c) ( 13 (1) (2) Zadanie 2. Losując bez zwracania kolejne litery ze zbioru AAAEKMMTTY, jakie jest prawdopodobieństwo Odp.

Wielkość: px
Rozpocząć pokaz od strony:

Download "c) ( 13 (1) (2) Zadanie 2. Losując bez zwracania kolejne litery ze zbioru AAAEKMMTTY, jakie jest prawdopodobieństwo Odp."

Transkrypt

1 Zadania na kolokwium nr Zadanie. Spośród kart w tali wylosowano. Jakie jest prawdopodobieństwo: pików, kierów, trefli i karo otrzymania wszystkich kolorów otrzymania dokładnie pików a ( b ( ( c ( ( ( ( ( ( ( ( ( 9 ( ( 9 8 ( ( Zadanie. Losując bez zwracania kolejne litery ze zbioru AAAEKMMTTY, jakie jest prawdopodobieństwo ułożenia słowa: MATEMATYKA ( Zadanie. Z miasta A do miasta B prowadzi n dróg, z miasta B do miasta C prowadzi m dróg. Na ile sposobów można przejść trasę A-B-C? n m Zadanie. W klasie nauczają 0 przedmiotów. W poniedziałek odbywa się lekcji (wszystkie inne. Na ile sposób można rozpisać plan lekcji na poniedziałek? Zadanie. Ile jest liczb pięciocyfrowych, które dzielą się przez? Zadanie. Spośród 0 mężczyzn i kobiet wybrano osobową delegację. Zakładamy, że każda osoba miała tę samą szansę wyboru. Obliczyć prawdopodobieństwo, że w skład delegacji weszła co najmniej jedna kobieta. ( 0 ( (

2 Zadanie 7. Na loterii jest 0 losów, z których są wygrywające. Jakie jest prawdopodobieństwo, że wśród zakupionych losów: a dokładnie jeden wygrywa, b przynajmniej jeden wygrywa? a ( 7 ( ( 0 ( b ( 7 ( 0 (7 Zadanie 8. W klasie liczącej 0 uczniów, w tym dziewcząt, 0 uczniów w tym 8 dziewcząt uczy się dodatkowo języka angielskiego. Jakie jest prawdopodobieństwo, że losowo wybrany uczeń uczący się angielskiego okaże się chłopcem? Oznaczmy przez A zdarzenie polegające na tym, że losowo wybrany uczeń uczy się angielskiego, przez C - że jest chłopcem, D - dziewczyną. Szukanym prawdopodobieństwem jest P (C A = P (C A P (A P (C A = 0 P (A = 0 0 P (C A = 0 = Zadanie 9. W grupie 0 osób, w tym 70 mężczyzn zdających na wyższe studia techniczne, absolwentami techników jest 0% mężczyzn i 0% kobiet. Z grupy tej wybrano losowo jedną osobę i okazało się, że jest ona absolwentem technikum. Oblicz prawdopodobieństwo, że jest to mężczyzna. (9 Zadanie 0. W pierwszej puszce są losy wygrywające i 7 przegrywających, w drugiej wygrywających i przegrywające. Rzucamy kostką do gry. Jeżeli wypadnie mniej niż oczka, to losujemy z pierwszej puszki, w przeciwnym wypadku z drugiej puszki. Oblicz prawdopodobieństwo zdarzenia: wyciągnięty los jest wygrywający. P (Z = P (pp (Z p P (pp (Z p = 0 9 = 7 (0 70 Zadanie. W dwóch urnach znajdują się kule. W urnie pierwszej: kul białych i kule czarne. W urnie drugiej: białych i czarne. Rzucamy monetą. Jeżeli wypadnie reszka losujemy kule z pierwszej urny, natomiast, jeżeli wypadnie orzeł z drugiej urny losujemy kule. Oblicz (8

3 prawdopodobieństwo, że wśród wylosowanych kul jest co najmniej kula czarna. Obliczamy prawdopodobieństwo nie wylosowania kuli czarnej. P (B = P (U P (B U P (U P (B U = ( ( ( 8 ( ( 9 ( więc P (C = P (B ( Zadanie. Rzucamy dwiema kostkami. Czy zdarzenie A: wyrzucono w sumie parzystą liczbę oczek, i zdarzenie B: wyrzucono razem co najmniej 8 oczek, są zdarzeniami niezależnymi? P (A = 8 = P (B = P (A B = 9 = P (AP (B P (A B ( Zadanie. Spośród liczb,,, 0 wybieramy losowo jedną liczbę. Niech A oznacza zdarzenie, polegające na wylosowaniu liczby parzystej, B - podzielnej przez, C - podzielnej przez. Zbadać niezależność zdarzeń A, B i C. P (A = P (B = P (C = P (A B = P (B C = P (A C = P (A B C = ( więc ale P (A B = P (AP (B P (B C = P (BP (C P (A C = P (AP (C ( P (A B C P (AP (BP (C ( Zadanie. Strzelcy oddają po jednym strzale do tarczy. Strzelec I trafia z prawdopodobieństwem 0.8, strzelec II - z prawdopodobieństwem 0.9. Oblicz prawdopodobieństwo zdarzenia, że a tarcza zostanie trafiona co najmniej raz b tarcza została trafiona razy a 0.98 b 0.7 Zadanie. Rzucamy dwukrotnie kostką. Niech X oznacza sumę wyrzuconych oczek. Znaleźć rozkład zmiennej losowej X.

