Zadania z Rachunku Prawdopodobieństwa I - 1

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zadania z Rachunku Prawdopodobieństwa I - 1"

Transkrypt

1 Zadaia z Rachuku Prawdopodobieństwa I Grupę dzieci ustawioo w sposób losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie, b) Jacek, Placek i Agatka stoją koło siebie. 2. Ze zbioru elemetowego losujemy ze zwracaiem r elemetów. Jakie jest prawdopodobieństwo tego, że któryś elemet się powtórzył? 3. Siedmiu pasażerów przydzieloo losowo do trzech wagoów. Jakie jest prawdopodobieństwo tego, że i) wszyscy trafili do jedego wagou, ii) w każdym wagoie zalazło się przyajmiej dwóch z tych pasażerów? 4. Z klasy liczącej 11 chłopców i 13 dziewczyek wylosowao czteroosobową delegację. Oblicz prawdopodobieństwo tego, że w skład delegacji wchodzi więcej chłopców iż dziewczyek. 5. Oblicz prawdopodobieństwo tego, że w grze w brydża gracz N otrzymał a) wszystkie karty różej wartości; b) dokładie dwa piki; c) co ajmiej dwa piki; d) dwa piki, 3 kiery, 4 kara, 4 trefle; e) układ 4432; f) układ Oblicz prawdopodobieństwo tego, że w grze w pokera talią 24 kartową gracz otrzyma z ręki a) parę b) dwie pary c) straighta d) trójkę e) fulla f) karetę g) kolor h) pokera jedakowych ciastek rozdzieloo między czwórkę dzieci w sposób losowy. Oblicz prawdopodobieństwo tego, iż a) Jacek otrzymał dokładie 1 ciastko b) Jacek otrzymał co ajmiej 1 ciastko c) każde z dzieci otrzymało co ajmiej 1 ciastko 8. Jakie jest prawdopodobieństwo tego, że w totolatka wylosowaa będzie szóstka ie zawierająca dwu kolejych liczb. 9. a) Ile różych słów (iekoieczie sesowych) moża utworzyć permutując litery słowa MA- TEMATYKA? b) Jeśli wybierzemy losowo któreś z tych słów jakie jest prawdopodobieństwo tego, że litery T ie stoją obok siebie? 1. Klasa liczy 15 ucziów, a każdej lekcji do odpowiedzi jest losoway jede uczeń. Oblicz prawdopodobieństwo tego, że w ciągu 16 lekcji każdy uczeń będzie przepytay. 11. W szafie zajduje się par butów, a chybił trafił wybieramy z ich k butów przy czym k. Oblicz prawdopodobieństwo tego, że a) wśród wylosowaych butów jest coajmiej jeda para, b) wśród wylosowaych butów jest dokładie jeda para Jakie jest prawdopodobieństwo tego, że przy losowym umieszczeiu N listów w N zaadresowaych kopertach żade list ie trafi do właściwego adresata?

2 Zadaia z Rachuku Prawdopodobieństwa I Z przedziału [, 1] wybrao w sposób losowy dwa pukty, które podzieliły go a trzy odciki. Jaka jest szasa, że z tych odcików da się zbudować trójkąt? 2. (Igła Buffoa) Igłę o długości l rzucoo w sposób losowy a płaszczyzę z zazaczoymi liiami rówoległymi. Odległość między sąsiedimi liiami wyosi d > l. Oblicz prawdopodobieństwo tego, że igła przetie którąś z liii. 3. (Paradoks Bertrada) Z okręgu wybrao w sposób losowy cięciwę. Oblicz prawdopodobieństwo tego, że ma oa długość większą od długości boku trójkąta rówoboczego wpisaego w okrąg. 4. Na ieskończoą szachowicę o boku 1 rzucoo moetę o średicy 2 3. Jakie jest prawdopodobieństwo tego, że moeta a) zajdzie się całkowicie we wętrzu jedego z pól, b) przetie się z dwoma bokami szachowicy? 5. Załóżmy, że P(A B) = 1/2, P(A B) = 1/4, P(A \ B) = P(B \ A). Oblicz P(A) i P(B \ A). 6. Załóżmy, że A B C = Ω, P(B) = 2P(A), P(C) = 3P(A), P(A B) = P(B C) = P(A C). Wykaż, że 1/6 P(A) 1/4. 7. Załóżmy, że P(A) 2/3, P(B) 2/3, P(C) 2/3 i P(A B C) =. Oblicz P(A). 8. Wykaż, że dla dowolych zdarzeń A 1,..., A zachodzą ierówości i=1 ( P(A i ) P 9. Wyzacz σ ciało geerowae przez a) dwa zbiory A i B; b) trzy zbiory A, B i C. i=1 A i ) 1. Czy istieje σ-ciało złożoe z 7-elemetów? P(A i ) i=1 1 i<j P(A i A j ). 2

3 Zadaia z Rachuku Prawdopodobieństwa I Grupę dzieci ustawioo w sposób losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek stoi bezpośredio przed Agatką, jeśli Agatka stoi bezpośredio przed Dorotką; b) Jacek stoi przed Agatką, jeśli Agatka stoi przed Dorotką; c) Jacek stoi przed Agatką, jeśli wiemy, że Agatka ie stoi ostatia. 2. Z talii 24 kartowej losujemy 5 kart bez zwracaia. Oblicz prawdopodobieństwo tego, że wylosowaliśmy dokładie 3 asy jeśli wiadomo, że a) mamy coajmiej jedego asa; b) mamy asa czarego koloru; c) mamy asa pik; d) pierwszą wylosowaą kartą jest as; e) pierwszą wylosowaą kartą jest czary as; f) pierwszą wylosowaą kartą jest as pik. 3. W urie zajduje się b kul białych i c kul czarych. Losujemy z ury po jedej kuli a astępie zwracamy ją do ury dokładając a kul tego samego koloru. Oblicz prawdopodobieństwo tego, że a) pierwsza i druga wylosowaa kula będzie biała; b) druga wylosowaa kula będzie biała; c) za pierwszym razem wylosowao kulę białą, jeśli wiemy, że za drugim razem wylosowao kulę białą; d) w pierwszych trzech losowaiach wylosujemy kule tego samego koloru. 4. W populacji jest 15% dyslektyków. Jeśli w teście diagostyczym uczeń popełi 6 lub więcej błędów, to zostaje uzay za dyslektyka. Każdy dyslektyk a pewo popełi co ajmiej 6 błędów w takim teście, ale rówież ie-dyslektyk może popełić więcej iż 5 błędów z prawdopodobieństwem 1/1. Jasio popełił w teście 6 błędów - jakie jest prawdopodobieństwo tego, że jest dyslektykiem? Jakie jest prawdopodobieństwo tego, że w kolejym teście popełi co ajmiej 6 błędów? 5. Prawdopodobieństwo, że losowo wybraa rodzia ma dzieci jest rówe { αp dla = 1, 2,... p = 1 =1 αp = 1 αp 1 p dla =. Zakładając, że wszystkie 2 rozkładów płci dzieci w rodziie o dzieciach jest rówoprawdopodobe oblicz prawdopodobieństwo tego, że losowo wybraa rodzia ma a) coajmiej jedą córkę; b) dokładie jedą córkę? c) Losowo wybraa rodzia ma przyajmiej jedą córkę, jakie jest prawdopodobieństwo tego, że jest oa jedyaczką? 6. W Małej Większej są dwie szkoły podstawowe - SP1 i SP2. Przeprowadzoe pod koiec roku szkolego egzamiy wykazały, że większy procet dziewczyek w SP1 potrafi rozłożyć liczbę 215 a czyiki pierwsze iż w SP2 podobie większy procet chłopców z SP1 potrafi to zrobić iż w SP2. Czy zaczy to, że statystycze dziecko ze szkoły r 1 lepiej wypadło w rozkładaiu liczby 215 od statystyczego dziecka ze szkoły r 2? 3

