III r. EiP (Technologia Chemiczna)

Wielkość: px
Rozpocząć pokaz od strony:

Download "III r. EiP (Technologia Chemiczna)"

Transkrypt

1 AKADEMIA GÓRNICZO HUTNICZA WYDZIAŁ ENERGETYKI I PALIW III r. EiP (Technologia Chemiczna) INŻYNIERIA CHEMICZNA I PROCESOWA (przenoszenie pędu) Prof. dr hab. Leszek CZEPIRSKI Kontakt: A4, p. 44 Tel czepir@agh.edu.pl Konsultacje: Wtorek: Środa:

2 III r. EiP (Technologia Chemiczna) INŻYNIERIA CHEMICZNA I PROCESOWA (przenoszenie pędu) Wykład 30h (egzamin) prof. dr hab. Leszek Czepirski Ćiczenia 30h (zaliczenie) - dr inż. Katarzyna Czer WARUNKI ZALICZENIA Uzyskanie pozytynej oceny z ćiczeń rachunkoych i egzaminu końcoego EGZAMIN: pisemny (teoria z elementami obliczeń) Ocena końcoa = 0.4*ocena ćiczeń + 0.6*ocena egzaminu

3 III r. EiP (technologia chemiczna) INŻYNIERIA CHEMICZNA I PROCESOWA (przenoszenie pędu) ZAKRES MATERIAŁU Przepły płynó. Podstaoe pojęcia dotyczące przepłyu płynó (ilościoe określanie przepłyu, przepły ustalony i nieustalony). Bilans masoy przepłyu płynó doskonałych i rzeczyistych (rónanie ciągłości strumienia). Bilans energetyczny strumienia (rónanie Bernoulli ego dla płynó doskonałych i rzeczyistych). Graficzna interpretacja rónania Bernoulli ego. Zastosoania rónania Bernoulli ego (ustalony i nieustalony ypły cieczy ze zbiornikó, czas opróżniania zbiornikó o różnym kształcie, uogólnione rónanie Bernoulli ego). Rodzaje przepłyó (ruch laminarny i burzliy, liczba Reynoldsa jako kryterium ruchu płynu, rozkłady prędkości płynu rurociągu). Opory przepłyu płynu. Rónanie Darcy-Weisbacha. Współczynnik oporu dla ruchu uarstionego i burzliego. Przepły gładkich przeodach cylindrycznych. Promień hydrauliczny i zastępcza średnica rurociągu. Opory lokalne czasie ruchu płynó przeodach. Przepły przez rury szorstkie, przeężenia, kolana i zaory. Przepły przez ężonice. Długość zastępcza rurociągu. Całkoity opór przetłaczania. Obliczanie przepustoości rurociągu (zór Pohlego). Obliczanie rurociągu dla płynó ściśliych - przepły izotermiczny i adiabatyczny. Optymalna średnica rurociągu. Wpły efektó cieplnych na opory przepłyu.

4 III r. EiP (technologia chemiczna) INŻYNIERIA CHEMICZNA I PROCESOWA (przenoszenie pędu) ZAKRES MATERIAŁU Procesy dufazoe ciało stałe - płyn. Ruch cząstek stałych polu sił masoych i odśrodkoych. Opór ośrodka. Opadanie graitacyjne. Wzory Stokesa, Allena i Netona na prędkość opadania. Graniczne średnice opadających cząstek dla trzech zakresó opadania. Uproszczona metoda obliczania prędkości opadania i średnicy opadającej cząstki. Opadanie zakłócone. Zastosoanie pra opadania procesach rozdziału układó ciało stałe płyn (klasyfikacja hydrauliczna, odpylanie gazó, sedymentacja naturalna i ymuszona). Przepły płynu przez arstę usypanego materiału stałego. Poierzchnia łaścia ziarna, poroatość złoża, średnica zastępcza i kształt ziarna. Opory przepłyu płynu przez złoże ziarnistego materiału. Fluidyzacja. Minimalna i maksymalna prędkość fluidyzacji, ekspansja złoża, transport pneumatyczny i hydrauliczny. Filtracja (opór filtracji, rónanie Rutha, filtracja przy stałej i zmiennej grubości arsty osadu). Przepły dufazoy gaz - ciecz przez nieruchome ypełnienie. Charakterystyka ypełnień. Zastępcze liczby Reynoldsa. Dozolona prędkość przepłyu fazy gazoej. Spadek ciśnienia fazy gazoej na ypełnieniu zraszanym cieczą. Przepły gazu przez arstę cieczy (barbotaż). Ruch pęcherzykó gazu cieczy. Barbotaż sobodny i łańcuchoy. Wyznaczanie prędkości i średnicy pęcherzyka barbotażu łańcuchoym. Poierzchnia kontaktu faz i straty ciśnienia przy barbotażu. Pienienie i zachłystyanie przy barbotażu.

5 III r. EiP (technologia chemiczna) INŻYNIERIA CHEMICZNA I PROCESOWA (przenoszenie pędu) ZALECANE PODRĘCZNIKI 1. Z.Kembłoski, S.Michałoski, C.Strumiłło, R.Zarzycki, Podstay teoretyczne inżynierii chemicznej i procesoej, WNT W-a Zbiór zadań z podsta teoretycznych inżynierii chemicznej i procesoej, (praca zbioroa pod redakcją T.Kudry), WNT W-a S.Wroński, R.Pohorecki, Termodynamika i kinetyka procesó inżynierii chemicznej, WNT W-a S.Wroński, R.Pohorecki, J.Siiński, Przykłady obliczeń z termodynamiki i kinetyki procesó inżynierii chemicznej, WNT, W-a K.F.Pało, P.G.Romanko, A.A.Nosko. Przykłady i zadania z zakresu aparatury i inżynierii chemicznej, WNT W-a W.Ciesielczyk. K.Kupiec, A. Wiechoski, Przykłady i zadania z zakresu inżynierii chemicznej i procesoej, cz. I, II, skrypt Politechniki Krakoskiej Zadania rachunkoe z inżynierii chemicznej, (pr. zbioroa pod red. R.Zarzyckiego), PWN W-a M.Seriński, Zasady inżynierii chemicznej i procesoej, WNT W-a Podstaoe procesy inżynierii chemicznej. Przenoszenie pędu, ciepła i masy, (pr. zbioroa pod red. Z.Ziółkoskiego), PWN W-a J.Ciboroski, Inżynieria chemiczna. Inżynieria procesoa, WNT W-a J.Ciboroski, Podstay inżynierii chemicznej, WNT W-a C.O.Bennet, J.E.Myers, Przenoszenie pędu, ciepła i masy, WNT W-a R.Koch, A,Nooryta, Procesy mechaniczne inżynierii chemicznej, WNT W-a, A.Selecki, M.Gradoń, Podstaoe procesy przemysłu chemicznego, WNT W-a A.Kozioł, Kinetyka procesó, mechanicznych, cieplnych i dyfuzyjnych, (skrypt Politechniki Wrocłaskiej), J.Pikoń, Aparatura chemiczna, PWN W-a1983.

6 Definicja inżynierii Inżynieria to umiejętność torzenia artefaktó Wszelkie przedmioty lub zjaiska nie będące ytorem przyrody, do których postania przyczynił się człoiek Początkoo pojęcie inżynierii sproadzało się do umiejętności torzenia budoli. Inżynieria to dziedzina iedzy teoretycznej i praktycznej, a także określony obszar umiejętności praktycznych, dotyczący projektoania, a także optymalnego stosoania różnego rodzaju procesó technologicznych oraz operacji jednostkoych procesach technologicznych technologii chemicznej i pokrenych.