4 x i p i Zadanie. Strzelec strzela raz do celu składającego się z koła i z dwóch koncentrycznych pierścieni. Prawdopodobieństwa trafienia w koło i w pierścienie są odpowiednio równe 0.0, 0. i 0.0. Obliczyć prawdopodobieństwo nietrafienia do celu. -(0.0.0.=0. Zadanie 7. Jakie jest prawdopodobieństwo wyciągnięcia z talii kart figury dowolnego koloru lub karty pikowej? (figury to: król, dama i walet Zadanie 8. W szufladzie jest 0 monet po 0 kopiejek, monet po kopiejek i monety po 0 kopiejek. Wyjęto na chybił trafił sześć monet. Jakie jest prawdopodobieństwo, że wartość ich sumy nie przekroczy jednego rubla? ( 7 ( ( 0 ( 0 ( ( ( 0 ( ( 0 ( ( ( 0 ( ( 0 0. (7 Zadanie 9. Rejestracja samochodowa składa się z liter i cyfr. Ile istnieje różnych rejestracji samochodowych, jeżeli wykorzystujemy litery z alfabetu? 0 Zadanie 0. Mamy dwie partie wyprodukowanych przedmiotów, przy czym wiadomo, że wszystkie przedmioty jednej partii odpowiadają wymaganiom technicznym, a przedmiotów drugiej partii jest złej jakości. Przedmiot wzięty z losowo wybranej partii był dobrej jakości. Obliczyć prawdopodobieństwo, że drugi przedmiot wyjęty z tej samej partii będzie złej jakości, jeżeli pierwszy przedmiot po sprawdzeniu zwrócono z powrotem do partii. Można postawić dwie hipotezy: H - wzięto partię z przedmiotami złej jakości, H - wzięto partię zawierającą przedmioty dobrej jakości. Zdarzenia A polega na tym, że pierwszy przedmiot jest dobrej jakości. Zgodnie z warunkami zadania mamy P (H = P (H =, P (A H =, P (A H =. Ze wzoru na prawdopodobieństwo całkowite otrzymujemy prawdopodobieństwo zdarzenia A równe P (A = ( = 7 (8 8 Po pierwszej próbie prawdopodobieństwo, że partia zawiera przedmioty złej jakości, jest równe P (H A = P (H P (A H P (A = 7 8 Prawdopodobieństwo, że partia zawiera tylko przedmioty dobrej jakości, wynosi P (H A = 7 = 7 (9 (0

5 Niech zdarzenie B polega na tym, że przy drugiej próbie przedmiot był złej jakości. Prawd. tego zdarzenia także znajduje się ze wzoru na prawd. całkowite. Jeżeli p i p są prawd. hipotez H i H po pokonaniu pomiaru, to zgodnie z poprzednimi obliczeniami p = 7 i p = 7. Ponadto P (B H =, P (B H = 0. A więc szukane prawd. P (B = 7 = 8 Zadanie. Rzut X wektora wodzącego punktu losowego okręgu o promieniu a na średnicę ma dystrybuantę dla x a F (x = arcsin x dla a < x < a ( π a 0 dla x a Obliczyć: a prawdopodobieństwo tego, że X znajdzie się w przedziale ( a, a b gęstość prawdopodobieństwa ( a b P ( a < X < a = F ( a F ( a = π arcsin = f(x = ( F (x = π a x dla x ( a, a 0 dla reszta ( ( Zadanie. Dystrubuanta zmiennej losowej X ma postać dla x > F (x = x dla 0 x 0 dla x < 0 ( Znaleźć gęstość prawdopodobieństwa zmiennej losowej X. ( dla x (0, f(x = 0 dla reszta ( Zadanie. Przy jakiej wartości a funkcja f(x = jest gęstością prawdopodobieństwa zmiennej losowej X? a Znaleźć dystrybuantę zmiennej losowej X a x < x < (7

6 b Znaleźć prawdopodobieństwo trafienia zmiennej losowej X do przedziału (,. a b f(xdx = a arctan(x F (x = x = a(π π = aπ = a = π f(tdt = π arctan(t x = π arctan x P ( < X < = F ( F ( = π (arctan arctan( = (8 (9 (0 Zadanie. Dystrybuanta zmiennej losowej X jest określona następującą tabelką x (, 0] (0, ] (, ] (, 7] (7, F(x Wyznaczyć funkcję prawdopodobieństwa tej zmiennej. Obliczyć P ( X. p = P (X = 0 = lim F (x F (0 = 0. ( x 0 p = P (X = = lim F (x F ( = 0. ( x p = P (X = = lim F (x F ( = 0. ( x p = P (X = 7 = lim F (x F (7 = 0. ( x 7 P ( X = F ( F ( = = 0. ( Zadanie. Funkcja prawdopodobieństwa wyznaczona jest przez tabelkę: Wyznaczyć: a dystrybuantę i jej wykres b prawdopodobieństwo P (X < c prawdopodobieństwo P (X = a x i p i

7 x (, ] (,] (, ] (,] (, ] F (x b c P (X < = F ( = 0. ( P (X = = lim F (x F ( = = 0. (7 x 7

RACHUNEK PRAWDOPODOBIEŃSTWA

RACHUNEK PRAWDOPODOBIEŃSTWA RACHUNEK PRAWDOPODOBIEŃSTWA Zadanie 1. W urnie jest 1000 kartoników będących losami loterii pieniężnej. Cztery z kartoników wygrywają po 100 zł i szesnaście po 10 zł. Reszta kartoników to losy puste. Pierwszy

Bardziej szczegółowo

c) Zaszły oba zdarzenia A i B; d) Zaszło zdarzenie A i nie zaszło zdarzenie B;

c) Zaszły oba zdarzenia A i B; d) Zaszło zdarzenie A i nie zaszło zdarzenie B; Rachunek prawdopodobieństwa rozwiązywanie zadań 1. Rzucamy dwa razy symetryczną sześcienną kostką do gry. Zapisujemy liczbę oczek, jakie wypadły w obu rzutach. Wypisz zdarzenia elementarne tego doświadczenia.

Bardziej szczegółowo

Matematyka podstawowa X. Rachunek prawdopodobieństwa

Matematyka podstawowa X. Rachunek prawdopodobieństwa Matematyka podstawowa X Rachunek prawdopodobieństwa Zadania wprowadzające: 1. Rzucasz trzy razy monetą a) Napisz zbiór wszystkich wyników tego doświadczenia losowego. Ile ich jest? Wyrzuciłeś większą liczbę

Bardziej szczegółowo

Rzucamy dwa razy sprawiedliwą, sześcienną kostką do gry. Oblicz prawdopodobieństwo otrzymania:

Rzucamy dwa razy sprawiedliwą, sześcienną kostką do gry. Oblicz prawdopodobieństwo otrzymania: Statystyka Ubezpieczeniowa Część 1. Rachunek prawdopodobieństwa: - prawdopodobieństwo klasyczne - zdarzenia niezależne - prawdopodobieństwo warunkowe - prawdopodobieństwo całkowite - wzór Bayesa Schemat

Bardziej szczegółowo

P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt.