4 Zadaia z Rachuku Prawdopodobieństwa I Test a rzadką chorobę, którą dotkiętą jest jeda osoba a 5 tysięcy, daje fałszywą pozytywą odpowiedź u osoby zdrowej w 2% przypadków, a u osoby chorej zawsze daje pozytywy wyik. Jakie jest prawdopodobieństwo, że osoba u której test przyiósł wyik pozytywy jest faktyczie chora? 2. Rzucamy dwa razy kostką. Rozważmy zdarzeia: A za pierwszym razem wypadła liczba oczek podziela przez trzy, B za drugim razem wylosowao liczbę oczek podzielą przez trzy, C suma wyrzucoych oczek jest parzysta. Czy zdarzeia A, B, C są parami iezależe? Czy są iezależe? 3. Na kartkach zapisao różych liczb rzeczywistych, astępie kartki włożoo do pudełka, wymieszao i losowao kolejo bez zwracaia. Niech A k ozacza zdarzeie, że k-ta z wylosowaych liczb jest większa od wszystkich poprzedich. Wykaż, że P(A k ) = 1/k oraz zdarzeia A 1, A 2,..., A są iezależe. 4. Wyzacz ajbardziej prawdopodobą liczbę sukcesów w schemacie Beroulliego. 5. Rzucoo 1 razy kostką. Jakie jest prawdopodobieństwo tego, że w pierwszym rzucie wypadła szóstka, jeśli wiadomo, że a) w 1 rzutach wypadło dokładie 7 szóstek b) w 9 astępych rzutach wypadło dokładie 7 szóstek. 6. Rzucamy szóstką do mometu aż wypadie piątka lub po raz trzeci szóstka. Jakie jest prawdopodobieństwo tego, że rzucimy dokładie razy. 7. Prawdopodobieństwo tego, że w ciągu jedego dia a autostradzie będzie k wypadków jest rówe 5 k e 5 /k!, k = 1, 2,.... Prawdopodobieństwo tego, że w daym wypadku będzie uczesticzył samochód czerwoy jest 1/3. Oblicz prawdopodobieństwo tego, że w ciągu jedego dia a autostradzie będzie k wypadków z udziałem samochodów czerwoych. 8. Niech (Ω, F, P) będzie przestrzeią probabilistyczą modelującą schemat Beroulliego z parametrami i p. Dla k przez A k określamy zdarzeie, że zaszło k sukcesów. Wykaż, że P(B A k ) dla B F ie zależy od parametru p. 9. Rzucoo kostkami do gry. Określmy zdarzeia A k - a k-tej kostce wypadła szóstka, 1 k oraz A +1 - suma wyrzucoych oczek jest podziela przez 6. Wykaż, że dowole spośród zdarzeń A 1,..., A +1 jest iezależych, ale łączie zdarzeia A 1,..., A ie są iezależe. 1. Niech X ozacza ajdłuższą serię orłów w rzutach moetą symetryczą. Wykaż, że a) P(X a log 2 ) przy dla a < 1, b) P(X a log 2 ) 1 przy dla a > Rzucamy ieskończeie wiele razy kostką. Udowodij, że z prawdopodobieństwem 1 wystąpi ieskończeie wiele serii złożoych z 215 szóstek pod rząd. 12. Rzucamy ieskończeie wiele razy moetą a której orzeł wypada z prawdopodobieństwem p. Przez A ozaczmy zdarzeie, że w pierwszych rzutach wypadło tyle samo orłów, co reszek. Wykaż, że i) jeśli p 1/2, to z prawdopodobieństwem 1 zajdzie skończeie wiele spośród zdarzeń A 1, A 2,... ii*) jeśli p = 1/2, to z prawdopodobieństwem 1 zajdzie ieskończeie wiele spośród zdarzeń A 1, A 2,... 4

5 Zadaia z Rachuku Prawdopodobieństwa I Zdarzeia A 1, A 2,... są iezależe oraz P(A ) < 1 dla wszystkich. Wykaż, że astępujące waruki są rówoważe: i) z prawdopodobieństwem 1 zajdzie przyajmiej jedo ze zdarzeń A, ii) z prawdopodobieństwem 1 zajdzie ieskończeie wiele zdarzeń A. 2. Dwaj gracze grają w orła i reszkę moetą symetryczą. Jeśli wypadie orzeł, gracz A płaci B 1 zł., a jeśli reszka, to B płaci A 1 zł. Gra się kończy, gdy któryś z graczy zostaie bez pieiędzy. Na początku gry gracz A ma a zł., a B b zł. a) Wykaż, że z prawdopodobieństwem 1 gra się zakończy. b) Oblicz prawdopodobieństwo tego, że grę wygra gracz A. 3. Prawdopodobieństwo wygraia w pewej loterii jest rówe 1 6. W loterii zagrało 5 tysięcy osób. Jakie jest dokłade prawdopodobieństwo tego, że i) ktoś wygrał, ii) wygrała więcej iż jeda osoba? iii) Oszacuj prawdopodobieństwa z i) i ii). iv) Czy odpowiedź w i) się zmiei, jeśli wiemy, że każda z osób obstawiała iy wyik losowaia? 4. Do pewej tabeli wpisao = 1 liczb. Prawdopodobieństwo, że pojedycza liczba została błędie wpisaa wyosi, 5. Wprowadzoe liczby są sprawdzae przez kotrolera, który ie wychwytuje błędu z prawdopodobieństwem, 2. Oszacuj prawdopodobieństwo tego, że po weryfikacji tabela zawiera przyajmiej dwie błęde liczby. 5. Jaś i Małgosia raz w tygodiu grają w teisa. Prawdopodobieństwo, że w pojedyczym meczu zwycięży Małgosia jest rówe p (, 1). Niech X ozacza umer meczu w którym Małgosia wygrała z Jasiem po raz k-ty. Zajdź rozkład X. 6. Rzucamy dwa razy kostką. Niech X ozacza miimum, a Y maksimum z uzyskaych liczb oczek. Zajdź rozkłady zmieych X i Y i sprawdż, że 7 X ma te sam rozkład co Y. Jak się zmiei odpowiedź, gdy będziemy rzucać 1 razy? 5

6 Zadaia z Rachuku Prawdopodobieństwa I Na przestrzei losowej Ω = [, 1] z prawdopodobieństwem geometryczym określamy zmiee losowe. X(t) = t(1 t), Y (t) = 1 [,1/2] (t). i) Wykaż, że X i Y są zmieymi losowymi ii) Wyzacz σ-ciała σ(x) i σ(y ). iii) Czy zmiea Y jest σ(x)-mierzala? Czy zmiea X jest σ(y )-mierzala? iv) Wyzacz dystrybuaty zmieych X i Y. 2. Niech X 1, X 2,..., X będą rzeczywistymi zmieymi losowymi a pewej przestrzei probabilistyczej oraz S k = X X k dla 1 k. Wykaż, że σ(x 1, X 2,..., X ) = σ(s 1, S 2,..., S ). 3. Zmiea losowa X ma dystrybuatę dla t < 1 F X (t) = 7 + 2t dla t < t dla 1 14 t < dla t 3 7. Oblicz P(X 3 7 ), P( < X < 3 7 ), P(X = ), P( 1 14 X 3 7 ). 4. Dystrybuata zmieej losowej X ma postać dla t < 1 F X (t) = 2 t dla t < 2 1 dla t 2. Zajdź dystrybuatę zmieych mi(1, X) i max(x, X 2 ). 5. Na pewym skrzyżowaiu zieloe światło dla pieszych świeci się przez 3 sekud, a czerwoe przez 2 miuty (ie ma światła żółtego). Pa Abacki przychodzi a skrzyżowaie w losowym momecie czasu. a) Zajdź dystrybuatę czasu oczekiwaia przez paa Abackiego a zieloe światło. b) Pa Abacki czeka już miutę a zieloe światło. Jakie jest prawdopodobieństwo tego, że będzie musiał czekać jeszcze poad pół miuty? 6. Niech F : R [, 1] będzie prawostroie ciągłą, iemalejącą fukcją taką, że lim t F (t) = 1 oraz lim t F (t) =. Wykaż, że F jest dystrybutą pewej zmieej losowej. Wskazówka. Określmy Ω = (, 1) z prawdopodobieństwem geometryczym, zaś zmieą losową X jako X(t) = sup{s: F (s) t}, t (, 1). 6