7

8

9 PROCESY a OPERACJE JEDNOSTKOWE Procesy ( tym, procesy technologiczne ), to zajemnie poiązane i pozostające pod kontrolą, działania ( operacje jednostkoe ), gdy ma miejsce przekształcenie określonych parametró, lub łaściości ejścioych, inne pożądane parametry, lub łaściości yjścioe. Proces produkcyjny przemyśle chemicznym sekencja operacji jednostkoych i procesó chemicznych. Operacja jednostkoa zjaisko o charakterze fizycznym lub fizykochemicznym, którym nie ystępuje reakcja chemiczna.

10

11

12 Opis operacji jednostkoych 1. Zasada zachoania masy rozażanym układzie zamkniętym suma mas poszczególnych składnikó przed procesem i po jego zakończeniu jest ielkością stałą sporządzanie bilansó masoych. Zasada zachoania energii rozażanym układzie zamkniętym suma szystkich rodzajó energii jest ielkością stałą sporządzanie bilansó energetycznych Zamiana jednej postaci energii na inną nie zmienia stałości sumy energii całego układu. 3. Rónoaga układu (mechaniczna, termiczna, fizykochemiczna) stanie rónoagi łaściości całego układu są niezmienne czasie. 4. Kinetyka przebiegu danej operacji układzie określa szybkość, z jaką układ dąży do stanu rónoagi. Szybkość przebiegu operacji zależy od artości siły napędoej (np. różnica ciśnień, temperatur, stężeń) oraz od artości siły oporu, ystępującej przebiegu operacji (np. siła tarcia, opór termiczny, opór dyfuzyjny).

13 Czym jest Inżynieria Chemiczna i Procesoa (Chemical and Process Engineering)? Co chodzi jej skład? Termodynamika procesoa - Metody obliczeń łaściości płynó - Rónoagi fazoe procesó Kinetyka procesoa: - Mechanika płynó - Przenikanie ciepła i masy z reakcją chemiczną INŻYNIERIA CHEMICZNA I PROCESOWA Procesy podstaoe: - yjaśnia mechanizmy znanych procesó na tle pra fizyki - klasyfikacja procesó Aparaturoznasto procesoe - umiejętność yboru odpoiedniej aparatury do danego procesu

14

15

16 W nauce o ruchu płynó tj. gazó i cieczy, traktujemy płyn jako ośrodek o strukturze ciągłej Różniczkoa objętość płynu o doolnie małych rozmiarach ( granicy będzie to punkt) może być zatem rozpatryana jako jednorodna próbka o łaściościach fizycznych całego ośrodka, oderaniu od rzeczyistej struktury cząsteczkoej. Zakres stosoalności tego modelu jest ograniczony i nie obejmuje ruchu gazó rozrzedzonych arunkach których średnia droga sobodna cząsteczki jest porónyalna do średnicy przeodu. Przepłyy MOLEKULARNE lub KNUDSENOWSKIE

17 określa masę przepłyającego płynu jednostce czasu określa objętość przepłyającego płynu jednostce czasu kg s kg s 1 m 3 m kg kg m s określa masę płynu przepłyającego jednostce czasu przez jednostkę pola przekroju strumienia m s 3 m s 3 1 m m s

18 Kryteria przepłyu ustalonego: Jeżeli eźmiemy pod uagę da przekroje tego samego strumienia, gdzie natężenia przepłyu ynoszą G 1 i G, óczas przy przepłyie ustalonym czasie natężenia te są jednakoe oraz nie zmieniają się czasie. G1 G

19

20

21

22

23

24

25

26

27

28

29 UOGÓLNIONE RÓWNANIE BERNOULLI ego 1 1 U E Q L U E u v p gz q l u v p gz m L l m Q q ) z g(z ) i (i q l 1 1 1

30 Pompa tłoczy odę ze stau do zbiornika położonego o 35 m yżej, dobrze izoloanym przeodem o średnicy enętrznej 80 mm z szybkością 48 m 3 /h. Ciśnienie zbiorniku jest stałe i ynosi 3 at. Zapotrzeboanie mocy przez pompę o spraności 0.7 ynosi 3 kw. Obliczyć temperaturę ody na locie do zbiornika, jeżeli jej temperatura staie ynosi 17 o C. E U L Q E 1 1 U gz 1 p ρ U 1 L Q gz p ρ U 1). Woda jest płynem nieściśliym (praktycznie stała gęstość przy nieielkich zmianach temperatury), i przepłya przeodem o stałej średnicy (S= const.) Dlatego arunkach ustalonych: 1 = ). Q = 0 - przepły adiabatyczny g(z z ) p p ρ (U U ) L Ilość pracy przekazanej przez pompę na 1 kg ody: o N L G L = 1.7 kj/kg 0 G V G 13.3 kg/s

31 Zmiana energii enętrznej: p1 p (U U1 ) g(z1 z ) L ρ (U - U 1 ) = 673 J/kg Zmiana energii enętrznej: (U U ) c ( t ) v 1 1 t ( U U 1 t t1) c v (t - t 1 ) = o C

32 WYPŁYW USTALONY CIECZY PRZEZ OTWÓR W DNIE ZBIORNIKA o po p ho g hg h o 0 So So o S S o S S o o po hg o p o p o p 1 S S o hg o So p p 1 0 S o gh zór Torricellego hg S o S 0 p o p

33 Straty energii pomiędzy przekrojami (rodzaj, kształt otoru ypłyoego) poodują że rzeczyiste objętościoe natężenie ypłyu jest mniejsze od teoretycznego: V V V rzecz S rzecz o V V 1 gh teoret teoret

34 NIEUSTALONY WYPŁYW CIECZY ZE ZBIORNIKA Nieustalony ypły cieczy ma miejsce tedy gdy ciśnienie hydrostatyczne cieczy zbiorniku ulega zmianie. W zbiorniku otartym jest to rónoażne zmianie ysokości cieczy zbiorniku (maleje objętościoe natężenie ypłyu). Wypły należy traktoać jako quasi-ustalony tzn. danej chili można stosoać zależności jak dla przepłyu ustalonego a ynika to z faktu bardzo małego przekroju otoru ylotoego stosunku do pola przekroju zbiornika.

35 CZAS OPRÓŻNIANIA ZBIORNIKA S f ( h ) dv S dh dv Q v d Q v S o o o gh dv So gh d S dh So gh d S S o 1 g h 1 h 1 dh h 0 d S S o 1 g h h 1 1 dh h Czas całkoitego opróżniania zbiornika: (h 0 ) S S o g h 1 h S So g h

36 Zasada działania inżektora odno - odnego

37 Zasada działania inżektora odno - odnego

38 Model matematyczny przepłyu cieczy doskonałej Rónanie Netona: d f m d Siły działające na zenętrzne poierzchnie rónoległościanu: 1). Siła ciężkości: mg gv gdxdydz ). Siły ciśnienia (działające zdłuż osi z): f z p gdxdydz pdxdy ( p dz )dxdy z p f z ( g )dxdydz z p p dxdydz f dxdydz x y y f x Ciało znajduje się ruchu, jeżeli suma rzutó szystkich sił działających na dane ciało róna jest iloczynoi masy tego ciała i przyspieszenia