P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. Lekcja 2 Temat: Podstawowe pojęcia związane z prawdopodobieństwem. Str. 10-21 1. Doświadczenie losowe jest to doświadczenie,

Bardziej szczegółowo

Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( )

Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( ) Nowa matura kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Doświadczenie losowe polega na rzucie dwiema symetrycznymi monetami i sześcienną kostką do gry. Prawdopodobieństwo

Bardziej szczegółowo

Lista zadania nr 2 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista zadania nr 2 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Lista zadania nr 2 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w

Bardziej szczegółowo

12DRAP - parametry rozkładów wielowymiarowych

12DRAP - parametry rozkładów wielowymiarowych DRAP - parametry rozkładów wielowymiarowych Definicja.. Jeśli h : R R, a X, Y ) jest wektorem losowym o gęstości fx, y) to EhX, Y ) = hx, y)fx, y)dxdy. Jeśli natomiast X, Y ) ma rozkład dyskretny skupiony

Bardziej szczegółowo

dr Jarosław Kotowicz 14 października Zadania z wykładu 1

dr Jarosław Kotowicz 14 października Zadania z wykładu 1 Rachunek prawdopodobieństwa - ćwiczenia drugie Prawdopodobieństwo warunkowe i całkowite. Wzór Bayesa. Zdarzenia niezależne. kierunek: informatyka i ekonometria I dr Jarosław Kotowicz 14 października 2011

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub

RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub 1. W grupie jest 15 kobiet i 18 mężczyzn. Losujemy jedną osobę

Bardziej szczegółowo

R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo.

R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo. R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo. Zadanie 1. Wyznacz średnią arytmetyczną, dominantę i medianę zestawu danych: 1, 5, 3, 2, 2, 4, 4, 6, 7, 1, 1, 4, 5, 5, 3. Zadanie 2. W zestawie danych

Bardziej szczegółowo

c. dokładnie 10 razy została wylosowana kula antracytowa, ale nie za pierwszym ani drugim razem;

c. dokładnie 10 razy została wylosowana kula antracytowa, ale nie za pierwszym ani drugim razem; 05DRAP - Niezależność zdarzeń, schemat Bernoulliego A Zadania na ćwiczenia Zadanie A.. Niech Ω = {ω, ω 2, ω, ω, ω 5 } i P({ω }) = 8, P({ω 2}) = P({ω }) = P({ω }) = 6 oraz P({ω 5}) = 5 6. Niech A = {ω,

Bardziej szczegółowo

12. RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA zadania

12. RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA zadania 2. RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA zadania Zad.2.. Oblicz ile moŝna utworzyć z cyfr 0,, 2, liczb: a) dwucyfrowych, których cyfry mogą się powtarzać; b) trzycyfrowych o niepowtarzających się cyfrach;

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω)

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω) ZADANIA - ZESTAW 1 Zadanie 1.1 Rzucamy trzy razy monetą. A i - zdarzenie polegające na tym, że otrzymamy orła w i - tym rzucie. Określić zbiór zdarzeń elementarnych. Wypisać zdarzenia elementarne sprzyjające

Bardziej szczegółowo

Biologia Zadania przygotowawcze do drugiego kolokwium z matematyki

Biologia Zadania przygotowawcze do drugiego kolokwium z matematyki Biologia Zadania przygotowawcze do drugiego kolokwium z matematyki Pochodne funkcji i jej zastosowania 1. Oblicz pochodną funkcji f, gdy: a) f(x) = 3x 8 + 2 x + 3 7, b) f(x) = x 11 6x 5 + 2 x + 3 x, c)

Bardziej szczegółowo

NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI ZADANIE 1 oczka. ZADANIE 2 iloczynu oczek równego 12.

NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI ZADANIE 1 oczka. ZADANIE 2 iloczynu oczek równego 12. IMIE I NAZWISKO ZADANIE 1 Rzucamy sześcienna kostka do gry. Jakie jest prawdopodobieństwo, że wypadna co najmniej dwa oczka. ZADANIE 2 Rzucamy trzy razy symetryczna sześcienna kostka do gry. Oblicz prawdopodobieństwo

Bardziej szczegółowo

Prawdopodobieństwo

Prawdopodobieństwo Prawdopodobieństwo http://www.matemaks.pl/ Wstęp do rachunku prawdopodobieństwa http://www.matemaks.pl/wstep-do-rachunku-prawdopodobienstwa.html Rachunek prawdopodobieństwa pomaga obliczyć szansę zaistnienia

Bardziej szczegółowo

{( ) ( ) ( ) ( )( ) ( )( ) ( RRR)

{( ) ( ) ( ) ( )( ) ( )( ) ( RRR) .. KLASYCZNA DEFINICJA PRAWDOPODOBIEŃSTWA Klasyczna definicja prawdopodobieństwa JeŜeli jest skończonym zbiorem zdarzeń elementarnych jednakowo prawdopodobnych i A, to liczbę A nazywamy prawdopodobieństwem

Bardziej szczegółowo

p k (1 p) n k. k c. dokładnie 10 razy została wylosowana kula amarantowa, ale nie za pierwszym ani drugim razem;

p k (1 p) n k. k c. dokładnie 10 razy została wylosowana kula amarantowa, ale nie za pierwszym ani drugim razem; 05DRAP - Niezależność zdarzeń, schemat Bernoulliego Definicja.. Zdarzenia A i B nazywamy niezależnymi, jeżeli zachodzi równość P(A B) = P(A) P(B). Definicja. 2. Zdarzenia A,..., A n nazywamy niezależnymi

Bardziej szczegółowo

Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w

Bardziej szczegółowo

Skrypt 30. Prawdopodobieństwo

Skrypt 30. Prawdopodobieństwo Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 30 Prawdopodobieństwo 5.

Bardziej szczegółowo

PRAWDOPODOBIEŃSTWO I KOMBINATORYKA

PRAWDOPODOBIEŃSTWO I KOMBINATORYKA PRAWDOPODOBIEŃSTWO I KOMBINATORYKA ZADANIE ( PKT) Z urny zawierajacej kule w dwóch kolorach wybieramy losowo dwie. Prawdopodobieństwo wylosowania co najmniej jednej kuli białej jest równe 8, a prawdopodobieństwo

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 3 Definicja prawdopodobieństwa Kołmogorowa. Prawdopodobieństwa warunkowe i niezależne. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko

Bardziej szczegółowo

07DRAP - Zmienne losowe: dyskretne i ciągłe

07DRAP - Zmienne losowe: dyskretne i ciągłe 07DRAP - Zmienne losowe: dyskretne i ciągłe Słynne rozkłady dyskretne Rozkład parametry P (X = k dla k = E(X Var(X uwagi ( dwumianowy n, p n k p k ( p n k 0,,, n np np( p liczba sukcesów w n próbach Bernoulliego

Bardziej szczegółowo

Zdarzenie losowe (zdarzenie)

Zdarzenie losowe (zdarzenie) Zdarzenie losowe (zdarzenie) Ćw. 1. Ze zbioru cyfr (l, 2,3,..., 9} losowo wybieramy jedną. a) Wypisz zdarzenia elementarne, sprzyjające: zdarzeniu A, że wybrano liczbę parzystą zdarzeniu B, że wybrano

Bardziej szczegółowo

Doświadczenie i zdarzenie losowe

Doświadczenie i zdarzenie losowe Doświadczenie i zdarzenie losowe Doświadczenie losowe jest to takie doświadczenie, które jest powtarzalne w takich samych warunkach lub zbliżonych, a którego wyniku nie można przewidzieć jednoznacznie.