7 Zadaia z Rachuku Prawdopodobieństwa I Zajdź wszystkie zmiee losowe X o wartościach aturalych, takie, że P(X ) > oraz P(X + m X ) = P(X m) dla wszystkich liczb aturalych, m. 2. Podaj przykład zmieej o rozkładzie dyskretym, której dystrybuata jest ściśle rosąca. 3. Zmiea losowa X ma gęstość cx 2 1 [,5] (x). Zajdź liczbę c oraz dystrybuatę zmieej X. 4. Załóżmy, że dystrybuata F zmieej losowej X jest ciągła i kawałkami klasy C 1. Wykaż, że X ma rozkład ciągły (z gęstością g = F ). 5. Zajdź rozkład zmieej ax + b oraz e X, gdy X ma rozkład wykładiczy z parametrem λ. 6. Zajdź rozkłady zmieych bx + c, e X i X 2, gdy X ma rozkład ormaly N (a, σ 2 ). 7. Zmiea losowa X ma rozkład wykładiczy z parametrem 1. Wyzacz rozkłady zmieych X oraz {X}. Czy zmiee te są iezależe? 8. Zmiea losowa ma ciągłą, ściśle rosącą dystrybuatę X. Zajdź rozkład zmieej F X (X). Czy odpowiedź się zmiei, gdy dystrybuata ie jest ściśle rosąca? A gdy jest ieciągła? 9. Podaj przykład zmieej X o ciągłej dystrybuacie, która ie ma rozkładu ciągłego (tz. ie ma gęstości). 1. Załóżmy, że X jest ieujemą zmieą losową oraz P(X > t) > dla wszystkich t. Wykaż, że P(X > t + s X > s) = P(X > t) wtedy i tylko wtedy, gdy X ma rozkład wykładiczy z pewym parametrem λ. 7

8 Zadaia z Rachuku Prawdopodobieństwa I Z talii 52 kartowej losujemy 5 razy ze zwracaiem po jedej karcie. Niech X ozacza liczbę wyciągiętych pików, Y - kierów, a Z - waletów. Czy zmiee X i Y są iezależe? Czy zmiee X i Z są iezależe? 2. Zmiee X 1, X 2,..., X są iezależe oraz P(X i = ±1) = 1/2. i) Czy zmiee X 1 + X 2, X 1 X 2 są iezależe? ii) Czy zmiee X 1 + X 2, X 3, X 4 + X 5 X 6 są iezależe? iii) Czy zmiee X 1, X 1 X 2,..., X 1 X 2 X są iezależe? 3. Dla t [, 1] i = 1, 2,... iech X (t) ozacza -tą cyfrę rozwiięcia dwójkowego liczby t (w przypadku dwu rozwiięć wybieramy to ze skończoą liczbą 1). Udowodij, że X 1, X 2,... są iezależymi zmieymi losowymi a ([, 1], B([, 1]), ). 4. Zmiea X jest iezależa od samej siebie. Wykaż, że istieje liczba c taka, że P(X = c) = Zmiee losowe X 1,..., X są iezależe, przy czym X i ma rozkład wykładiczy z parametrem λ i. Zajdź rozkład zmieej max{x 1,..., X }. 6. Zmiee losowe X i Y są iezależe oraz mają rozkłady geometrycze z parametrami odpowiedio p i q. Oblicz P(X Y ). 7. Zmiee losowe X i Y są iezależe oraz mają rozkłady wykładicze z parametrami odpowiedio λ i µ. Oblicz P(X Y ). 8. Zmiee losowe X i Y są iezależe, przy czym dystrybuata X jest ciągła. Wykaż, że P(X = Y ) =. 9. Niech X 1,..., X będą iezależymi zmieymi losowymi o jedakowym rozkładzie z ciągłą dystrybuatą F. Dla ω Ω iech X1 (ω),..., X(ω) będzie ustawieiem X 1 (ω),..., X (ω) w porządku rosącym X1 (ω) X2 (ω)... X(ω) (czyli w szczególości X1 = mi{x 1,..., X }, X = max{x 1,..., X }. Zajdź dystrybuatę Xk dla k = 1,..., (X k azywamy k-tą statystyką porządkową ciągu X 1,..., X ). 1. Zmiee X i Y są iezależe i mają rozkład N (, 1). Zajdź łączy rozkład wektora losowego (X + Y, X Y ). Co moża powiedzieć o jego współrzędych? 8

9 Zadaia z Rachuku Prawdopodobieństwa I Dwuwymiarowy wektor losowy (X, Y ) ma rozkład z gęstością g(x, y) = cxy1 { x y 1}. i) Zajdź stałą c. Czy zmiee X, Y są iezależe? ii) Oblicz P(X + Y 1). iii) Zajdź rozkład zmieej X/Y. Czy zmiea X/Y jest iezależa od Y? 2. X, Y są iezależymi zmieymi losowymi o rozkładzie wykładiczym z parametrami λ i µ, zajdź rozkład zmieej X/Y. 3. Zmiee X, Y są iezależe i mają rozkład jedostajy a przedziale [ 1, 1]. Oblicz P(X 2 + Y 2 1). 4. Załóżmy, że P(X = ) = P(X = 1) = 1 4 oraz P(X = 5) = Oblicz EX, E X+1, E si(πx) i Var(X). 5. Oblicz Et X dla t R i X o rozkładzie Poissoa z parametrem λ. 6. Zmiea losowa X ma gęstość g(x) = 3 8 x2 I [,2] (x). Oblicz EX, E 1 2+X oraz Var(X2 ). 7. Oblicz wartość oczekiwaą i wariację rozkładu geometryczego z parametrem p. 8. Zmiea losowa X ma dystrybuatę Oblicz E(1X + 2). F X (t) = dla t < 1 2 t dla t < dla 1 t < 5 1 dla t Roztrzepaa sekretarka umieściła w sposób losowy N listów w N uprzedio zaadresowaych kopertach. Niech X ozacza liczbę listów, które trafiły do właściwej koperty. Zajdź wartość oczekiwaą i wariację X. 1. Do klasy chodzi 2 ucziów. Nauczyciel a każdej lekcji pyta losowo wybraego uczia. Zajdź wartość oczekiwaą i wariację liczby ucziów przepytaych w ciągu 15 lekcji. 11. Każdy bok i przekątą siedmiokąta pomalowao w sposób losowy a jede z trzech kolorów (zakładamy, że kolory różych odcików są dobierae iezależie i każdy z trzech dostępych kolorów jest wybieray z jedakowym prawdopodobieństwem). Oblicz wartość oczekiwaą liczby jedobarwych trójkątów o wierzchołkach bedących wierzchołkami siedmiokąta. 12. Udowodij, że dla dowolej rzeczywistej zmieej losowej X i p >, E X p = p t p 1 P( X t)dt. 13. Wykaż, że jeśli zmiea losowa X przyjmuje tylko wartości całkowite ieujeme, to EX = P(X k) = P(X > k). k=1 14. Niech (π(1),..., π()) ozacza losową permutację zbioru {1,..., }. Niech N ozacza ajwiększą liczbę taką, że π(k) > π(k 1) dla k N. Oblicz EN. k= 9