39 d d dxdydz )dxdydz z p g ( d d dxdydz dxdydz y p d d dxdydz dxdydz x p z y x d d ) z p g ( d d y p d d x p z y x Składoe prędkości są funkcjami parametró spółrzędnych i czasu: ) y,z, x, ( f Ponieaż przyspieszenie jest sumą ektoroą trzech składoych przyspieszenia zdłuż osi spółrzędnych można ykazać, że: x x x x d d i analogicznie dla pozostałych osi, a stąd: Różniczkoe rónanie przepłyu Eulera x x p x x y y p y y z ) z p g ( z z

40 Rónania Eulera obrazują działanie sił jednym punkcie poruszającego się płynu (przy założeniu, że elementarna objętość płynu zbliżona jest do punktu). Dla określenia sił działających na całej poierzchni elementarnego rónoległościanu należy ięc obie strony rónań Eulera pomnożyć przez długości odpoiednich kraędzi i zsumoać dla uzyskania działania sił całej objętości: dz z )dz z p g ( dy y dy y p dx x dx x p z z y y x x dz z dy y dx x gdz dz z p dy y p dx x p z z y y x x d d dz z dy y dx x dp dz z p dy y p dx x p z z y y x x

41 gdz dp d 0 d z p g g 0 Po zcałkoaniu: z p g g const Rónanie Bernoulli ego!!! Rónanie Bernoulli ego jest zatem roziązaniem (całką rónań Eulera)

42 Elementy dynamiki przepłyu płynó rzeczyistych

43 Elementy teorii podobieństa

44

45

46 Analiza ymiaroa

47 Analiza ymiaroa

48 Cechy charakterystyczne ruchu laminarnego

49 Cechy charakterystyczne ruchu laminarnego

50 Cechy charakterystyczne ruchu laminarnego

51 Cechy charakterystyczne ruchu burzliego

52

53

54 Promień hydrauliczny i średnica zastępcza przeodó

55 Opory podczas przepłyu płynó przez przeody

56 Opory podczas przepłyu płynó przez przeody

57

58

59 Opory podczas przepłyu płynó przez przeody

60

61

62

63

64

65

66 Optymalna średnica rurociągu

67 Optymalna średnica rurociągu

68 Optymalna średnica rurociągu

69 Optymalna średnica rurociągu

70

71

72

73

74

III r. EiP (Technologia Chemiczna)

III r. EiP (Technologia Chemiczna) AKADEMIA GÓRNICZO HUTNICZA WYDZIAŁ ENERGETYKI I PALIW III r. EiP (Technologia Chemiczna) INŻYNIERIA CHEMICZNA I PROCESOWA (przenoszenie pędu) Prof. dr hab. Leszek CZEPIRSKI Kontakt: A4, p. 424 Tel. 12

Bardziej szczegółowo

(1.1) (1.2) (1.3) (1.4) (1.5) (1.6) Przy opisie zjawisk złożonych wartości wszystkich stałych podobieństwa nie mogą być przyjmowane dowolnie.

(1.1) (1.2) (1.3) (1.4) (1.5) (1.6) Przy opisie zjawisk złożonych wartości wszystkich stałych podobieństwa nie mogą być przyjmowane dowolnie. 1. Teoria podobieństa Figury podobne geometrycznie mają odpoiadające sobie kąty róne, a odpoiadające sobie boki są proporcjonane 1 n (1.1) 1 n Zjaiska fizyczne mogą być podobne pod arunkiem, że zachodzą

Bardziej szczegółowo

Bilans cieplny suszarni teoretycznej Termodynamika Techniczna materiały dla studentów

Bilans cieplny suszarni teoretycznej Termodynamika Techniczna materiały dla studentów Bilans cieplny suszarni teoretycznej Termodynamika Techniczna materiały dla studentó K. Kyzioł, J. Szczerba Bilans cieplny suszarni teoretycznej Na rysunku 1 przedstaiono przykładoy schemat suszarni jednostopnioej

Bardziej szczegółowo

Grupa 1 1.1). Obliczyć średnicę zastępczą przewodu o przekroju prostokątnym o długości boków A i B=2A wypełnionego wodą w 75%. Przewód ułożony jest w

Grupa 1 1.1). Obliczyć średnicę zastępczą przewodu o przekroju prostokątnym o długości boków A i B=2A wypełnionego wodą w 75%. Przewód ułożony jest w Grupa 1 1.1). Obliczyć średnicę zastępczą przewodu o przekroju prostokątnym o długości boków A i B=2A wypełnionego wodą w 75%. Przewód ułożony jest w taki sposób, że dłuższy bok przekroju znajduje się

Bardziej szczegółowo

Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym

Wyznaczanie profilu prędkości płynu w rurociągu o przekroju kołowym .Wproadzenie. Wyznaczanie profilu prędkości płynu rurociągu o przekroju kołoym Dla ustalonego, jednokierunkoego i uarstionego przepłyu przez rurę o przekroju kołoym rónanie aviera-stokesa upraszcza się

Bardziej szczegółowo

Mechanika Płynów. Wzornictwo Przemysłowe I stopień ogólnoakademicki studia stacjonarne wszystkie Katedra Mechaniki Dr hab. inż.

Mechanika Płynów. Wzornictwo Przemysłowe I stopień ogólnoakademicki studia stacjonarne wszystkie Katedra Mechaniki Dr hab. inż. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Naza modułu Mechanika Płynó Naza modułu języku angielskim Fluid Mechanics Oboiązuje od roku akademickiego 2014/2015 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek

Bardziej szczegółowo

1. Część teoretyczna. Przepływ jednofazowy przez złoże nieruchome i ruchome

1. Część teoretyczna. Przepływ jednofazowy przez złoże nieruchome i ruchome 1. Część teoretyczna Przepływ jednofazowy przez złoże nieruchome i ruchome Przepływ płynu przez warstwę luźno usypanego złoża występuje w wielu aparatach, np. w kolumnie absorpcyjnej, rektyfikacyjnej,

Bardziej szczegółowo

MECHANIKA PŁYNÓW Płyn

MECHANIKA PŁYNÓW Płyn MECHANIKA PŁYNÓW Płyn - Każda substancja, która może płynąć, tj. pod wpływem znikomo małych sił dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje, oraz może swobodnie się przemieszczać

Bardziej szczegółowo

Mechanika Płynów Fluid Mechanics

Mechanika Płynów Fluid Mechanics Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Naza modułu Naza modułu języku angielskim Oboiązuje od roku akademickiego 2013/2014 Mechanika

Bardziej szczegółowo

Zadanie 1. Zadanie 2.

