkowa dźwięków instrumentów muzycznych. 1. PODSTAWY TEORETYCZNE ANALIZY FALKOWEJ. Transformacja falkowa (ang. wavelet falka) przeznaczona jest do analizy
Podstawy budowy wirtualnych przyrządów pomiarowych
Podstawy budowy wirtualnych przyrządów pomiarowych Problemy teoretyczne: Pomiar parametrów napięciowych sygnałów za pomocą karty kontrolno pomiarowej oraz programu LabVIEW (prawo Shanona Kotielnikowa).
LABORATORIUM PROCESÓW STOCHASTYCZNYCH
WOJSKOWA AKADEMIA TECHICZA im. Jarosława Dąbrowskiego w Warszawie Wydział Elektroniki LABORATORIUM PROCESÓW STOCHASTYCZYCH Grupa Podgrupa Data wykonania ćwiczenia Ćwiczenie prowadził. Skład podgrupy 1....
INSTRUKCJA DO ĆWICZENIA NR 7
KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 7 PRZEDMIOT TEMAT OPRACOWAŁ LABORATORIUM MODELOWANIA Przykładowe analizy danych: przebiegi czasowe, portrety
POMIARY WYBRANYCH PARAMETRÓW TORU FONICZNEGO W PROCESORACH AUDIO
Politechnika Rzeszowska Katedra Metrologii i Systemów Diagnostycznych Laboratorium Elektroniczne przyrządy i techniki pomiarowe POMIARY WYBRANYCH PARAMETRÓW TORU FONICZNEGO W PROCESORACH AUDIO Grupa Nr
Laboratorium Elektroniczna aparatura medyczna
EAM - laboratorium Laboratorium Elektroniczna aparatura medyczna Ćwiczenie Przepływomierz dopplerowski - detektor ruchów płodu Opracował: dr hab inż. Krzysztof Kałużyński, prof. nzw. PW Zakład Inżynierii
Katedra Elektrotechniki Teoretycznej i Informatyki
Katedra Elektrotechniki Teoretycznej i Informatyki Przedmiot: Badania nieniszczące metodami elektromagnetycznymi Numer Temat: Badanie materiałów kompozytowych z ćwiczenia: wykorzystaniem fal elektromagnetycznych
Laboratorium MATLA. Ćwiczenie 4. Debugowanie. Efektywności kodu. Wektoryzacja.
Laboratorium MATLA Ćwiczenie 4. Debugowanie. Efektywności kodu. Wektoryzacja. Opracowali: - dr inż. Beata Leśniak-Plewińska Zakład Inżynierii Biomedycznej, Instytut Metrologii i Inżynierii Biomedycznej,
8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT)
8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) Ćwiczenie polega na wykonaniu analizy widmowej zadanych sygnałów metodą FFT, a następnie określeniu amplitud i częstotliwości głównych składowych
METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH
METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH ĆWICZENIE NR 1 WPROWADZENIE DO PROGRAMU KOMPUTEROWEGO MATLAB Dr inż. Sergiusz Sienkowski ĆWICZENIE NR 1 Wprowadzenie do programu komputerowego Matlab 1.1.
Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.
Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Spis treści 1 Cel ćwiczenia 2 2 Podstawy teoretyczne 2 2.1 Charakterystyki częstotliwościowe..........................
METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH
METODY KOMPUTEROWE W OBLICZENIACH INŻYNIERSKICH ĆWICZENIE NR 1 WPROWADZENIE DO PROGRAMU KOMPUTEROWEGO MATLAB Dr inż. Sergiusz Sienkowski ĆWICZENIE NR 1 Wprowadzenie do programu komputerowego Matlab 1.1.