10 Zadaia z Rachuku Prawdopodobieństwa I Zmiee X, X 1,... są iezależe i mają jedakowy rozkład z ciągłą dystrybuatą. Niech N := if{ : X > X }. Zajdź rozkład N i oblicz EN. 2. Kij o długości 1 złamao w losowym pukcie. Oblicz wartość oczekiwaą stosuku i) długości kawałka prawego do długości lewego, ii) długości kawałka krótszego do długości kawałka dłuższego. 3. Zmiee losowe X, Y spełiają waruki Var(X) = 2, Var(Y ) = 4, Cov(X, Y ) = 1. Oblicz Var(2X 3Y ) i Cov(5X + 2Y, X 3Y ). 4. Zmiea losowa X ma wariację σ 2, wykaż, że P( X EX 4σ) Zmiee losowe X 1,..., X są iezależe i mają rozkłady Poissoa z parametrami λ 1,..., λ. Wykaż, że X 1 + X X ma rozkład Poissoa z parametrem λ 1 + λ λ. 6. Mówimy, że zmiea X ma rozkład Γ z parametrem r > (oz. X Γ(r)), jeśli X ma gęstość g r (x) = 1 Γ(r) xr 1 e x I {x }, gdzie Γ(r) = x r 1 e x dx. a) Wykaż, że jeśli zmiee X 1,..., X są iezależe oraz X i Γ(r i ), to X X Γ(r r ). b) Wykaż, że jeśli zmiee X 1,..., X są iezależe oraz każda z ich ma rozkład wykładiczy z parametrem λ, to X X 1 λγ(). (Uwaga. Rozkład aγ(r) w zależości od przyjetej kowecji się ozacza jako rozkład Γ(r, a) lub Γ(1/a, r).) c) Wykaż, że jeśli zmiee X 1,..., X są iezależe oraz X i N (, 1), to X X 2 2Γ(/2). (Uwaga. Rozkład te występuje w wielu zastosowaiach statystyczych i się azywa rozkładem chi kwadrat o stopiach swobody.) 7. Zmiee X 1, X 2, ε 1, ε 2 są iezależe, przy czym X i mają rozkład wykładiczy z parametrem λ, a P(ε i = ±1) = 1/2. Zajdź rozkład ε i X i, X 1 X 2 oraz ε 1 X 1 + ε 2 X Zmiee X i Y są iezależe i mają rozkład geometryczy z parametrami odpowiedio p i q. Zajdź rozkład X + Y oraz X Y. 1

11 Zadaia z Rachuku Prawdopodobieństwa I Mówimy, że zmiea losowa X jest symetrycza, jeśli zmiee X i X mają te sam rozkład. Wykaż, że astępujące waruki są rówoważe: i) X jest symetrycza, ii) X ma te sam rozkład, co εx, gdzie ε jest iezależe od X i P(ε = ±1) = 1/2, iii) Ef(X) = dla dowolej ieparzystej, ograiczoej fukcji f. 2. Niech X 1, X 2,... będzie ciągiem iezależych zmieych losowych o rozkładzie wykładiczym z parametrem λ. Zdefiiujmy oraz dla t >, S =, S k = k X i, k = 1, 2,.... i=1 N t := sup{ : S t}. Wykaż, że N t ma rozkład Poissoa z parametrem λt. 3. Niech S = i=1 a iε i, gdzie (ε i ) są iezależymi zmieymi losowymi takimi, że P(ε i = ±1) = 1/2. Wykaż, że dla wszystkich λ R, Ee λs e 1 2 λ2 ES 2 i wywioskuj stąd, że dla t, ( P S t(es 2 ) 1/2) 2e t2 /2. 4. Niech S = ε 1 + ε ε, gdzie (ε i ) są jak w poprzedim zadaiu. Wykaż, że oraz lim sup lim if S 2 log 1 p.. S 2 log 1 p Zmiea losowa X spełia waruek E X ( ) 2 = 1, 2,.... Wykaż, że X <, tz. istieje liczba M < taka, że P( X > M) =. 6. Nadajik wysyła sygał X, a odbiorik odbiera sygał Z = ax + Y, gdzie a >, a Y jest losowym zaburzeiem iezależym od X. Załóżmy, że EX = m, Var(X) = 1, EY =, Var(Y ) = σ 2. Oblicz współczyik korelacji X i Z oraz regresję liiową X względem Z, tz. ajlepsze (względem wariacji) przybliżeie liiowe X za pomocą Z. 11

12 Zadaia z Rachuku Prawdopodobieństwa I Zmiee (ε ) 1 są iezależymi zmieymi Rademachera, tz. P(ε i = ±1) = 1/2. Wykaż, że ciąg X = i=1 ε i ie jest zbieży p... Czy jest zbieży według prawdopodobieństwa? 2. Niech (ε ) 1 będą jak w poprzedim zadaiu. Wykaż, że szereg S = =1 2 ε jest zbieży p.. i zajdź rozkład S. 3. Ciągi zmieych losowych (X ) 1 oraz (Y ) 1 są zbieże według prawdopodobieństwa odpowiedio do X i Y. Udowodij, że i) ciąg X + Y jest zbieży do X + Y według prawdododobieństwa, ii) ciąg X Y jest zbieży do XY według prawdododobieństwa. 4. Daa jest całkowala zmiea losowa X. Określamy dla 1, dla X (ω) < X (ω) = X(ω) dla X (ω) dla X (ω) >. Czy ciąg X jest zbieży prawie a pewo? Czy jest zbieży w L 1? 5. Zmiee X 1, X 2,... są iezależe, mają te sam rozkład oraz P( X i < 1) = 1. Wykaż, że ciąg R = X 1 X 2 X zbiega do p Zmiee X 1, X 2,... są iezależe, ieujeme, mają te sam rozkład oraz P( X i = ) < 1. Wykaż, że =1 X = p Day jest ciąg (X ) 1 iezależych zmieych losowych o rozkładzie wykładiczym z parametrem λ. i) Wykaż, że jeśli λ > 1, to z prawdopodobieństwem 1, X < log dla dużych, a jeśli λ 1, to z prawdopodobieństwem 1, X log dla ieskończeie wielu. ii) Zbadaj zbieżość według prawdopodobieństwa i prawie a pewo ciągu (X / log ) 1. 12

13 Zadaia z Rachuku Prawdopodobieństwa I Zmiee (X ) 1 są iezależe, przy czym X ma rozkład Poissoa ze średią 1/. Zbadaj zbieżość ciągu X i) według prawdopodobieństwa; ii) prawie a pewo; iii) w L 2 i L 3/2. 2. Liczby p, q > spełiają waruek 1/p + 1/q = 1. Wykaż, że jeśli X zbiega do X w L p oraz Y zbiega do Y w L q, to X Y zbiega do XY w L Zmiee X i Y są zbieże według prawdopodobieństwa do zmieych X i Y odpowiedio. Wykaż, że jeśli dla każdego, zmiea X ma te sam rozkład co zmiea Y, to zmiee X i Y mają jedakowy rozkład. 4. Wykaż, że X P X wtedy i tylko wtedy gdy E mi( X X, 1). 5. Niech X 1, X 2,... będzie ciągiem zmieych iezależych o jedakowym rozkładzie takim, że E X <. Wykaż, że 1 max P i X i. 6. Wykaż, że jeśli ε jest ciągiem liczb dodatich zbieżych do takim, że =1 P( X X ε ) <, to X X p Zmiee X 1, X 2,..., X są iezależe i mają średią zero i skończoe czwarte momety. Wykaż, że 4 E X i = EXi EXi 2 EXj 2. i=1 i=1 1 i<j 8. Niezależe zmiee losowe X 1, X 2,... mają średią zero oraz M := sup EX 4 <. Wykaż, że 1 i=1 X i zbiega do p.. 13

14 Zadaia z Rachuku Prawdopodobieństwa I Zmiee losowe X 1, X 2,... są iezależe o wspólym rozkładzie wykładiczym z parametrem λ. Pokaż, że ciągi zmieych losowych a) X 1X 2 + X 2 X X X +1, b) X 1 + X X X1 2 + X X2 są zbieże prawie a pewo i wyzacz ich graice. 2. Day jest ciąg (X ) 1 iezależych zmieych losowych o rozkładzie Poissoa z parametrem 215. Wykaż, że ciąg zmieych losowych X 1 X 2 X 3 + X 2 X 3 X X X +1 X +2 jest zbieży prawie a pewo i zajdź jego graicę. 3. Zmiee X 1, X 2,... są iezależe, przy czym X ma rozkład jedostajy a przedziale (1/, 1]. Udowodij, że ciąg średich X 1 + X X jest zbieży prawie a pewo i oblicz jego graicę. 4. Zmiee X 1, X 2,... są iezależe o wspólym rozkładzie jedostajym a [, 2]. Czy ciąg M = (X 1 X 2 X ) 1/ jest zbieży p..? Jeśli tak, to do jakiej graicy? 5. Oblicz graice a) lim b) lim c) lim d) lim 1 1 x x 2... dx 1... dx, x x 1... x x2 dx 1... dx, ( x x f ) dx 1... dx, gdzie f : [, 1] R jest fukcją ciągłą, + x x e (x1+...+x) dx 1... dx. 6. Wykaż, że dla dowolego ciągu (X ) 1 iezależych zmieych losowych o jedakowym rozkładzie takim, że E X i < ciąg średich X 1 + X X EX 1 w L 1 przy. 7. Załóżmy, że zmiea N ma rozkład Poissoa z parametrem. Wykaż, że N / 1 w L 1 przy. 14