Zadanie 1. Zadanie 2. Zadanie 1. Określić nadciśnienie powietrza panujące w rurociągu R za pomocą U-rurki, w której znajduje się woda. Różnica poziomów wody w U-rurce wynosi h = 100 cm. Zadanie 2. Określić podciśnienie i ciśnienie

Bardziej szczegółowo

S Y L A B U S P R Z E D M I O T U

S Y L A B U S P R Z E D M I O T U "Z A T W I E R D Z A M" Dziekan Wydziału Nowych Technologii i Chemii dr hab. inż. Stanisław CUDZIŁO Warszawa, dnia... S Y L A B U S P R Z E D M I O T U NAZWA PRZEDMIOTU: Inżynieria chemiczna Wersja anglojęzyczna:

Bardziej szczegółowo

J. Szantyr Wykład 27bis Podstawy jednowymiarowej teorii wirnikowych maszyn przepływowych

J. Szantyr Wykład 27bis Podstawy jednowymiarowej teorii wirnikowych maszyn przepływowych J. Szantyr Wykład 7bis Podstay jednoymiaroej teorii irnikoych maszyn przepłyoych a) Wentylator lub pompa osioa b) Wentylator lub pompa diagonalna c) Sprężarka lub pompa odśrodkoa d) Turbina odna promienioo-

Bardziej szczegółowo

Mechanika płynów Fluid mechanics. Inżynieria Środowiska I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Mechanika płynów Fluid mechanics. Inżynieria Środowiska I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Naza modułu Naza modułu języku angielskim Oboiązuje od roku akademickiego 2017/2018 Mechanika

Bardziej szczegółowo

WPŁYW POWŁOKI POWIERZCHNI WEWNĘTRZNEJ RUR PRZEWODOWYCH NA EKSPLOATACJĘ RUROCIĄGU. Przygotował: Dr inż. Marian Mikoś

WPŁYW POWŁOKI POWIERZCHNI WEWNĘTRZNEJ RUR PRZEWODOWYCH NA EKSPLOATACJĘ RUROCIĄGU. Przygotował: Dr inż. Marian Mikoś WPŁYW POWŁOKI POWIERZCHNI WEWNĘTRZNEJ RUR PRZEWODOWYCH NA EKSPLOATACJĘ RUROCIĄGU Przygotował: Dr inż. Marian Mikoś Kocierz, 3-5 wrzesień 008 Wstęp Przedmiotem opracowania jest wykazanie, w jakim stopniu

Bardziej szczegółowo

Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości

Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości LABORATORIUM MECHANIKI PŁYNÓW Nieustalony wypływ cieczy ze zbiornika przewodami o różnej średnicy i długości dr inż. Jerzy Wiejacha ZAKŁAD APARATURY PRZEMYSŁOWEJ POLITECHNIKA WARSZAWSKA, WYDZ. BMiP, PŁOCK

Bardziej szczegółowo

[ ] ρ m. Wykłady z Hydrauliki - dr inż. Paweł Zawadzki, KIWIS WYKŁAD WPROWADZENIE 1.1. Definicje wstępne

[ ] ρ m. Wykłady z Hydrauliki - dr inż. Paweł Zawadzki, KIWIS WYKŁAD WPROWADZENIE 1.1. Definicje wstępne WYKŁAD 1 1. WPROWADZENIE 1.1. Definicje wstępne Płyn - ciało o module sprężystości postaciowej równym zero; do płynów zaliczamy ciecze i gazy (brak sztywności) Ciecz - płyn o małym współczynniku ściśliwości,

Bardziej szczegółowo

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: 1. Ma podstawową wiedzę i umiejętności z zakresu matematyki, fizyki, mechaniki i termodynamiki.

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: 1. Ma podstawową wiedzę i umiejętności z zakresu matematyki, fizyki, mechaniki i termodynamiki. KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Mechanika płynów 2. KIERUNEK: Mechanika i budowa maszyn 3. POZIOM STUDIÓW: pierwszego stopnia 4. ROK/ SEMESTR STUDIÓW: rok II / semestr 3 5. LICZBA PUNKTÓW ECTS: 5

Bardziej szczegółowo

Materiały pomocnicze z Aparatury Przemysłu Chemicznego

Materiały pomocnicze z Aparatury Przemysłu Chemicznego Materiały pomocnicze z Aparatury Przemysłu Chemicznego Odstojnik dr inż. Szymon Woziwodzki Materiały dydaktyczne v.1. Wszelkie prawa zastrzeżone. Szymon.Woziwodzki@put.poznan.pl Strona 1 POLITECHNIKA POZNAŃSKA

Bardziej szczegółowo

Załącznik Nr 5 do Zarz. Nr 33/11/12

Załącznik Nr 5 do Zarz. Nr 33/11/12 Załącznik Nr 5 do Zarz. Nr 33/11/12 (pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: OPERACJE JEDNOSTKOWE 2. Kod przedmiotu: 3. Karta przedmiotu ważna od roku akademickiego:

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/ /20 (skrajne daty)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/ /20 (skrajne daty) SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/17-2019/20 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Mechanika płynów Kod przedmiotu/ modułu* Wydział (nazwa jednostki

Bardziej szczegółowo

OPADANIE CZĄSTEK CIAŁ STAŁYCH W PŁYNACH

OPADANIE CZĄSTEK CIAŁ STAŁYCH W PŁYNACH OPADANIE CZĄSTEK CIAŁ STAŁYCH W PŁYNACH OPADANIE CZĄSTEK CIAŁ STAŁYCH W PŁYNACH UKŁAD NIEJEDNORODNY złożony jest z fazy rozpraszającej (gazowej lub ciekłej) i fazy rozproszonej stałej. Rozdzielanie układów

Bardziej szczegółowo

WYKŁAD 8B PRZEPŁYWY CIECZY LEPKIEJ W RUROCIĄGACH

WYKŁAD 8B PRZEPŁYWY CIECZY LEPKIEJ W RUROCIĄGACH WYKŁA 8B PRZEPŁYWY CIECZY LEPKIEJ W RUROCIĄGACH PRZEPŁYW HAGENA-POISEUILLE A (LAMINARNY RUCH W PROSTOLINIOWEJ RURZE O PRZEKROJU KOŁOWYM) Prędkość w rurze wyraża się wzorem: G p w R r, Gp const 4 dp dz

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na kierunku Mechanika i Budowa Maszyn Rodzaj zajęć: wykład, ćwiczenia, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU

Bardziej szczegółowo

Program zajęć: Przedmiot Inżynieria procesowa w ochronie środowiska Kierunek: Zarządzanie i Inżynieria Produkcji (studia stacjonarne) II rok

Program zajęć: Przedmiot Inżynieria procesowa w ochronie środowiska Kierunek: Zarządzanie i Inżynieria Produkcji (studia stacjonarne) II rok Program zajęć: Przedmiot Inżynieria procesowa w ochronie środowiska Kierunek: Zarządzanie i Inżynieria Produkcji (studia stacjonarne) II rok Zaliczenie przedmiotu: zdanie pisemnego egzaminu testowego,

Bardziej szczegółowo

Ćwiczenie 3: Wyznaczanie gęstości pozornej i porowatości złoża, przepływ gazu przez złoże suche, opory przepływu.

Ćwiczenie 3: Wyznaczanie gęstości pozornej i porowatości złoża, przepływ gazu przez złoże suche, opory przepływu. 1. Część teoretyczna Przepływ jednofazowy przez złoże nieruchome i ruchome Przepływ płynu przez warstwę luźno usypanego złoża występuje w wielu aparatach, np. w kolumnie absorpcyjnej, rektyfikacyjnej,

Bardziej szczegółowo

J. Szantyr - Wykład 3 Równowaga płynu

J. Szantyr - Wykład 3 Równowaga płynu J. Szantyr - Wykład 3 Równowaga płynu Siły wewnętrzne wzajemne oddziaływania elementów mas wydzielonego obszaru płynu, siły o charakterze powierzchniowym, znoszące się parami. Siły zewnętrzne wynik oddziaływania

Bardziej szczegółowo

LABORATORIUM INŻYNIERII CHEMICZNEJ, PROCESOWEJ I BIOPROCESOWEJ. Ćwiczenie nr 7

LABORATORIUM INŻYNIERII CHEMICZNEJ, PROCESOWEJ I BIOPROCESOWEJ. Ćwiczenie nr 7 KAEDRA INŻYNIERII CHEMICZNEJ I PROCESOWEJ INSRUKCJE DO ĆWICZEŃ LABORAORYJNYCH LABORAORIUM INŻYNIERII CHEMICZNEJ, PROCESOWEJ I BIOPROCESOWEJ Skaloanie zężki Osoba odpoiedzialna: Piotr Rybarczyk Gdańsk,