Bardziej szczegółowo

04DRAP - Prawdopodobieństwo warunkowe, prawdopodobieństwo całkowite,

04DRAP - Prawdopodobieństwo warunkowe, prawdopodobieństwo całkowite, 04DRAP - Prawdopodobieństwo warunkowe, prawdopodobieństwo całkowite, wzór Bayesa Definicja. 1. Prawdopodobieństwem warunkowym zajścia zdarzenia A pod warunkiem zajścia zdarzenia B, gdzie P(B > 0, nazywamy

Bardziej szczegółowo

PRAWDOPODOBIEŃSTWO CZAS PRACY: 180 MIN. ZADANIE 1 (5 PKT) NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI

PRAWDOPODOBIEŃSTWO CZAS PRACY: 180 MIN. ZADANIE 1 (5 PKT)   NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI IMIE I NAZWISKO PRAWDOPODOBIEŃSTWO PRAWDOPODOBIEŃSTWO CZAS PRACY: 180 MIN. SUMA PUNKTÓW: 100 ZADANIE 1 (5 PKT) Rzucono dwiema sześciennymi kostkami do gry i określono zdarzenia A na każdej kostce wypadła

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA

RACHUNEK PRAWDOPODOBIEŃSTWA Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ RACHUNEK PRAWDOPODOBIEŃSTWA Co powinienem umieć Umiejętności znam pojęcie zdarzenia elementarnego znam pojęcie doświadczenia losowego i potrafię

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 2 Klasyczna definicja prawdopodobieństwa ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Według klasycznej

Bardziej szczegółowo

KOMBINATORYKA I P-WO CZ.1 PODSTAWA

KOMBINATORYKA I P-WO CZ.1 PODSTAWA KOMBINATORYKA I P-WO CZ.1 PODSTAWA ZADANIE 1 (1 PKT) Pan Jakub ma marynarki, 7 par różnych spodni i 10 różnych koszul. Na ile różnych sposobów może się ubrać, jeśli zawsze zakłada marynarkę, spodnie i

Bardziej szczegółowo

Laboratorium nr 7. Zmienne losowe typu skokowego.

Laboratorium nr 7. Zmienne losowe typu skokowego. Laboratorium nr 7. Zmienne losowe typu skokowego.. Zmienna losowa X ma rozkład dany tabelką: - 0 3 0, 0,3 0, 0,3 0, Naszkicować dystrybuantę zmiennej X. Obliczyć EX oraz VarX.. Zmienna losowa ma rozkład

Bardziej szczegółowo

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 14 Zadania statystyka, prawdopodobieństwo i kombinatoryka

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 14 Zadania statystyka, prawdopodobieństwo i kombinatoryka 1 TEST WSTĘPNY 1. (1p) Zestaw danych 3, 5, x, 7, 10, 12 jest uporządkowany niemalejąco. Mediana tego zestawu jest równa 6, więc liczba x jest równa A. 7 B. 6 C. 5 D. 4 2. (2p) Średnia arytmetyczna liczb:

Bardziej szczegółowo

= 10 9 = Ile jest wszystkich dwucyfrowych liczb naturalnych podzielnych przez 3? A. 12 B. 24 C. 29 D. 30. Sposób I = 30.

= 10 9 = Ile jest wszystkich dwucyfrowych liczb naturalnych podzielnych przez 3? A. 12 B. 24 C. 29 D. 30. Sposób I = 30. Kombinatoryka i rachunek prawdopodobieństwa Zadania zamknięte (0 1 pkt) 1. Flagę, taką jak pokazano na rysunku, należy zszyć z trzech jednakowej szerokości pasów kolorowej tkaniny. Oba pasy zewnętrzne

Bardziej szczegółowo

15. Rachunek prawdopodobieństwa mgr A. Piłat, mgr M. Małycha, mgr M. Warda

15. Rachunek prawdopodobieństwa mgr A. Piłat, mgr M. Małycha, mgr M. Warda 1. Każdej karcie bankomatowej jest przypisany numer identyfikacyjny zwany kodem PIN. Kod ten składa się z czterech cyfr(cyfry mogą się powtarzać, ale kodem PIN nie może być 0000). Oblicz prawdopodobieństwo,

Bardziej szczegółowo

Metody Probabilistyczne zestaw do ćwiczeń Katarzyna Lubnauer

Metody Probabilistyczne zestaw do ćwiczeń Katarzyna Lubnauer Metody Probabilistyczne zestaw do ćwiczeń Katarzyna Lubnauer Model klasyczny prawdopodobieństwa.losowo ustawiam w szeregu klocki z literami MMAAATTYKE. Opisać przestrzeń zdarzeń elementarnych i obliczyć

Bardziej szczegółowo

Prawdopodobieństwo zadania na sprawdzian

Prawdopodobieństwo zadania na sprawdzian Prawdopodobieństwo zadania na sprawdzian Zad. 1. Zdarzenia A, B, C oznaczają, że wzięto co najmniej po jednej książce odpowiednio z pierwszych, drugich i trzecich dzieł zebranych. Każde z dzieł zebranych

Bardziej szczegółowo

Laboratorium nr 1. Kombinatoryka

Laboratorium nr 1. Kombinatoryka Laboratorium nr 1. Kombinatoryka 1. Spośród n różnych elementów wybieramy k elementów. Na ile sposobów możemy to uczynić? Wypisać wszystkie możliwe wybory w przypadku gdy n=3 i k=2. Wykonać obliczenia

Bardziej szczegółowo

Zadania z Zasad planowania eksperymentu i opracowania wyników pomiarów. Zestaw 1.

Zadania z Zasad planowania eksperymentu i opracowania wyników pomiarów. Zestaw 1. Zestaw 1. Zadanie. 1. Wyobraźnia jest ważniejsza od wiedzy A.Einstein Czy zdarzenia polegające na wyciągnięciu z talii liczącej 52 karty dowolnej karty pik (zdarzenie A) i wyciągnięciu asa (zdarzenie B)

Bardziej szczegółowo

rachunek prawdopodobieństwa - zadania

rachunek prawdopodobieństwa - zadania rachunek prawdopodobieństwa - zadania ogólna definicja prawdopodobieństwa, własności - 6.10.2012 1. (d, 1pkt) Udowodnić twierdzenie 2 tj. własności prawdopodobieństwa (W1)-(W7). 2. Niech Ω = [0,1] oraz

Bardziej szczegółowo

Rzucamy 10 razy symetryczną monetę. Czy zdarzenia: A - wypadł dokładnie 10 razy orzeł i B reszka wypadła dokładnie 10 razy są zależne?