15 Zadaia z Rachuku Prawdopodobieństwa I Zmiee losowe (ε ) 1 są iezależe i P(ε = ±1) = 1/2. Wykaż, że 1 a ε jest zbieży prawie a pewo wtedy i tylko wtedy, gdy 1 a2 <. 2. Dae są iezależe zmiee losowe X 1, X 2,... takie, że X ma rozkład jedostajy a [, ]. Wyzacz wszystkie liczby p dla których szereg 1 jest zbieży prawie a pewo. 3. Załóżmy, że P(X = ) = P(X = ) = oraz P(X = ) = dla = 1, 2,.... Wykaż, że 1 X jest zbieży p.. oraz 1 Var(X ) =. 4. Prawdopodobieństwo urodzeia chłopca wyosi, 517. Oszacuj prawdopodobieństwo tego, że wśród 1 oworodków liczba chłopców ie przewyższy liczby dziewczyek. 5. Rzucamy kostką do gry aż do wystąpieia szóstki po raz 5. Oszacuj prawdopodobieństwo tego, że rzucimy co ajwyżej 4 razy. 6. Na campusie uiwersyteckim są dwie restauracja po 12 miejsc każda. Wiadomo, że codzieie 2 osób będzie chciało zjeść obiad, a wyboru restauracji dokouje losowo i iezależie. Jaka jest szasa, że w którejś restauracji zabrakie miejsc? Ile miejsc ależy przygotować w każdej restauracji, by powyższe prawdopodobieństwo było miejsze od,1? 7. W pewym mieście w wyborach prezydeckich głosuje 5. osób. Zakładając, że wyborcy głosują a każdego z dwu kadydatów losowo i iezależie z prawdopodobieństwem 5% jaka jest szasa, że różica między kadydatami będzie miejsza iż 1 głosów? 8. Agata rzuciła moetą 1 razy i uzyskała 7 orłów. Jacek chce powtórzyć te wyczy (tz. otrzymać 7 lub więcej orłów) i zamierza w tym celu rzucać moetą aż do skutku. Ile średio serii po 1 rzutów potrzeba, aby się doczekać 7 lub więcej orłów? 9. Pewe biuro badaia opiii publiczej plauje zrobić sodaż wyborczy przed wyborami prezydeckimi. Przy założeiu losowego wyboru uczestików sodażu ile musi przepytać osób by z prawdopodobieństwem.95 uzyskae w sodażu wyiki poparcia dla poszczególych kadydatów róziły się od prawdziwych preferecji wyborczych ie więcej iż o 2 pukty procetowe? Jak zmiei się odpowiedź jeśli biuro bada poparcie kadydatów, których chce wybrać ie więcej iż 1% wyborców? 1. Zmiee (ε ) 1 są iezależe i P(ε = ±1) = 1/2. a) Oblicz w zależości od t, lim P(ε 1 + ε ε t ). b) Wykaż, że ciąg ε1+ε2+...+ε ie jest zbieży prawie a pewo. 11. Zmiee X 1, X 2,... są iezależe oraz P(X i = 1/2) = P(X i = 2) = 1/2. Niech R = (X 1 X 2 X ) 1/. Oblicz lim P(R t). X p 15

Zadania z Rachunku Prawdopodobieństwa I Siedmiu pasażerów przydzielono losowo do trzech wagonów. Jakie jest prawdopodobieństwo

Zadania z Rachunku Prawdopodobieństwa I Siedmiu pasażerów przydzielono losowo do trzech wagonów. Jakie jest prawdopodobieństwo Zadaia z Rachuku Prawdopodobieństwa I - 1 1. Grupę dzieci ustawioo w sposób losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie, b) Jacek, Placek i Agatka stoją koło

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa I - 1. a) Jacek i Agatka stoją koło siebie; b) Jacek, Placek i Agatka stoją koło siebie.

Zadania z Rachunku Prawdopodobieństwa I - 1. a) Jacek i Agatka stoją koło siebie; b) Jacek, Placek i Agatka stoją koło siebie. Zadania z Rachunku Prawdopodobieństwa I - 1 1. Grupę n dzieci ustawiono w sposón losowy w szereg. Oblicz prawdopodobieństwo tego, że a) Jacek i Agatka stoją koło siebie; b) Jacek, Placek i Agatka stoją

Bardziej szczegółowo

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 + Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch

Bardziej szczegółowo

0.1 ROZKŁADY WYBRANYCH STATYSTYK

0.1 ROZKŁADY WYBRANYCH STATYSTYK 0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.

Bardziej szczegółowo

Trochę zadań kombinatorycznych. 1. na ile sposobów można siedmiu stojących na peronie pasażerów umieścić w trzech wagonach?

Trochę zadań kombinatorycznych. 1. na ile sposobów można siedmiu stojących na peronie pasażerów umieścić w trzech wagonach? Trochę zadań kombiatoryczych 1. a ile sposobów moża siedmiu stojących a peroie pasażerów umieścić w trzech wagoach? 2. Na szachowicy o wymiarach umieszczamy 8 ierozróżialych wież szachowych tak aby żade

Bardziej szczegółowo

Egzaminy. na wyższe uczelnie 2003. zadania

Egzaminy. na wyższe uczelnie 2003. zadania zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia

Bardziej szczegółowo

Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe

Zdarzenia losowe, definicja prawdopodobieństwa, zmienne losowe Metody probabilistycze i statystyka Wykład 1 Zdarzeia losowe, defiicja prawdopodobieństwa, zmiee losowe Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

a n 7 a jest ciągiem arytmetycznym.

a n 7 a jest ciągiem arytmetycznym. ZADANIA MATURALNE - CIĄGI LICZBOWE - POZIOM PODSTAWOWY Opracowała mgr Dauta Brzezińska Zad.1. ( pkt) Ciąg a określoy jest wzorem 5.Wyzacz liczbę ujemych wyrazów tego ciągu. Zad.. ( 6 pkt) a Day jest ciąg

Bardziej szczegółowo

Internetowe Kółko Matematyczne 2004/2005

Internetowe Kółko Matematyczne 2004/2005 Iteretowe Kółko Matematycze 2004/2005 http://www.mat.ui.toru.pl/~kolka/ Zadaia dla szkoły średiej Zestaw I (20 IX) Zadaie 1. Daa jest liczba całkowita dodatia. Co jest większe:! czy 2 2? Zadaie 2. Udowodij,

Bardziej szczegółowo

3. Funkcje elementarne

3. Funkcje elementarne 3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących

Bardziej szczegółowo

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,.