Bardziej szczegółowo

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH

INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH INSTYTUT INŻYNIERII ŚRODOWISKA ZAKŁAD GEOINŻYNIERII I REKULTYWACJI Laboratorium z mechaniki płynów ĆWICZENIE NR 4 OKREŚLENIE WSPÓŁCZYNNIKA STRAT LOEKALNYCH . Cel ćwiczenia Celem ćwiczenia jest doświadczalne

Bardziej szczegółowo

Gęstość i ciśnienie. Gęstość płynu jest równa. Gęstość jest wielkością skalarną; jej jednostką w układzie SI jest [kg/m 3 ]

Gęstość i ciśnienie. Gęstość płynu jest równa. Gęstość jest wielkością skalarną; jej jednostką w układzie SI jest [kg/m 3 ] Mechanika płynów Płyn każda substancja, która może płynąć, tj. dowolnie zmieniać swój kształt w zależności od naczynia, w którym się znajduje oraz może swobodnie się przemieszczać (przepływać), np. przepompowywana

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW

LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie numer Pomiar współczynnika oporu liniowego 1. Wprowadzenie Stanowisko służy do analizy zjawiska liniowych strat energii podczas przepływu laminarnego i turbulentnego przez rurociąg mosiężny o

Bardziej szczegółowo

WYDZIAŁ LABORATORIUM FIZYCZNE

WYDZIAŁ LABORATORIUM FIZYCZNE 1 W S E i Z W WARSZAWIE WYDZIAŁ LABORATORIUM FIZYCZNE Ćwiczenie Nr 3 Temat: WYZNACZNIE WSPÓŁCZYNNIKA LEPKOŚCI METODĄ STOKESA Warszawa 2009 2 1. Podstawy fizyczne Zarówno przy przepływach płynów (ciecze

Bardziej szczegółowo

RÓWNANIE MOMENTÓW PĘDU STRUMIENIA

RÓWNANIE MOMENTÓW PĘDU STRUMIENIA RÓWNANIE MOMENTÓW PĘDU STRUMIENIA Przepływ osiowo-symetryczny ustalony to przepływ, w którym parametry nie zmieniają się wzdłuż okręgów o promieniu r, czyli zależą od promienia r i długości z, a nie od

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW

LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie numer 2 Pomiar współczynnika oporu liniowego 1. Wprowadzenie Stanowisko służy do analizy zjawiska liniowych strat energii podczas przepływu laminarnego i turbulentnego przez rurociąg mosiężny

Bardziej szczegółowo

J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I

J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I J. Szantyr Wykład nr 7 Przepływy w kanałach otwartych Przepływy w kanałach otwartych najczęściej wymuszane są działaniem siły grawitacji. Jako wstępny uproszczony przypadek przeanalizujemy spływ warstwy

Bardziej szczegółowo

KOMPUTEROWE WSPOMAGANIE PROCESU PROJEKTOWANIA ODSTOJNIKA

KOMPUTEROWE WSPOMAGANIE PROCESU PROJEKTOWANIA ODSTOJNIKA Piotr KOWALIK Uniwersytet Przyrodniczy w Lublinie Studenckie Koło Naukowe Informatyków KOMPUTEROWE WSPOMAGANIE PROCESU PROJEKTOWANIA ODSTOJNIKA 1. Ciekłe układy niejednorodne Ciekły układ niejednorodny

Bardziej szczegółowo

Ćwiczenie N 14 KAWITACJA

Ćwiczenie N 14 KAWITACJA LABORATORIUM MECHANIKI PŁYNÓW Ćiczenie N 1 KAWITACJA 1. Cel ćiczenia ośiadczalne yznaczenie ciśnienia i strumienia objętości kaitacji oraz charakterystyki przepłyu zęŝki, której postaje kaitacja.. Podstay

Bardziej szczegółowo

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 1 Temat: Wyznaczanie współczynnika

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA

WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA ĆWICZENIE 8 WYZNACZANIE WSPÓŁCZYNNIKA LEPKOŚCI CIECZY NA PODSTAWIE PRAWA STOKESA Cel ćwiczenia: Badanie ruchu ciał spadających w ośrodku ciekłym, wyznaczenie współczynnika lepkości cieczy metodą Stokesa

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Zbiorniki i rurociągi Kierunek: Inżynieria Środowiska Rodzaj przedmiotu: Poziom kształcenia: Moduł 5.5 I stopnia Rodzaj zajęć: Liczba godzin/tydzień/zjazd * Wykład, ćwiczenia W, C Profil

Bardziej szczegółowo

dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B

dn dt C= d ( pv ) = d dt dt (nrt )= kt Przepływ gazu Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A , p 1 , S , p 2 , S E C B Pompowanie przez przewód o przewodności G zbiornik przewód pompa C A, p 2, S E C B, p 1, S C [W] wydajność pompowania C= d ( pv ) = d dt dt (nrt )= kt dn dt dn / dt - ilość cząstek przepływających w ciągu

Bardziej szczegółowo

8. Hydrostatyka i hydrodynamika

8. Hydrostatyka i hydrodynamika 8 Hydrostatyka i hydrodynamika Hydrostatyka Ciśnienie hydrostatyczne Jest to ciśnienie yołane ciężarem cieczy Ciśnienie hydrostatyczne zależy tylko od ysokości słupa cieczy, tj od głębokości, na której

Bardziej szczegółowo

Podstawy fizyki wykład 5

Podstawy fizyki wykład 5 Podstawy fizyki wykład 5 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Grawitacja Pole grawitacyjne Prawo powszechnego ciążenia Pole sił zachowawczych Prawa Keplera Prędkości kosmiczne Czarne

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Załącznik nr 1 do procedury nr W_PR_12 Naza przedmiotu: Specjalne urządzenia cieplne i chłodnicze Special systems of thermal and refrigerating Kierunek: inżynieria środoiska Kod przedmiotu:5.2.12 Rodzaj

Bardziej szczegółowo

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 12. Procesy transportu. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 12 Procesy transportu Janusz Brzychczyk, Instytut Fizyki UJ Zjawiska transportu Zjawiska transportu są typowymi procesami nieodwracalnymi zachodzącymi w przyrodzie. Zjawiska te polegają

Bardziej szczegółowo

A - przepływ laminarny, B - przepływ burzliwy.

A - przepływ laminarny, B - przepływ burzliwy. PRZEPŁYW CZYNNIK ŚCIŚLIWEGO. Definicje odstaoe Rys... Profile rędkości rurze. - rzeły laminarny, B - rzeły burzliy. Liczba Reynoldsa Re D [m/s] średnia rędkość kanale D [m] średnica enętrzna kanału ν [m

Bardziej szczegółowo

Zastosowania Równania Bernoullego - zadania

Zastosowania Równania Bernoullego - zadania Zadanie 1 Przez zwężkę o średnicy D = 0,2 m, d = 0,05 m przepływa woda o temperaturze t = 50 C. Obliczyć jakie ciśnienie musi panować w przekroju 1-1, aby w przekroju 2-2 nie wystąpiło zjawisko kawitacji,

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA ZAKŁADZIE BIOFIZYKI Ćwiczenie 7 KALORYMETRIA

POLITECHNIKA ŁÓDZKA ZAKŁADZIE BIOFIZYKI Ćwiczenie 7 KALORYMETRIA POLITECHNIKA ŁÓDZKA INSTRUKCJA Z LABORATORIUM W ZAKŁADZIE BIOFIZYKI Ćiczenie 7 KALORYMETRIA I. WSTĘP TEORETYCZNY Kalorymetria jest działem fizyki zajmującym się metodami pomiaru ciepła ydzielanego bądź

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności: Inżynieria cieplna i samochodowa Rodzaj zajęć: wykład, laboratorium Wymiana ciepła Heat transfer Forma

Bardziej szczegółowo

Prędkości cieczy w rurce są odwrotnie proporcjonalne do powierzchni przekrojów rurki.