Rzucamy 10 razy symetryczną monetę. Czy zdarzenia: A - wypadł dokładnie 10 razy orzeł i B reszka wypadła dokładnie 10 razy są zależne? Zad. Rzucamy 0 razy symetryczną monetę. Czy zdarzenia: A - wypadł dokładnie 0 razy orzeł i B reszka wypadła dokładnie 0 razy są zależne? Zad. Badania statystyczne przeprowadzone wśród studentów wykazały,

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 4 Prawdopodobieństwo całkowite i twierdzenie Bayesa. Drzewko stochastyczne. Schemat Bernoulliego. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź

Bardziej szczegółowo

Podstawy nauk przyrodniczych Matematyka

Podstawy nauk przyrodniczych Matematyka Podstawy nauk przyrodniczych Matematyka Elementy rachunku prawdopodobieństwa dr inż. Małgorzata Szeląg Zakład Genetyki Molekularnej Człowieka tel. 61 829 59 04 malgorzata.szelag@amu.edu.pl Pokój 1.118

Bardziej szczegółowo

Elementy statystyki opisowej, teoria prawdopodobieństwa i kombinatoryka

Elementy statystyki opisowej, teoria prawdopodobieństwa i kombinatoryka Wymagania egzaminacyjne: a) oblicza średnią arytmetyczną, średnią ważoną, medianę i odchylenie standardowe danych; interpretuje te parametry dla danych empirycznych, b) zlicza obiekty w prostych sytuacjach

Bardziej szczegółowo

51. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń.

51. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń. Matematyka lekcja 5 5. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń. I. rzypomnij sobie:. Jak rysujemy drzewo stochastyczne i przy jego pomocy obliczamy prawdopodobieństwo

Bardziej szczegółowo

Wersja testu A 18 czerwca 2012 r. x 2 +x dx

Wersja testu A 18 czerwca 2012 r. x 2 +x dx 1. Funkcja f : R R jest różniczkowalna na całej prostej, a ponadto dla każdej liczby rzeczywistej x zachodzi nierówność f x

Bardziej szczegółowo

Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń

Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń Agata Boratyńska Ćwiczenia z rachunku prawdopodobieństwa 1 Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń UWAGA:

Bardziej szczegółowo

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) =

Zestaw 2: Zmienne losowe. 0, x < 1, 2, 2 x, 1 1 x, 1 x, F 9 (x) = Zestaw : Zmienne losowe. Które z poniższych funkcji są dystrybuantami? Odpowiedź uzasadnij. Wskazówka: naszkicuj wykres. 0, x 0,, x 0, F (x) = x, F (x) = x, 0 x

Bardziej szczegółowo

Zadania zestaw 1: Zadania zestaw 2

Zadania zestaw 1: Zadania zestaw 2 Zadania zestaw 1: Zadania zestaw 2 Zadania zestaw 3. 1 Rozkład zmiennej losowej skokowej X przedstawia tabela. x i m 0 n p i 0,4 0,3 0,3 a) Wyznacz m i n jeśli: są całkowite, m

Bardziej szczegółowo

Zadanie 2. Wiadomo, że A, B i C są trzema zdarzeniami losowymi takimi, że P (A) = 2/5, P (B A) = 1/4, P (C A B) = 0.5, P (A B) = 6/10, P (C B) = 1/3.

Zadanie 2. Wiadomo, że A, B i C są trzema zdarzeniami losowymi takimi, że P (A) = 2/5, P (B A) = 1/4, P (C A B) = 0.5, P (A B) = 6/10, P (C B) = 1/3. Zadanie 1. O zdarzeniach A, B, C z pewnej przestrzeni uzyskaliśmy informacje, iż P (A B C) = 0.6, P (B A C) = 0.3 oraz P (C A B) = 0.9. Obliczyć P [A B C (A B) (A C) (B C)]. Odp. 9/37 Zadanie 2. Wiadomo,

Bardziej szczegółowo

ćwiczenia z rachunku prawdopodobieństwa

ćwiczenia z rachunku prawdopodobieństwa ćwiczenia z rachunku prawdopodobieństwa 9.10.2010 ogólna definicja prawdopodobieństwa, własności 1. Niech Ω = [0, 1] oraz niech Σ będzie pewną σ-algebrą podzbiorów odcinka [0, 1]. Udowodnić, że funkcja

Bardziej szczegółowo

Zadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy:

Zadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy: Zadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy: a) sumę oczek równą 6, b) iloczyn oczek równy 6, c) sumę oczek mniejszą niż 11, d) iloczyn oczek będący liczbą parzystą,

Bardziej szczegółowo

( ) ( ) Przykład: Z trzech danych elementów: a, b, c, można utworzyć trzy następujące 2-elementowe kombinacje: ( ) ( ) ( ).

( ) ( ) Przykład: Z trzech danych elementów: a, b, c, można utworzyć trzy następujące 2-elementowe kombinacje: ( ) ( ) ( ). KOMBINATORYKA Kombinatoryka zajmuje się wyznaczaniem liczby elementów zbiorów skończonych utworzonych zgodnie z określonymi zasadami. Do podstawowych pojęć kombinatorycznych należą: PERMUTACJE Silnia.

Bardziej szczegółowo

Temat: Statystyka i prawdopodobieństwo w naszym życiu.