Zadanie 2 Niech,,, będą niezależnymi zmiennymi losowymi o identycznym rozkładzie,. Z adaie Niech,,, będą iezależymi zmieymi losowymi o idetyczym rozkładzie ormalym z wartością oczekiwaą 0 i wariacją. Wyzaczyć wariację zmieej losowej. Wskazówka: pokazać, że ma rozkład Γ, ODP: Zadaie Niech,,,

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEOSTWA

RACHUNEK PRAWDOPODOBIEOSTWA RACHUNEK PRAWDOPODOBIEOSTWA Elemetarym pojęciem w rachuku prawdopodobieostwa jest zdarzeie elemetare tz. możliwy wyik pewego doświadczeia p. rzut moetą: wyrzuceie orła lub reszki arodziy człowieka: urodzeie

Bardziej szczegółowo

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic). Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic

Bardziej szczegółowo

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D. Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)

Bardziej szczegółowo

O liczbach naturalnych, których suma równa się iloczynowi

O liczbach naturalnych, których suma równa się iloczynowi O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki Marzec 2012

Materiał ćwiczeniowy z matematyki Marzec 2012 Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0

Bardziej szczegółowo

c) Zaszły oba zdarzenia A i B; d) Zaszło zdarzenie A i nie zaszło zdarzenie B;

c) Zaszły oba zdarzenia A i B; d) Zaszło zdarzenie A i nie zaszło zdarzenie B; Rachunek prawdopodobieństwa rozwiązywanie zadań 1. Rzucamy dwa razy symetryczną sześcienną kostką do gry. Zapisujemy liczbę oczek, jakie wypadły w obu rzutach. Wypisz zdarzenia elementarne tego doświadczenia.

Bardziej szczegółowo

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3: Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12

Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12 Wykład Korelacja i regresja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Wykład 8. Badaie statystycze ze względu

Bardziej szczegółowo

Prawdopodobieństwo zadania na sprawdzian

Prawdopodobieństwo zadania na sprawdzian Prawdopodobieństwo zadania na sprawdzian Zad. 1. Zdarzenia A, B, C oznaczają, że wzięto co najmniej po jednej książce odpowiednio z pierwszych, drugich i trzecich dzieł zebranych. Każde z dzieł zebranych

Bardziej szczegółowo

Egzamin maturalny z matematyki CZERWIEC 2011

Egzamin maturalny z matematyki CZERWIEC 2011 Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr

Bardziej szczegółowo

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Zadaie 1 Rzucamy 4 kości do gry (uczciwe). Prawdopodobieństwo zdarzeia iż ajmiejsza uzyskaa a pojedyczej kości liczba oczek wyiesie trzy (trzy oczka mogą wystąpić a więcej iż jedej kości) rówe jest: (A)

Bardziej szczegółowo

L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3

L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3 L.Kowalski zadaia ze statystyki matematyczej-zestaw 3 ZADANIA - ZESTAW 3 Zadaie 3. Cecha X populacji ma rozkład N m,. Z populacji tej pobrao próbę 7 elemetową i otrzymao wyiki x7 = 9, 3, s7 =, 5 a Na poziomie

Bardziej szczegółowo

c) ( 13 (1) (2) Zadanie 2. Losując bez zwracania kolejne litery ze zbioru AAAEKMMTTY, jakie jest prawdopodobieństwo Odp.

c) ( 13 (1) (2) Zadanie 2. Losując bez zwracania kolejne litery ze zbioru AAAEKMMTTY, jakie jest prawdopodobieństwo Odp. Zadania na kolokwium nr Zadanie. Spośród kart w tali wylosowano. Jakie jest prawdopodobieństwo: pików, kierów, trefli i karo otrzymania wszystkich kolorów otrzymania dokładnie pików a ( b ( ( c ( ( ( (

Bardziej szczegółowo

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω)

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω) ZADANIA - ZESTAW 1 Zadanie 1.1 Rzucamy trzy razy monetą. A i - zdarzenie polegające na tym, że otrzymamy orła w i - tym rzucie. Określić zbiór zdarzeń elementarnych. Wypisać zdarzenia elementarne sprzyjające

Bardziej szczegółowo

Rzucamy dwa razy sprawiedliwą, sześcienną kostką do gry. Oblicz prawdopodobieństwo otrzymania:

Rzucamy dwa razy sprawiedliwą, sześcienną kostką do gry. Oblicz prawdopodobieństwo otrzymania: Statystyka Ubezpieczeniowa Część 1. Rachunek prawdopodobieństwa: - prawdopodobieństwo klasyczne - zdarzenia niezależne - prawdopodobieństwo warunkowe - prawdopodobieństwo całkowite - wzór Bayesa Schemat

Bardziej szczegółowo

Lista 1a 1. Statystyka. Lista 1. Prawdopodobieństwo klasyczne i geometryczne

Lista 1a 1. Statystyka. Lista 1. Prawdopodobieństwo klasyczne i geometryczne Lista 1a 1 Statystyka Lista 1. Prawdopodobieństwo klasyczne i geometryczne 1. Jakie jest prawdopodobieństwo, że (a) z talii zawierającej 52 karty wybierzemy losowo asa? (b) z talii zawierającej 52 karty

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub

RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub 1. W grupie jest 15 kobiet i 18 mężczyzn. Losujemy jedną osobę

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 3 Definicja prawdopodobieństwa Kołmogorowa. Prawdopodobieństwa warunkowe i niezależne. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko

Bardziej szczegółowo

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r.

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r. Matematyka fiasowa 08.10.2007 r. Komisja Egzamiacyja dla Aktuariuszy XLIII Egzami dla Aktuariuszy z 8 paździerika 2007 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:...

Bardziej szczegółowo

Analiza matematyczna. Robert Rałowski

Analiza matematyczna. Robert Rałowski Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n

Matematyka ubezpieczeń majątkowych 9.10.2006 r. Zadanie 1. Rozważamy proces nadwyżki ubezpieczyciela z czasem dyskretnym postaci: n Maemayka ubezpieczeń mająkowych 9.0.006 r. Zadaie. Rozważamy proces adwyżki ubezpieczyciela z czasem dyskreym posaci: U = u + c S = 0... S = W + W +... + W W W W gdzie zmiee... są iezależe i mają e sam

Bardziej szczegółowo

MATURA 2014 z WSiP. Zasady oceniania zadań

MATURA 2014 z WSiP. Zasady oceniania zadań MATURA 0 z WSiP Matematyka Poziom rozszerzoy Zasady oceiaia zadań Copyright by Wydawictwa Szkole i Pedagogicze sp z oo, Warszawa 0 Matematyka Poziom rozszerzoy Kartoteka testu Numer zadaia Sprawdzaa umiejętość

Bardziej szczegółowo

I kolokwium z Analizy Matematycznej

I kolokwium z Analizy Matematycznej I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim. Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako

Bardziej szczegółowo

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i = Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka

Bardziej szczegółowo

Lista zadania nr 2 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista zadania nr 2 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Lista zadania nr 2 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w

Bardziej szczegółowo

są niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ równą 10. Obliczyć v = var( X

są niezależnymi zmiennymi losowymi o jednakowym rozkładzie Poissona z wartością oczekiwaną λ równą 10. Obliczyć v = var( X Prawdoodobieństwo i statystyka 5..008 r. Zadaie. Załóżmy że 3 są iezależymi zmieymi losowymi o jedakowym rozkładzie Poissoa z wartością oczekiwaą λ rówą 0. Obliczyć v = var( 3 + + + 3 = 9). (A) v = 0 (B)

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy

Bardziej szczegółowo

KOMBINATORYKA ZADANIA

KOMBINATORYKA ZADANIA KOMBINATORYKA ZADANIA Magdalea Rudź 25 marca 2017 1 Zadaie 1. a Ile istieje liczb aturalych sześciocyfrowych? b Ile istieje liczb aturalych sześciocyfrowych takich, w których cyfra setek to sześć? 1.1

Bardziej szczegółowo

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 2 Klasyczna definicja prawdopodobieństwa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Według klasycznej

Bardziej szczegółowo

rachunek prawdopodobieństwa - zadania

rachunek prawdopodobieństwa - zadania rachunek prawdopodobieństwa - zadania ogólna definicja prawdopodobieństwa, własności - 9.10.2011 1. (d, 1pkt) Udowodnić twierdzenie 2 tj. własności prawdopodobieństwa (W1)-(W7). 2. Niech Ω = [0, 1] oraz

Bardziej szczegółowo

Prawdopodobieństwo

Prawdopodobieństwo Prawdopodobieństwo http://www.matemaks.pl/ Wstęp do rachunku prawdopodobieństwa http://www.matemaks.pl/wstep-do-rachunku-prawdopodobienstwa.html Rachunek prawdopodobieństwa pomaga obliczyć szansę zaistnienia

Bardziej szczegółowo

Kurs Prawdopodobieństwo Wzory

Kurs Prawdopodobieństwo Wzory Kurs Prawdoodobieństwo Wzory Elemety kombiatoryki Klasycza deiicja rawdoodobieństwa gdzie: A - liczba zdarzeń srzyjających A - liczba wszystkich zdarzeń P A Tel. 603 088 74 Prawdoodobieństwo deiicja Kołmogorowa

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Kombinatoryka i rachunek prawdopodobieństwa

Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka i rachunek prawdopodobieństwa Jerzy Rutkowski Kombinatoryka i rachunek prawdopodobieństwa 2. Elementy kombinatoryki 2.1. Permutacje Definicja 1. Niech n N. Permutacją n-elementowego zbioru

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością

Bardziej szczegółowo

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40.