Prędkości cieczy w rurce są odwrotnie proporcjonalne do powierzchni przekrojów rurki. Spis treści 1 Podstawowe definicje 11 Równanie ciągłości 12 Równanie Bernoulliego 13 Lepkość 131 Definicje 2 Roztwory wodne makrocząsteczek biologicznych 3 Rodzaje przepływów 4 Wyznaczania lepkości i oznaczanie

Bardziej szczegółowo

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze.

Oddziaływania. Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Siły w przyrodzie Oddziaływania Wszystkie oddziaływania są wzajemne jeżeli jedno ciało działa na drugie, to drugie ciało oddziałuje na pierwsze. Występujące w przyrodzie rodzaje oddziaływań dzielimy na:

Bardziej szczegółowo

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów

Fizyka dla Informatyków Wykład 8 Mechanika cieczy i gazów Fizyka dla Informatyków Wykład 8 Katedra Informatyki Stosowanej PJWSTK 2008 Spis treści Spis treści 1 Podstawowe równania hydrodynamiki 2 3 Równanie Bernoulliego 4 Spis treści Spis treści 1 Podstawowe

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI WYMAGANIA EDUKACYJNE Z FIZYKI KLASA I Budowa materii Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia. Uczeń: rozróżnia

Bardziej szczegółowo

BADANIE WYMIENNIKA CIEPŁA TYPU RURA W RURZE

BADANIE WYMIENNIKA CIEPŁA TYPU RURA W RURZE BDNIE WYMIENNIK CIEPŁ TYPU RUR W RURZE. Cel ćwiczenia Celem ćwiczenia jest zapoznanie z konstrukcją, metodyką obliczeń cieplnych oraz poznanie procesu przenikania ciepła w rurowych wymiennikach ciepła..

Bardziej szczegółowo

Mechanika i Budowa Maszyn II stopień ogólnoakademicki studia stacjonarne CAD/CAE Katedra Mechaniki Dr inż. Robert Kaniowski

Mechanika i Budowa Maszyn II stopień ogólnoakademicki studia stacjonarne CAD/CAE Katedra Mechaniki Dr inż. Robert Kaniowski KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Komputerowe wspomaganie w dynamice przepływów Computer-aided fluid dynamics

Bardziej szczegółowo

Data wydruku: Dla rocznika: 2015/2016. Opis przedmiotu

Data wydruku: Dla rocznika: 2015/2016. Opis przedmiotu Sylabus przedmiotu: Specjalność: Inżynieria procesowa Wszystkie specjalności Data wydruku: 23.01.2016 Dla rocznika: 2015/2016 Kierunek: Wydział: Zarządzanie i inżynieria produkcji Inżynieryjno-Ekonomiczny

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ Instrukcja do ćwiczenia T-06 Temat: Wyznaczanie zmiany entropii ciała

Bardziej szczegółowo

Niestacjonarne Wszystkie Katedra Inżynierii Produkcji Dr Medard Makrenek. Inny / Techniczny Obowiązkowy Polski Semestr trzeci. Semestr zimowy Brak Tak

Niestacjonarne Wszystkie Katedra Inżynierii Produkcji Dr Medard Makrenek. Inny / Techniczny Obowiązkowy Polski Semestr trzeci. Semestr zimowy Brak Tak KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 013/014 Mechanika Płynów i Wymiana Ciepła Fluid Mechanics and Heat Transfer A.

Bardziej szczegółowo

WYKŁAD 10 METODY POMIARU PRĘDKOŚCI, STRUMIENIA OBJĘTOŚCI I STRUMIENIA MASY W PŁYNACH

WYKŁAD 10 METODY POMIARU PRĘDKOŚCI, STRUMIENIA OBJĘTOŚCI I STRUMIENIA MASY W PŁYNACH WYKŁAD 10 METODY POMIARU PRĘDKOŚCI, STRUMIENIA OBJĘTOŚCI I STRUMIENIA MASY W PŁYNACH Pomiar strumienia masy i strumienia objętości metoda objętościowa, (1) q v V metoda masowa. (2) Obiekt badań Pomiar

Bardziej szczegółowo

Ćwiczenie 2: Wyznaczanie gęstości i lepkości płynów nieniutonowskich

Ćwiczenie 2: Wyznaczanie gęstości i lepkości płynów nieniutonowskich Gęstość 1. Część teoretyczna Gęstość () cieczy w danej temperaturze definiowana jest jako iloraz jej masy (m) do objętości (V) jaką zajmuje: Gęstość wyrażana jest w jednostkach układu SI. Gęstość cieczy

Bardziej szczegółowo

K raków 26 ma rca 2011 r.

K raków 26 ma rca 2011 r. K raków 26 ma rca 2011 r. Zadania do ćwiczeń z Podstaw Fizyki na dzień 1 kwietnia 2011 r. r. dla Grupy II Zadanie 1. 1 kg/s pary wo dne j o ciśnieniu 150 atm i temperaturze 342 0 C wpada do t urbiny z

Bardziej szczegółowo

W zaleŝności od charakteru i ilości cząstek wyróŝniamy: a. opadanie cząstek ziarnistych, b. opadanie cząstek kłaczkowatych.

W zaleŝności od charakteru i ilości cząstek wyróŝniamy: a. opadanie cząstek ziarnistych, b. opadanie cząstek kłaczkowatych. BADANIE PROCESU SEDYMENTACJI Wstęp teoretyczny. Sedymentacja, to proces opadania cząstek ciała stałego w cieczy, w wyniku działania siły grawitacji lub sił bezwładności. Zaistnienie róŝnicy gęstości ciała

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Naza przedmiotu: Gospodarka odno-ściekoa przemyśle Water and asteater management in industry Kierunek: inżynieria środoiska Kod przedmiotu: 5.6.1 Rodzaj przedmiotu: Poziom przedmiotu: Semestr: II obieralny,

Bardziej szczegółowo

ciąg podciśnienie wywołane róŝnicą ciśnień hydrostatycznych zamkniętego słupa gazu oraz otaczającego powietrza atmosferycznego

ciąg podciśnienie wywołane róŝnicą ciśnień hydrostatycznych zamkniętego słupa gazu oraz otaczającego powietrza atmosferycznego 34 3.Przepływ spalin przez kocioł oraz odprowadzenie spalin do atmosfery ciąg podciśnienie wywołane róŝnicą ciśnień hydrostatycznych zamkniętego słupa gazu oraz otaczającego powietrza atmosferycznego T0

Bardziej szczegółowo

Statyka płynów - zadania

Statyka płynów - zadania Zadanie 1 Wyznaczyć rozkład ciśnień w cieczy znajdującej się w stanie spoczynku w polu sił ciężkości. Ponieważ na cząsteczki cieczy działa wyłącznie siła ciężkości, więc składowe wektora jednostkowej siły

Bardziej szczegółowo

Aerodynamika i mechanika lotu

Aerodynamika i mechanika lotu Prędkość określana względem najbliższej ścianki nazywana jest prędkością względną (płynu) w. Jeśli najbliższa ścianka porusza się względem ciał bardziej oddalonych, to prędkość tego ruchu nazywana jest

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności: Inżynieria cieplna i samochodowa Rodzaj zajęć: wykład, laboratorium Wymiana ciepła Heat transfer Forma

Bardziej szczegółowo

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa

18. Siły bezwładności Siła bezwładności w ruchu postępowych Siła odśrodkowa bezwładności Siła Coriolisa Kinematyka 1. Podstawowe własności wektorów 5 1.1 Dodawanie (składanie) wektorów 7 1.2 Odejmowanie wektorów 7 1.3 Mnożenie wektorów przez liczbę 7 1.4 Wersor 9 1.5 Rzut wektora 9 1.6 Iloczyn skalarny wektorów

Bardziej szczegółowo

Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia.

Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia. PARA WODNA 1. PRZEMIANY FAZOWE SUBSTANCJI JEDNORODNYCH Para wodna najczęściej jest produkowana w warunkach stałego ciśnienia. Przy niezmiennym ciśnieniu zmiana wody o stanie początkowym odpowiadającym

Bardziej szczegółowo

1. Pojazdy i maszyny robocze 2. Metody komputerowe w projektowaniu maszyn 3. Inżynieria produkcji Jednostka prowadząca

1. Pojazdy i maszyny robocze 2. Metody komputerowe w projektowaniu maszyn 3. Inżynieria produkcji Jednostka prowadząca Załącznik nr 1 do PROCEDURY 1.11. WYKONANIE YLABUU DO PRZEDMIOTU UJĘTEGO W PROGRAMIE KZTAŁCENIA w Państwowej Wyższej zkole Zawodowej im. tanisława taszica w Pile Kod przedmiotu: PLPILA02-IPMIBM-I-3p9-2012-

Bardziej szczegółowo

Termodynamika Termodynamika

Termodynamika Termodynamika Termodynamika 1. Wiśniewski S.: Termodynamika techniczna, WNT, Warszawa 1980, 1987, 1993. 2. Jarosiński J., Wiejacki Z., Wiśniewski S.: Termodynamika, skrypt PŁ. Łódź 1993. 3. Zbiór zadań z termodynamiki

Bardziej szczegółowo

LABORATORIUM: ROZDZIELANIE UKŁADÓW HETEROGENICZNYCH ĆWICZENIE 1 - PRZESIEWANIE

LABORATORIUM: ROZDZIELANIE UKŁADÓW HETEROGENICZNYCH ĆWICZENIE 1 - PRZESIEWANIE LABORATORIUM: ROZDZIELANIE UKŁADÓW HETEROGENICZNYCH ĆWICZENIE 1 - PRZESIEWANIE CEL ĆWICZENIA Celem ćwiczenia jest wykonanie analizy sitowej materiału ziarnistego poddanego mieleniu w młynie kulowym oraz

Bardziej szczegółowo

Fizyka Podręcznik: Świat fizyki, cz.1 pod red. Barbary Sagnowskiej. 4. Jak opisujemy ruch? Lp Temat lekcji Wymagania konieczne i podstawowe Uczeń:

Fizyka Podręcznik: Świat fizyki, cz.1 pod red. Barbary Sagnowskiej. 4. Jak opisujemy ruch? Lp Temat lekcji Wymagania konieczne i podstawowe Uczeń: Fizyka Podręcznik: Świat fizyki, cz.1 pod red. Barbary Sagnowskiej 4. Jak opisujemy ruch? Lp Temat lekcji Wymagania konieczne i podstawowe Wymagania rozszerzone i dopełniające 1 Układ odniesienia opisuje

Bardziej szczegółowo

POMIAR STRUMIENIA PŁYNU ZA POMOCĄ ZWĘŻEK.

POMIAR STRUMIENIA PŁYNU ZA POMOCĄ ZWĘŻEK. POMIAR STRUMIENIA PŁYNU ZA POMOCĄ ZWĘŻEK. Strumieniem płynu nazywamy ilość płynu przepływającą przez przekrój kanału w jednostce czasu. Jeżeli ilość płynu jest wyrażona w jednostkach masy, to mówimy o

Bardziej szczegółowo

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne

Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne Wykład 3 Zjawiska transportu Dyfuzja w gazie, przewodnictwo cieplne, lepkość gazu, przewodnictwo elektryczne W3. Zjawiska transportu Zjawiska transportu zachodzą gdy układ dąży do stanu równowagi. W zjawiskach

Bardziej szczegółowo

SPRĘŻ WENTYLATORA stosunek ciśnienia statycznego bezwzględnego w płaszczyźnie

SPRĘŻ WENTYLATORA stosunek ciśnienia statycznego bezwzględnego w płaszczyźnie DEFINICJE OGÓLNE I WIELKOŚCI CHARAKTERYSTYCZNE WENTYLATORA WENTYLATOR maszyna wirnikowa, która otrzymuje energię mechaniczną za pomocą jednego wirnika lub kilku wirników zaopatrzonych w łopatki, użytkuje

Bardziej szczegółowo

LABORATORIUM PODSTAW BUDOWY URZĄDZEŃ DLA PROCESÓW MECHANICZNYCH

LABORATORIUM PODSTAW BUDOWY URZĄDZEŃ DLA PROCESÓW MECHANICZNYCH LABORATORIUM PODSTAW BUDOWY URZĄDZEŃ DLA PROCESÓW MECHANICZNYCH Temat: Badanie cyklonu ZAKŁAD APARATURY PRZEMYSŁOWEJ POLITECHNIKA WARSZAWSKA WYDZIAŁ BMiP 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: specjalności obieralny Rodzaj zajęć: wykład, laboratorium, ćwiczenia I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C Zapoznanie studentów

Bardziej szczegółowo

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów

Laboratorium komputerowe z wybranych zagadnień mechaniki płynów FORMOWANIE SIĘ PROFILU PRĘDKOŚCI W NIEŚCIŚLIWYM, LEPKIM PRZEPŁYWIE PRZEZ PRZEWÓD ZAMKNIĘTY Cel ćwiczenia Celem ćwiczenia będzie analiza formowanie się profilu prędkości w trakcie przepływu płynu przez

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 13: Współczynnik lepkości

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 13: Współczynnik lepkości Nazwisko i imię: Zespół: Data: Ćwiczenie nr 13: Współczynnik lepkości Cel ćwiczenia: Wyznaczenie współczynnika lepkości gliceryny metodą Stokesa, zapoznanie się z własnościami cieczy lepkiej. Literatura

Bardziej szczegółowo

Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski

Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski Chemia Fizyczna Technologia Chemiczna II rok Wykład 1 Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski Kontakt,informacja i konsultacje Chemia A ; pokój 307 Telefon: 347-2769 E-mail: wojtek@chem.pg.gda.pl

Bardziej szczegółowo

. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz

. Cel ćwiczenia Celem ćwiczenia jest porównanie na drodze obserwacji wizualnej przepływu laminarnego i turbulentnego, oraz wyznaczenie krytycznej licz ZAKŁAD MECHANIKI PŁYNÓW I AERODYNAMIKI ABORATORIUM MECHANIKI PŁYNÓW ĆWICZENIE NR DOŚWIADCZENIE REYNODSA: WYZNACZANIE KRYTYCZNEJ ICZBY REYNODSA opracował: Piotr Strzelczyk Rzeszów 997 . Cel ćwiczenia Celem

Bardziej szczegółowo

OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH

OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH ĆWICZENIE II OPORY PRZEPŁYWU PRZEWODÓW WENTYLACYJNYCH 1. CEL ĆWICZENIA Celem ćwiczenia jest zapoznanie się z metodą określania oporów przepływu w przewodach. 2. LITERATURA 1. Informacje z wykładów i ćwiczęń

Bardziej szczegółowo

Data wydruku: Dla rocznika: 2015/2016. Opis przedmiotu

Data wydruku: Dla rocznika: 2015/2016. Opis przedmiotu Sylabus przedmiotu: Specjalność: Maszynoznawstwo Wszystkie specjalności Data wydruku: 3.01.016 Dla rocznika: 015/016 Kierunek: Wydział: Zarządzanie i inżynieria produkcji Inżynieryjno-Ekonomiczny Dane

Bardziej szczegółowo

Ćwiczenie 2: Wyznaczanie gęstości i lepkości płynów. Rodzaje przepływów.