Temat: Statystyka i prawdopodobieństwo w naszym życiu. Dla nauczyciela Spotkanie 9 Temat: Statystyka i prawdopodobieństwo w naszym życiu. Na zajęcia potrzebne będą pomoce tzn. kostki do gry, talia kart, monety lub inne. Przy omawianiu doświadczeń losowych

Bardziej szczegółowo

rachunek prawdopodobieństwa - zadania

rachunek prawdopodobieństwa - zadania rachunek prawdopodobieństwa - zadania ogólna definicja prawdopodobieństwa, własności - 9.10.2011 1. (d, 1pkt) Udowodnić twierdzenie 2 tj. własności prawdopodobieństwa (W1)-(W7). 2. Niech Ω = [0, 1] oraz

Bardziej szczegółowo

I. FUNKCJA WYKŁADNICZA I LOGARYTMY 1. POTĘGI Zad.1. Zapisz za pomocą potęgi o podanej podstawie:

I. FUNKCJA WYKŁADNICZA I LOGARYTMY 1. POTĘGI Zad.1. Zapisz za pomocą potęgi o podanej podstawie: Strona 1 z 9 I. FUNKCJA WYKŁADNICZA I LOGARYTMY 1. POTĘGI Zapisz za pomocą potęgi o podanej podstawie: 5 4 ( 27) ( ) a), podstawa : ( ) b) 6 ( 9) c), podstawa: (5) d) Oblicz: a) 1 6 4 2 1 1 1 2 (0,25)

Bardziej szczegółowo

DOŚWIADCZENIA WIELOETAPOWE

DOŚWIADCZENIA WIELOETAPOWE . 4. DOŚWIADCZENIA WIELOETAPOWE Drzewem stochastycznym nazywamy graf ilustrujący przebieg wieloetapowego doświadczenia losowego. Wierzchołkom drzewa stochastycznego przyporządkowane są wyniki poszczególnych

Bardziej szczegółowo

Rachunek prawdopodobieństwa lista zadań nr 6

Rachunek prawdopodobieństwa lista zadań nr 6 1) Klasa zorganizowała loterię fantową. Do sprzedaży przeznaczono 50 losów ponumerowanych od 1 do 50. Organizatorzy przyjęli zasadę, że każdy los, którego numer jest liczbą podzielną przez 3, wygrywa fant.

Bardziej szczegółowo

Temat 18: Statystyka i prawdopodobieństwo w naszym życiu.

Temat 18: Statystyka i prawdopodobieństwo w naszym życiu. Temat 8: Statystyka i prawdopodobieństwo w naszym życiu. Jakie są miary statystyczne? Średnia arytmetyczna. Średnia arytmetyczna dwóch liczb a i b to połowa ich sumy Średnia arytmetyczna trzech liczb a,

Bardziej szczegółowo

01DRAP - klasyczna definicja prawdopodobieństwa

01DRAP - klasyczna definicja prawdopodobieństwa 01DRAP - klasyczna definicja prawdopodobieństwa Ω zbiór zdarzeń elementarnych. Gdy Ω < oraz P({ω} = 1 Ω, dla każdego ω Ω (tzn. każde zdarzenie elementarne jest równo prawdopodobne, to P (A = A Ω Przydatne

Bardziej szczegółowo

01DRAP - klasyczna definicja prawdopodobieństwa

01DRAP - klasyczna definicja prawdopodobieństwa 01DRAP - klasyczna definicja prawdopodobieństwa Ω zbiór zdarzeń elementarnych. Gdy Ω < oraz P({ω} = 1 Ω, dla każdego ω Ω (tzn. każde zdarzenie elementarne jest równo prawdopodobne, to P (A = A Ω Przydatne

Bardziej szczegółowo

Z4. Ankieta złożona ma być z trzech pytań: A, B i C. Na ile sposobów można ją ułożyć zmieniając tylko kolejność pytań? ODP. Jest 6 możliwych sposobów.

Z4. Ankieta złożona ma być z trzech pytań: A, B i C. Na ile sposobów można ją ułożyć zmieniając tylko kolejność pytań? ODP. Jest 6 możliwych sposobów. PERMUTACJE Z1. Oblicz: Z2. Doprowadź do najprostszej postaci wyrażenia: Z3. Sprawdź czy prawdziwa jest równość: Dana równość jest prawdziwa. Z4. Ankieta złożona ma być z trzech pytań: A, B i C. Na ile

Bardziej szczegółowo

Rachunek prawdopodobieństwa

Rachunek prawdopodobieństwa Rachunek prawdopodobieństwa Sebastian Rymarczyk srymarczyk@afm.edu.pl Tematyka zajęć 1. Elementy kombinatoryki. 2. Definicje prawdopodobieństwa. 3. Własności prawdopodobieństwa. 4. Zmienne losowe, parametry

Bardziej szczegółowo

01DRAP - klasyczna definicja prawdopodobieństwa

01DRAP - klasyczna definicja prawdopodobieństwa 01DRAP - klasyczna definicja prawdopodobieństwa Ω zbiór zdarzeń elementarnych. Gdy Ω < oraz P({ω} = 1 Ω, dla każdego ω Ω (tzn. każde zdarzenie elementarne jest równo prawdopodobne, to P (A = A Ω Przydatne

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA

RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA Doświadczenia losowe Rachunek prawdopodobieństwa zajmuje się zdarzeniami jakie zachodzą, gdy przeprowadzamy doświadczenia losowe. Mówimy, że doświadczenie jest

Bardziej szczegółowo

Kombinatoryka i rachunek prawdopodobieństwa (rozszerzenie)

Kombinatoryka i rachunek prawdopodobieństwa (rozszerzenie) Kombinatoryka i rachunek prawdopodobieństwa (rozszerzenie) (1) Ile liczb czterocyfrowych można utworzyć używając jedynie cyfr 1,2,3,4,5,6,7,8? (2) Ile liczb czterocyfrowych o różnych cyfrach można utworzyć

Bardziej szczegółowo

Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018

Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018 Katedra Matematyki i Ekonomii Matematycznej SGH 16 października 2018 Definicja σ-algebry Definicja Niech Ω oznacza zbiór niepusty. Rodzinę M podzbiorów zbioru Ω nazywamy σ-algebrą (lub σ-ciałem) wtedy

Bardziej szczegółowo

Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń

Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń Agata Boratyńska Ćwiczenia z rachunku prawdopodobieństwa 1 Ćwiczenia 1. Klasyczna definicja prawdopodobieństwa, prawdopodobieństwo geometryczne, własności prawdopodobieństwa, wzór włączeń i wyłączeń UWAGA:

Bardziej szczegółowo

Zadania Arkusz 12. Rachunek prawdopodobieństwa

Zadania Arkusz 12. Rachunek prawdopodobieństwa Rachunek prawdopodobieństwa 1. Z urny, w której znajdują się trzy kule: białą, czarna i niebieska, wybieramy na chybił trafił jedną kulę. Zapisz zbiór zdarzeń elementarnych Ω tego doświadczenia i określ

Bardziej szczegółowo

ZAGADANIENIA NA EGZAMIN USTNY Z MATEMATYKI

ZAGADANIENIA NA EGZAMIN USTNY Z MATEMATYKI ZAGADANIENIA NA EGZAMIN USTNY Z MATEMATYKI SEMESTR I ZESTAW. Podaj liczbę przeciwną i odwrotną do liczby 2 2. Jak zmieniła się cena wyrobu po podwyżce o 20%, a następnie po obniżeniu otrzymanej ceny o