WYZNACZANIE CECH PUNKTOWYCH SYGNAŁÓW POMIAROWYCH
PODSTAWY SYGNAŁÓW POMIAROWYCH I METROLOGII WYZNACZANIE CECH PUNKTOWYCH SYGNAŁÓW POMIAROWYCH WSTĘP TEORETYCZNY Sygnałem nazywamy przebieg dowolnej wielkości fizycznej mogącej być nośnikiem informacji Opis
dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311
dr inż. Artur Zieliński Katedra Elektrochemii, Korozji i Inżynierii Materiałowej Wydział Chemiczny PG pokój 311 Politechnika Gdaoska, 2011 r. Publikacja współfinansowana ze środków Unii Europejskiej w
Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej
Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Przetwarzanie Sygnałów Kod: TS1A400027 Temat ćwiczenia:
Politechnika Łódzka. Instytut Systemów Inżynierii Elektrycznej
Politechnika Łódzka Instytut Systemów Inżynierii Elektrycznej Laboratorium komputerowych systemów pomiarowych Ćwiczenie 3 Analiza częstotliwościowa sygnałów dyskretnych 1. Opis stanowiska Ćwiczenie jest
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Środowiska obowiązuje studentów rozpoczynających studia w roku akademickim 014/015 Kierunek studiów: Gospodarka przestrzenna
CYFROWE PRZETWARZANIE SYGNAŁÓW
POLITECHNIKA RZESZOWSKA im. I. Łukasiewicza WYDZIAŁ ELEKTROTECHNIKI I INFORMATYKI Katedra Metrologii i Systemów Diagnostycznych CYFROWE PRZETWARZANIE SYGNAŁÓW Analiza widmowa sygnałów (2) dr inż. Robert
8. Realizacja projektowanie i pomiary filtrów IIR
53 8. Realizacja projektowanie i pomiary filtrów IIR Cele ćwiczenia Realizacja na zestawie TMX320C5515 ezdsp prostych liniowych filtrów cyfrowych. Pomiary charakterystyk amplitudowych zrealizowanych filtrów
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: moduł specjalności obowiązkowy: Inżynieria oprogramowania, Sieci komputerowe Rodzaj zajęć: wykład, laboratorium MODELOWANIE I SYMULACJA Modelling
Analiza sygnału mowy pod kątem rozpoznania mówcy chorego. Anna Kosiek, Dominik Fert
Analiza sygnału mowy pod kątem rozpoznania mówcy chorego Anna Kosiek, Dominik Fert Wstęp: Analiza sygnału akustycznego była wykorzystywana w medycynie jeszcze przed wykorzystaniem jej w technice. Sygnał
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 3 Generacja realizacji zmiennych losowych Prowadzący: mgr inż. Marcel Luzar Cele ćwiczenia: Generowanie
Imię i nazwisko (e mail): Rok: 2018/2019 Grupa: Ćw. 5: Pomiar parametrów sygnałów napięciowych Zaliczenie: Podpis prowadzącego: Uwagi:
Wydział: EAIiIB Imię i nazwisko (e mail): Rok: 2018/2019 Grupa: Zespół: Data wykonania: LABORATORIUM METROLOGII Ćw. 5: Pomiar parametrów sygnałów napięciowych Zaliczenie: Podpis prowadzącego: Uwagi: Wstęp
KARTA MODUŁU KSZTAŁCENIA
KARTA MODUŁU KSZTAŁCENIA I. Informacje ogólne I. 1 Nazwa modułu kształcenia Analiza i przetwarzanie sygnałów 2 Nazwa jednostki prowadzącej moduł (należy wskazać nazwę zgodnie ze Statutem PSW Instytut,
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT. Instrukcja do zajęc laboratoryjnych nr 1 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH
AKADEMIA MORSKA W SZCZECINIE WI-ET / IIT / ZTT Instrukcja do zajęc laboratoryjnych nr 1 AUTOMATYZACJA I ROBOTYZACJA PROCESÓW PRODUKCYJNYCH II rok Kierunek Logistyka Temat: Zajęcia wprowadzające. BHP stanowisk