Ćwiczenie 2: Wyznaczanie gęstości i lepkości płynów. Rodzaje przepływów. Ćwiczenie : Wyznaczanie gęstości i lepkości płynów. Rodzaje przepływów. Gęstość 1. Część teoretyczna Gęstość () cieczy w danej temperaturze definiowana jest jako iloraz jej masy (m) do objętości (V) jaką

Bardziej szczegółowo

Filtracja prowadzona pod stałą różnicą ciśnień

Filtracja prowadzona pod stałą różnicą ciśnień Filtracja prowadzona pod stałą różnicą ciśnień Cel ćwiczenia Celem ćwiczenia jest: 1. Zapoznanie się z aparaturą do procesu filtracji plackowej prowadzonej przy stałej różnicy ciśnień. Opis procesu filtracji

Bardziej szczegółowo

STATYKA I DYNAMIKA PŁYNÓW (CIECZE I GAZY)

STATYKA I DYNAMIKA PŁYNÓW (CIECZE I GAZY) STTYK I DYNMIK PŁYNÓW (CIECZE I GZY) Ciecz idealna: brak sprężystości postaci (czyli brak naprężeń ścinających) Ciecz rzeczywista małe naprężenia ścinające - lepkość F s F n Nawet najmniejsza siła F s

Bardziej szczegółowo

Spotkania z fizyka 2. Rozkład materiału nauczania (propozycja)

Spotkania z fizyka 2. Rozkład materiału nauczania (propozycja) Spotkania z fizyka 2. Rozkład materiału nauczania (propozycja) Temat lekcji Siła wypadkowa siła wypadkowa, składanie sił o tym samym kierunku, R składanie sił o różnych kierunkach, siły równoważące się.

Bardziej szczegółowo

Mechanika płynów. Fluid mechanics. Inżynieria Środowiska I stopień (I stopień / II stopień) Ogólno akademicki (ogólno akademicki / praktyczny)

Mechanika płynów. Fluid mechanics. Inżynieria Środowiska I stopień (I stopień / II stopień) Ogólno akademicki (ogólno akademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod Nazwa Mechanika płynów Nazwa w języku angielskim Fluid mechanics Obowiązuje od roku akademickiego

Bardziej szczegółowo

Ćw. M 12 Pomiar współczynnika lepkości cieczy metodą Stokesa i za pomocą wiskozymetru Ostwalda.

Ćw. M 12 Pomiar współczynnika lepkości cieczy metodą Stokesa i za pomocą wiskozymetru Ostwalda. Ćw. M 12 Pomiar współczynnika lepkości cieczy metodą Stokesa i za pomocą wiskozymetru Ostwalda. Zagadnienia: Oddziaływania międzycząsteczkowe. Ciecze idealne i rzeczywiste. Zjawisko lepkości. Równanie

Bardziej szczegółowo

Szczegółowy rozkład materiału z fizyki dla klasy I gimnazjum zgodny z nową podstawą programową.

Szczegółowy rozkład materiału z fizyki dla klasy I gimnazjum zgodny z nową podstawą programową. Szczegółowy rozkład materiału z fizyki dla klasy I gimnazjum zgodny z nową podstawą programową. Klasa I Lekcja wstępna omówienie programu nauczania i Przedmiotowego Systemu Oceniania Tytuł rozdziału w

Bardziej szczegółowo

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI.

10. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI. 0. FALE, ELEMENTY TERMODYNAMIKI I HYDRODY- NAMIKI. 0.0. Podstawy hydrodynamiki. Podstawowe ojęcia z hydrostatyki Ciśnienie: F N = = Pa jednostka raktyczna (atmosfera fizyczna): S m Ciśnienie hydrostatyczne:

Bardziej szczegółowo

Ćwiczenie N 13 ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO

Ćwiczenie N 13 ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N ROZKŁAD CIŚNIENIA WZDŁUś ZWĘśKI VENTURIEGO . Cel ćwiczenia Doświadczalne wyznaczenie rozkładu ciśnienia piezometrycznego w zwęŝce Venturiego i porównanie go z

Bardziej szczegółowo

gazów lub cieczy, wywołanym bądź różnicą gęstości (różnicą temperatur), bądź przez wymuszenie czynnikami zewnętrznymi.

gazów lub cieczy, wywołanym bądź różnicą gęstości (różnicą temperatur), bądź przez wymuszenie czynnikami zewnętrznymi. WYMIANA (TRANSPORT) CIEPŁA Trzy podstawowe mechanizmy transportu ciepła (wymiany ciepła): 1. PRZEWODZENIIE - przekazywanie energii od jednej cząstki do drugiej, za pośrednictwem ruchu drgającego tych cząstek.

Bardziej szczegółowo

Laboratorium. Hydrostatyczne Układy Napędowe

Laboratorium. Hydrostatyczne Układy Napędowe Laboratorium Hydrostatyczne Układy Napędowe Instrukcja do ćwiczenia nr Eksperymentalne wyznaczenie charakteru oporów w przewodach hydraulicznych opory liniowe Opracowanie: Z.Kudżma, P. Osiński J. Rutański,

Bardziej szczegółowo

ĆWICZENIE NR 7 SKALOWANIE ZWĘśKI

ĆWICZENIE NR 7 SKALOWANIE ZWĘśKI ĆWICZENIE NR SKALOWANIE ZWĘśKI. Cel ćiczenia: Celem ćiczenia jest ykonanie cechoania kryzy pomiaroej /yznaczenie zaleŝności objętościoego natęŝenia przepłyu poietrza przez zęŝkę od róŝnicy ciśnienia na

Bardziej szczegółowo

Spis treści. Przedmowa do wydania trzeciego /11 CZĘŚĆ I. WPROWADZENIE / Procesy podstawowe w technologii żywności /14

Spis treści. Przedmowa do wydania trzeciego /11 CZĘŚĆ I. WPROWADZENIE / Procesy podstawowe w technologii żywności /14 Spis treści Przedmowa do wydania trzeciego /11 CZĘŚĆ I. WPROWADZENIE /13 1. Procesy podstawowe w technologii żywności /14 1.1. Pojęcie procesu podstawowego / 14 1.2. Przenoszenie pędu, energii i masy /

Bardziej szczegółowo

Termodynamika I Thermodynamics I

Termodynamika I Thermodynamics I KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2013/2014 Termodynamika I Thermodynamics I A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36 Wykład 1 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 5 października 2015 1 / 36 Podstawowe pojęcia Układ termodynamiczny To zbiór niezależnych elementów, które oddziałują ze sobą tworząc integralną

Bardziej szczegółowo