Bardziej szczegółowo

Metody Probabilistyczne zestaw do ćwiczeń Katarzyna Lubnauer

Metody Probabilistyczne zestaw do ćwiczeń Katarzyna Lubnauer Metody Probabilistyczne zestaw do ćwiczeń Katarzyna Lubnauer Model klasyczny prawdopodobieństwa. Losowo ustawiam w szeregu klocki z literami MMAAATTYKE. Opisać przestrzeń zdarzeń elementarnych i obliczyć

Bardziej szczegółowo

DODATKOWA PULA ZADAŃ DO EGZAMINU. Rozważmy ciąg zdefiniowany tak: s 0 = a. s n+1 = 2s n +b (dla n=0,1,2 ) Pokaż, że s n = 2 n a +(2 n =1)b

DODATKOWA PULA ZADAŃ DO EGZAMINU. Rozważmy ciąg zdefiniowany tak: s 0 = a. s n+1 = 2s n +b (dla n=0,1,2 ) Pokaż, że s n = 2 n a +(2 n =1)b DODATKOWA PULA ZADAŃ DO EGZAMINU Rozważmy ciąg zdefiniowany tak: s 0 = a s n+1 = 2s n +b (dla n=0,1,2 ) Pokaż, że s n = 2 n a +(2 n =1)b Udowodnij, że liczba postaci 5 n+1 +2 3 n +1 jest podzielna przez

Bardziej szczegółowo

a)dane są wartości zmiennej losowej: 2, 4, 2, 1, 1, 3, 2, 1. Obliczyć wartość średnią i wariancję.

a)dane są wartości zmiennej losowej: 2, 4, 2, 1, 1, 3, 2, 1. Obliczyć wartość średnią i wariancję. Zad Rozkład zmiennej losowej dyskretnej : a)dane są wartości zmiennej losowej: 2, 4, 2,,, 3, 2,. Obliczyć wartość średnią i wariancję. b)oceny z pracy klasowej w tabeli: Ocena 2 3 4 5 6 Liczba uczniów

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I GEOMETRIA ANALITYCZNA 1. Równanie prostej w postaci ogólnej i kierunkowej powtórzenie 2. Wzajemne położenie dwóch prostych powtórzenie

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 2 ZADANIA - ZESTAW 2

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 2 ZADANIA - ZESTAW 2 ZADANIA - ZESTAW 2 Zadanie 2.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 1 0 2 p k 1/ 1/6 1/2 a) wyznaczyć dystrybuantę tej zmiennej losowej i naszkicować jej wykres, b) obliczyć

Bardziej szczegółowo

Zmienna losowa. Rozkład skokowy

Zmienna losowa. Rozkład skokowy Temat: Zmienna losowa. Rozkład skokowy Kody kolorów: żółty nowe pojęcie pomarańczowy uwaga * - materiał nadobowiązkowy Anna Rajfura, Matematyka i statystyka matematyczna na kierunku Rolnictwo SGGW 1 Zagadnienia

Bardziej szczegółowo

ALGEBRA ZDARZEŃ. PRZYKŁAD Ω = {ω 1, ω 2, ω 3, ω 4 } A = {ω 1, ω 2} DEFINICJA Mówimy, Ŝe zdarzenie elementarne w sprzyja zdarzeniu A (A Ω), jeŝeli ω A

ALGEBRA ZDARZEŃ. PRZYKŁAD Ω = {ω 1, ω 2, ω 3, ω 4 } A = {ω 1, ω 2} DEFINICJA Mówimy, Ŝe zdarzenie elementarne w sprzyja zdarzeniu A (A Ω), jeŝeli ω A ALGEBRA ZDARZEŃ Podobnie jak inne działy matematyki np. geometria, rachunek prawdopodobieństwa wychodzi z pewnych pojęć pierwotnych. Pojęciem pierwotnym rachunku prawdopodobieństwa jest zdarzenie elementarne,

Bardziej szczegółowo

ZADANIA MATURALNE - RACHUNEK PRAWDOPODOBIEŃSTWA, ELEMENTY STATYSTYKI OPISOWEJ POZIOM PODSTAWOWY Opracowała mgr Danuta Brzezińska

ZADANIA MATURALNE - RACHUNEK PRAWDOPODOBIEŃSTWA, ELEMENTY STATYSTYKI OPISOWEJ POZIOM PODSTAWOWY Opracowała mgr Danuta Brzezińska ZADANIA MATURALNE - RACHUNEK PRAWDOPODOBIEŃSTWA, ELEMENTY STATYSTYKI OPISOWEJ POZIOM PODSTAWOWY Opracowała mgr Danuta Brzezińska Zad. 1. (1 pkt) Ile jest wszystkich liczb naturalnych dwucyfrowych, w których

Bardziej szczegółowo

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM. I. Trygonometria. 1. Definicje funkcji trygonometrycznych kąta ostrego w trójkącie prostokątnym. 2. Rozwiązywanie trójkątów prostokątnych

Bardziej szczegółowo

Kombinatoryka i rachunek prawdopodobieństwa

Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka i rachunek prawdopodobieństwa Jerzy Rutkowski Kombinatoryka i rachunek prawdopodobieństwa 2. Elementy kombinatoryki 2.1. Permutacje Definicja 1. Niech n N. Permutacją n-elementowego zbioru

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 2 Magdalena Alama-Bućko 5 marca 2018 Magdalena Alama-Bućko Statystyka matematyczna 5 marca 2018 1 / 14 Prawdopodobieństwo klasyczne Ω - zbiór wszystkich zdarzeń elementarnych

Bardziej szczegółowo

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Zadanie PP RP 1. Z pojemnika, w którym znajdują się cztery losy z numerami 112, 121, 211, 212 losujemy trzy razy po jednym losie, po każdym losowaniu zwracając wylosowany los do pojemnika. Oblicz prawdopodobieństwo,

Bardziej szczegółowo

Matematyka. Podręcznik inspirowany postacią Pitagorasa twórcy podstaw matematyki

Matematyka. Podręcznik inspirowany postacią Pitagorasa twórcy podstaw matematyki Matematyka P O D R Ę C Z N I K D L S Z K O ŁY P O D S T W O W E J 8 Podręcznik inspirowany postacią Pitagorasa twórcy podstaw matematyki R E F O R M 2 0 1 7 SPIS TREŚCI 1. Liczby i wyrażenia algebraiczne

Bardziej szczegółowo

Biologia Zadania przygotowawcze do egzaminu z matematyki

Biologia Zadania przygotowawcze do egzaminu z matematyki Biologia Zadania przygotowawcze do egzaminu z matematyki Zagadnienia wstępne 1. Oblicz:, 5 + ( 3 5 6 1, 8) : ( 1 3 ), b) ( 5 1 1 0 5 3 ) 8, c) (0, 76 : 1 1 3 1 ) + ( 17 40 1 5 : 1, 6), d) 4 3 54 3, e)

Bardziej szczegółowo

Zmienne losowe skokowe

Zmienne losowe skokowe Zmienne losowe skokowe 1.1 Rozkład prawdopodobieństwa i dystrybuanta Zad.1 Niech zmienna losowa X przyjmuje wartości równe liczbie wyrzuconych oczek przy pojedynczym rzucie kostką do gry, czyli =1,2,3,,6.