1 Programowanie w matlabie - skrypty i funkcje
1 Programowanie w matlabie - skrypty i funkcje 1.1 Skrypty Skrypt jest plikiem tekstowym z rozszerzeniem *.m zawierającym listę poleceń do wykonania. Aby utworzyć skrypt w matlabie wybierz File New Script,
Ćwiczenie 0 : Wprowadzenie do cyfrowego przetwarzania sygnałów. wyświetla listę tematów pomocy. wyświetla okno pomocy (Help / Product Help)
Wybr ane za gadnienia elektr oniki współczesnej Ćwiczenie 0 : Wprowadzenie do cyfrowego przetwarzania sygnałów. 1 Cel ćwiczenia Pierwsze zajęcia laboratoryjne z zakresu przetwarzania sygnałów mają na celu
Instrukcja do laboratorium z Fizyki Budowli. Temat laboratorium: CZĘSTOTLIWOŚĆ
Instrukcja do laboratorium z Fizyki Budowli Temat laboratorium: CZĘSTOTLIWOŚĆ 1 1. Wprowadzenie 1.1.Widmo hałasu Płaską falę sinusoidalną można opisać następującym wyrażeniem: p = p 0 sin (2πft + φ) (1)
Analiza właściwości filtrów dolnoprzepustowych
Ćwiczenie Analiza właściwości filtrów dolnoprzepustowych Program ćwiczenia. Zapoznanie się z przykładową strukturą filtra dolnoprzepustowego (DP) rzędu i jego parametrami.. Analiza widma sygnału prostokątnego.
Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy
Ćwiczenie 3,4. Analiza widmowa sygnałów czasowych: sinus, trójkąt, prostokąt, szum biały i szum różowy Grupa: wtorek 18:3 Tomasz Niedziela I. CZĘŚĆ ĆWICZENIA 1. Cel i przebieg ćwiczenia. Celem ćwiczenia
Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna
Ćwiczenie 20 Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna Program ćwiczenia: 1. Wyznaczenie stałej czasowej oraz wzmocnienia obiektu inercyjnego I rzędu 2. orekcja dynamiczna
Program ćwiczenia: SYSTEMY POMIAROWE WIELKOŚCI FIZYCZNYCH - LABORATORIUM
Podstawy budowy wirtualnych przyrządów pomiarowych Problemy teoretyczne: Pomiar parametrów napięciowych sygnałów za pomocą karty kontrolno pomiarowej oraz programu LabVIEW (prawo Shanona Kotielnikowa).
Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"
Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres
Instytut Fizyki Politechniki Łódzkiej Laboratorium Metod Analizy Danych Doświadczalnych Ćwiczenie 3 Generator liczb losowych o rozkładzie Rayleigha.
Instytut Fizyki Politechniki Łódzkiej Laboratorium Metod Analizy Danych Doświadczalnych Generator liczb losowych o rozkładzie Rayleigha. Generator liczb losowych o rozkładzie Rayleigha. 1. Cel ćwiczenia
Kompresja dźwięku w standardzie MPEG-1
mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 7, strona 1. Kompresja dźwięku w standardzie MPEG-1 Ogólne założenia kompresji stratnej Zjawisko maskowania psychoakustycznego Schemat blokowy
Automatyczna klasyfikacja zespołów QRS
Przetwarzanie sygnałów w systemach diagnostycznych Informatyka Stosowana V Automatyczna klasyfikacja zespołów QRS Anna Mleko Tomasz Kotliński AGH EAIiE 9 . Opis zadania Tematem projektu było zaprojektowanie
Przekształcenia sygnałów losowych w układach
INSTYTUT TELEKOMUNIKACJI ZAKŁAD RADIOKOMUNIKACJI Instrukcja laboratoryjna z przedmiotu Sygnały i kodowanie Przekształcenia sygnałów losowych w układach Warszawa 010r. 1. Cel ćwiczenia: Ocena wpływu charakterystyk