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40. Portfele polis Poieważ składka jest ustalaa jako wartość oczekiwaa rzeczywistego, losowego kosztu ubezpieczeia, więc jest tym bliższa średiej wydatków im większa jest liczba ubezpieczoych Polisy grupuje

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń. 3.1 Prawdopodobieństwo warunkowe Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2016/2017 Przykład 1 Alicja

Bardziej szczegółowo

Ciąg geometryczny i jego własności

Ciąg geometryczny i jego własności Ciąg geometryczy Def: Ciągiem geometryczym (a) azywamy ciąg liczbowy co ajmiej trzywyrazowy, w którym każdy wyraz, począwszy od drugiego, powstaje z pomożeia wyrazu poprzediego przez stałą liczbę q, zwaą

Bardziej szczegółowo

Trochę zadań kombinatorycznych. 1. na ile sposobów można siedmiu stojących na peronie pasażerów umieścić w trzech wagonach?

Trochę zadań kombinatorycznych. 1. na ile sposobów można siedmiu stojących na peronie pasażerów umieścić w trzech wagonach? Trochę zadań kombinatorycznych 1. na ile sposobów można siedmiu stojących na peronie pasażerów umieścić w trzech wagonach? 2. Na szachownicy o wymiarach n n umieszczamy 8 nierozróżnialnych wież szachowych

Bardziej szczegółowo

3 Arytmetyka. 3.1 Zbiory liczbowe.

3 Arytmetyka. 3.1 Zbiory liczbowe. 3 Arytmetyka. 3.1 Zbiory liczbowe. Bóg stworzył liczby aturale, wszystko ie jest dziełem człowieka. Leopold Kroecker Ozaczeia: zbiór liczb aturalych: N = {1, 2,...} zbiór liczb całkowitych ieujemych: N

Bardziej szczegółowo

Matematyka podstawowa X. Rachunek prawdopodobieństwa

Matematyka podstawowa X. Rachunek prawdopodobieństwa Matematyka podstawowa X Rachunek prawdopodobieństwa Zadania wprowadzające: 1. Rzucasz trzy razy monetą a) Napisz zbiór wszystkich wyników tego doświadczenia losowego. Ile ich jest? Wyrzuciłeś większą liczbę

Bardziej szczegółowo

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) PRAWDOPODOBIEŃSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) PRAWDOPODOBIEŃSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B KLASYCZ NA DEFINICJA PRAW DOPOD OBIEŃSTWA ( ) PRAWDOPOD OBIEŃSTW O W A RUNKOWE PRAWDOPODOBIEŃSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B ( ) WIĘC CO OZNACZA, ŻE ZDARZENIE B NIE MA WPŁYWU

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu. Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują

Bardziej szczegółowo

Zadania zestaw 1: Zadania zestaw 2

Zadania zestaw 1: Zadania zestaw 2 Zadania zestaw 1: Zadania zestaw 2 Zadania zestaw 3. 1 Rozkład zmiennej losowej skokowej X przedstawia tabela. x i m 0 n p i 0,4 0,3 0,3 a) Wyznacz m i n jeśli: są całkowite, m

Bardziej szczegółowo

Laboratorium nr 1. Kombinatoryka

Laboratorium nr 1. Kombinatoryka Laboratorium nr 1. Kombinatoryka 1. Spośród n różnych elementów wybieramy k elementów. Na ile sposobów możemy to uczynić? Wypisać wszystkie możliwe wybory w przypadku gdy n=3 i k=2. Wykonać obliczenia

Bardziej szczegółowo

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce! Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,

Bardziej szczegółowo

Tytuł zajęć: Funkcja liniowa zajęcia dodatkowe dla gimnazjalistów Nauczyciel prowadzący: Beata Bąkała

Tytuł zajęć: Funkcja liniowa zajęcia dodatkowe dla gimnazjalistów Nauczyciel prowadzący: Beata Bąkała Szkoła Odkrywców Taletów Tytuł zajęć: Fukcja liiowa zajęcia dodatkowe dla gimazjalistów Nauczyciel prowadzący: Beata Bąkała Opis zajęć: Ucziowie w gimazjum dobrze pozają własości fukcji Ucziowie przygotowujący

Bardziej szczegółowo

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem 9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3

Bardziej szczegółowo

{( ) ( ) ( ) ( )( ) ( )( ) ( RRR)

{( ) ( ) ( ) ( )( ) ( )( ) ( RRR) .. KLASYCZNA DEFINICJA PRAWDOPODOBIEŃSTWA Klasyczna definicja prawdopodobieństwa JeŜeli jest skończonym zbiorem zdarzeń elementarnych jednakowo prawdopodobnych i A, to liczbę A nazywamy prawdopodobieństwem

Bardziej szczegółowo

Materiał powtarzany w II etapie. II 4. Ciągi

Materiał powtarzany w II etapie. II 4. Ciągi Materiał powtarzay w II etapie II. Ciągi 3 1, dla parzystych 1. Wyzacz sześć początkowych wyrazów ciągu a = { +1, dla ieparzystych. Które wyrazy ciągu a = są rówe 1? 3. Pomiędzy liczby 7 i 5 wstaw 5 liczb

Bardziej szczegółowo

3. Wzory skróconego mnożenia, działania na wielomianach. Procenty. Elementy kombinatoryki: dwumian Newtona i trójkąt Pascala. (c.d.

3. Wzory skróconego mnożenia, działania na wielomianach. Procenty. Elementy kombinatoryki: dwumian Newtona i trójkąt Pascala. (c.d. Jarosław Wróblewski Matematyka dla Myślących 009/10 3 Wzory skrócoego możeia działaia a wielomiaach Procety Elemety kombiatoryki: dwumia Newtoa i trójkąt Pascala (cd) paździerika 009 r 0 Skometować frgmet

Bardziej szczegółowo

04DRAP - Prawdopodobieństwo warunkowe, prawdopodobieństwo całkowite,

04DRAP - Prawdopodobieństwo warunkowe, prawdopodobieństwo całkowite, 04DRAP - Prawdopodobieństwo warunkowe, prawdopodobieństwo całkowite, wzór Bayesa Definicja. 1. Prawdopodobieństwem warunkowym zajścia zdarzenia A pod warunkiem zajścia zdarzenia B, gdzie P(B > 0, nazywamy

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINOWYCH

UKŁADY RÓWNAŃ LINOWYCH Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a

Bardziej szczegółowo

2. Nieskończone ciągi liczbowe

2. Nieskończone ciągi liczbowe Ciągiem liczbowym azywamy fukcję 2. Nieskończoe ciągi liczbowe a: N R. Wartości tej fukcji ozaczamy przez a) = a i azywamy wyrazami ciągu. Często ciąg ozaczamy przez {a } = lub po prostu przez {a }. Prostymi

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa I - seria 1 Aksjomatyka Kołmogorowa, prawdopodobieństwo klasyczne, prawdopodobieństwo geometryczne

Zadania z Rachunku Prawdopodobieństwa I - seria 1 Aksjomatyka Kołmogorowa, prawdopodobieństwo klasyczne, prawdopodobieństwo geometryczne Zadania z Rachunku Prawdopodobieństwa I - seria 1 Aksjomatyka Kołmogorowa, prawdopodobieństwo klasyczne, prawdopodobieństwo geometryczne 1. Dana jest przestrzeń probabilistyczna (Ω, F, P), gdzie Ω jest