Bardziej szczegółowo

I. Kombinatoryka i prawdopodobieństwo. g) różnowartościowych, h) bez miejsc zerowych, i) z jednym miejscem zerowym, j) z dwoma miejscami zerowymi,

I. Kombinatoryka i prawdopodobieństwo. g) różnowartościowych, h) bez miejsc zerowych, i) z jednym miejscem zerowym, j) z dwoma miejscami zerowymi, I. Kombinatoryka i prawdopodobieństwo I.1 Mała Lusia bawi się literkami A,A,A,E,K,M,M,T,T,Y ustawiając je w różnej kolejności. Jakie jest prawdopodobieństwo ustawienia wyrazu MATEMATYKA? I. Wśród funkcji

Bardziej szczegółowo

Ćwiczenia: Ukryte procesy Markowa lista 1 kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II

Ćwiczenia: Ukryte procesy Markowa lista 1 kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II Ćwiczenia: Ukryte procesy Markowa lista kierunek: matematyka, specjalność: analiza danych i modelowanie, studia II dr Jarosław Kotowicz Zadanie. Dany jest łańcuch Markowa, który może przyjmować wartości,,...,

Bardziej szczegółowo

Lista zadania nr 3 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista zadania nr 3 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Lista zadania nr 3 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w

Bardziej szczegółowo

Przestrzeń probabilistyczna

Przestrzeń probabilistyczna Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka

Rachunek prawdopodobieństwa i statystyka Rachunek prawdopodobieństwa i statystyka Przestrzeń probabilistyczna Niech Ω będzie dowolnym zbiorem, zwanym przestrzenią zdarzeń elementarnych. Elementy ω tej przestrzeni nazywamy zdarzeniami elementarnymi.

Bardziej szczegółowo

Lista 1. Prawdopodobieństwo klasyczne i geometryczne

Lista 1. Prawdopodobieństwo klasyczne i geometryczne Metody statystyczne. Lista 1. 1 Lista 1. Prawdopodobieństwo klasyczne i geometryczne 1. Jakie jest prawdopodobieństwo, że (a) z talii zawierającej 52 karty wybierzemy losowo asa? (b) z talii zawierającej

Bardziej szczegółowo

Obliczanie prawdopodobieństwa za pomocą metody drzew metoda drzew. Drzewem Reguła iloczynów. Reguła sum.

Obliczanie prawdopodobieństwa za pomocą metody drzew metoda drzew. Drzewem Reguła iloczynów. Reguła sum. Obliczanie prawdopodobieństwa za pomocą metody drzew Jeżeli doświadczenie losowe składa się z więcej niż jednego etapu, takich jak serie rzutów kostką lub monetą, zastosowanie klasycznej definicji prawdopodobieństwa

Bardziej szczegółowo

Statystyka podstawowe wzory i definicje

Statystyka podstawowe wzory i definicje 1 Statystyka podstawowe wzory i definicje Średnia arytmetyczna to suma wszystkich liczb (a 1, a 2,, a n) podzielona przez ich ilość (n) Przykład 1 Dany jest zbiór liczb {6, 8, 11, 2, 5, 3}. Oblicz średnią

Bardziej szczegółowo

Zestawy zadań z Metod Probabilistyki i Statystyki. dr Hanna Podsędkowska dr Katarzyna Lubnauer mgr Małgorzata Grzyb mgr Rafał Wieczorek

Zestawy zadań z Metod Probabilistyki i Statystyki. dr Hanna Podsędkowska dr Katarzyna Lubnauer mgr Małgorzata Grzyb mgr Rafał Wieczorek Zestawy zadań z Metod Probabilistyki i Statystyki dr Hanna Podsędkowska dr Katarzyna Lubnauer mgr Małgorzata Grzyb mgr Rafał Wieczorek 21 lutego 2014 1 MODEL KLASYCZNY PRAWDOPODOBIEŃSTWA 1 Model klasyczny

Bardziej szczegółowo

Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: Własności dystrybuanty zmiennej losowej:

Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: Własności dystrybuanty zmiennej losowej: Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: F (t) P (X t) < t < Własności dystrybuanty zmiennej losowej: jest niemalejąca: 0 F (t) jest prawostronnie

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO

EGZAMIN MATURALNY OD ROKU SZKOLNEGO EGZAMIN MATURALNY OD ROKU SZKOLNEGO 014/015 MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ DLA OSÓB SŁABOSŁYSZĄCYCH (A3) W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych,

Bardziej szczegółowo

Metody probabilistyczne

Metody probabilistyczne Metody probabilistyczne 5. Zmienne losowe: wprowadzenie Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 8..208 / 42 Motywacja Często bardziej niż same zdarzenia losowe

Bardziej szczegółowo

Podstawy Teorii Prawdopodobieństwa

Podstawy Teorii Prawdopodobieństwa Statystyka Opisowa z Demografią oraz Biostatystyka Podstawy Teorii Prawdopodobieństwa Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag

Bardziej szczegółowo

Rachunek Prawdopodobieństwa i Statystyka Matematyczna

Rachunek Prawdopodobieństwa i Statystyka Matematyczna Rachunek rawdopodobieństwa i Statystyka Matematyczna rowadzący: prof. dr hab. inż. Ireneusz Jóźwiak Zestaw nr. Opracowanie: Grzegorz Drzymała 4996 Grzegorz Dziemidowicz 49965 drian Gawor 49985 Zadanie..

Bardziej szczegółowo

W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych, linijki i cyrkla oraz kalkulatora.

W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych, linijki i cyrkla oraz kalkulatora. Egzamin maturalny od roku szkolnego 2014/2015 Matematyka Poziom rozszerzony Przykładowy zestaw zadań dla osób słabowidzących (A4) W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych,

Bardziej szczegółowo