Bardziej szczegółowo

Kombinatoryka i rachunek prawdopodobieństwa

Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka i rachunek prawdopodobieństwa Jerzy Rutkowski 2. Elementy kombinatoryki 2.. Permutacje Teoria Definicja. Niech n N. Permutacją n-elementowego zbioru

Bardziej szczegółowo

Analiza Matematyczna I dla Inżynierii Biomedycznej Lista zadań

Analiza Matematyczna I dla Inżynierii Biomedycznej Lista zadań Aaliza Matematycza I dla Iżyierii Biomedyczej Lista zadań Jacek Cichoń, WPPT PWr, 205/6 Logika, zbiory i otacja matematycza Zadaie Niech p, q, r będą zmieymi zdaiowymi. Pokaż, że:. = ( (p p)), 2. = (p

Bardziej szczegółowo

5. Zasada indukcji matematycznej. Dowody indukcyjne.

5. Zasada indukcji matematycznej. Dowody indukcyjne. Notatki do lekcji, klasa matematycza Mariusz Kawecki, II LO w Chełmie 5. Zasada idukcji matematyczej. Dowody idukcyje. W rozdziale sformułowaliśmy dla liczb aturalych zasadę miimum. Bezpośredią kosekwecją

Bardziej szczegółowo

Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości)

Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości) Kospekt lekcji (Kółko matematycze, kółko przedsiębiorczości) Łukasz Godzia Temat: Paradoks skąpej wdowy. O procecie składaym ogólie. Czas lekcji 45 miut Cele ogóle: Uczeń: Umie obliczyć procet składay

Bardziej szczegółowo

01DRAP - klasyczna definicja prawdopodobieństwa

01DRAP - klasyczna definicja prawdopodobieństwa 01DRAP - klasyczna definicja prawdopodobieństwa Ω zbiór zdarzeń elementarnych. Gdy Ω < oraz P({ω} = 1 Ω, dla każdego ω Ω (tzn. każde zdarzenie elementarne jest równo prawdopodobne, to P (A = A Ω Przydatne

Bardziej szczegółowo

MATEMATYKA cz. 5 Elementy probabilistyki i statystyki matematycznej

MATEMATYKA cz. 5 Elementy probabilistyki i statystyki matematycznej Ja Nawrocki, Adrzej Wiicki MATEMATYKA cz. 5 Elemety probabilistyki i statystyki matematyczej Politechika Warszawska 00 Politechika Warszawska Wydział Samochodów i Maszy Roboczych Kieruek "Edukacja techiczo

Bardziej szczegółowo

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności Edward Stachowski O trzech elemetarych ierówościach i ich zastosowaiach przy dowodzeiu iych ierówości Przy dowodzeiu ierówości stosujemy elemetare przejścia rówoważe, przeprowadzamy rozumowaie typu: jeżeli

Bardziej szczegółowo

dr Jarosław Kotowicz 29 października Zadania z wykładu 1

dr Jarosław Kotowicz 29 października Zadania z wykładu 1 Rachunek prawdopodobieństwa - ćwiczenia czwarte Schematy rachunku prawdopodobieństwa. Prawdopodobieństwo geometryczne. kierunek: informatyka i ekonometria I dr Jarosław Kotowicz 29 października 20 Spis

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Wykład 8: Zbieżność według rozkładu. Centralne twierdzenie graniczne.

Wykład 8: Zbieżność według rozkładu. Centralne twierdzenie graniczne. Rachuek prawopoobieństwa MA5 Wyział Elektroiki, rok aka 20/2, sem leti Wykłaowca: r hab A Jurlewicz Wykła 8: Zbieżość weług rozkłau Cetrale twierzeie graicze Zbieżości ciągu zmieych losowych weług rozkłau

Bardziej szczegółowo

Zdarzenie losowe (zdarzenie)

Zdarzenie losowe (zdarzenie) Zdarzenie losowe (zdarzenie) Ćw. 1. Ze zbioru cyfr (l, 2,3,..., 9} losowo wybieramy jedną. a) Wypisz zdarzenia elementarne, sprzyjające: zdarzeniu A, że wybrano liczbę parzystą zdarzeniu B, że wybrano

Bardziej szczegółowo

P ( i I A i) = i I P (A i) dla parami rozłącznych zbiorów A i. F ( ) = lim t F (t) = 0, F (+ ) = lim t + F (t) = 1.

P ( i I A i) = i I P (A i) dla parami rozłącznych zbiorów A i. F ( ) = lim t F (t) = 0, F (+ ) = lim t + F (t) = 1. Podstawy teorii miary probabilistyczej. Zbiory mierzale σ ciało zbiorów Załóżmy, że mamy jakiś zbiór Ω. Niech F będzie taką rodzią podzbiorów Ω, że: Ω F A F A F i I A i F i I A i F Wtedy rodzię F azywamy

Bardziej szczegółowo

Zadanie 2. Wiadomo, że A, B i C są trzema zdarzeniami losowymi takimi, że P (A) = 2/5, P (B A) = 1/4, P (C A B) = 0.5, P (A B) = 6/10, P (C B) = 1/3.

Zadanie 2. Wiadomo, że A, B i C są trzema zdarzeniami losowymi takimi, że P (A) = 2/5, P (B A) = 1/4, P (C A B) = 0.5, P (A B) = 6/10, P (C B) = 1/3. Zadanie 1. O zdarzeniach A, B, C z pewnej przestrzeni uzyskaliśmy informacje, iż P (A B C) = 0.6, P (B A C) = 0.3 oraz P (C A B) = 0.9. Obliczyć P [A B C (A B) (A C) (B C)]. Odp. 9/37 Zadanie 2. Wiadomo,

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia

Bardziej szczegółowo

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,

Bardziej szczegółowo

Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.

Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i. Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla

Bardziej szczegółowo

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE. Strona 1

KURS STATYSTYKA. Lekcja 3 Parametryczne testy istotności ZADANIE DOMOWE.  Strona 1 KURS STATYSTYKA Lekcja 3 Parametrycze testy istotości ZADANIE DOMOWE www.etrapez.pl Stroa Część : TEST Zazacz poprawą odpowiedź (tylko jeda jest prawdziwa). Pytaie Statystykę moża rozumieć jako: a) próbkę

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Wybrane litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilon η eta Θ θ theta

Bardziej szczegółowo

NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI ZADANIE 1 oczka. ZADANIE 2 iloczynu oczek równego 12.

NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI ZADANIE 1 oczka. ZADANIE 2 iloczynu oczek równego 12. IMIE I NAZWISKO ZADANIE 1 Rzucamy sześcienna kostka do gry. Jakie jest prawdopodobieństwo, że wypadna co najmniej dwa oczka. ZADANIE 2 Rzucamy trzy razy symetryczna sześcienna kostka do gry. Oblicz prawdopodobieństwo

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

Lista 1 - Prawdopodobieństwo

Lista 1 - Prawdopodobieństwo Lista 1 - Prawdopodobieństwo Zadanie 1. Niech A, B, C będą zdarzeniami. Zapisać za pomocą działań na zbiorach następujące zdarzenia: a) zachodzi dokładnie jedno ze zdarzeń A, B, C; b) zachodzą dokładnie

Bardziej szczegółowo

I. Podzielność liczb całkowitych

I. Podzielność liczb całkowitych I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc

Bardziej szczegółowo

Metody Probabilistyczne zestaw do ćwiczeń Katarzyna Lubnauer

Metody Probabilistyczne zestaw do ćwiczeń Katarzyna Lubnauer Metody Probabilistyczne zestaw do ćwiczeń Katarzyna Lubnauer Model klasyczny prawdopodobieństwa. Losowo ustawiam w szeregu klocki z literami MMAAATTYKE. Opisać przestrzeń zdarzeń elementarnych i obliczyć

Bardziej szczegółowo

Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym

Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym Edward Stachowski Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym W podstawie programowej obowiązującej na egzaminie maturalnym od 05r pojawiły się nowe treści programowe Wśród

Bardziej szczegółowo