Automatyka i Robotyka Analiza Wykład 27 dr Adam Ćmiel

Wielkość: px
Rozpocząć pokaz od strony:

Download "Automatyka i Robotyka Analiza Wykład 27 dr Adam Ćmiel"

Transkrypt

1 Automty Rooty Az Wyłd 7 dr Adm Ćme cme@gh.edu.p Szereg Fourer Przypomee. Rozwżmy przestrzeń eudesową VR, tórej eemetm (putm, wetorm )są eemetowe cąg cz rzeczywstych p.,..., ) y y,..., y ). W przestrze tej defujemy ( stdrdowy (eudesowy) oczy sry ( Spełjący stępujące wru: ), y R, y y,,y y ), y, z R + y, z, z + y, z 3) λ R, y R λ, y λ, y ) R,, Przestrzeń ową wyposżoą w oczy sry zywmy przestrzeą utrą Przestrzeń utr jest przestrzeą uormową z ormą,, węc tże przestrzeą metryczą z metryą ρ (, y) y. W przypdu przestrze eudesowej R powyższe wzory przyerją postć, (, y) y ρ ( y ). Wetory, y R są ortogoe (prostopdłe), gdy, y. Nech ( e,..., e ) ędze zą w R Bzę e,..., e ) zywmy zą ortogoą j e,. (,gdy j Bzę ( e,..., e ) zywmy zą ortoormą, j e, e j δ j,gdy j Nech e,..., e ) ędze zą ortogoą. Wówczs żdy wetor moż przedstwć w postc ( α e (czy e j α zywmy współrzędym wetor w ze e,..., e ). Współrzęde te (

2 Automty Rooty Az Wyłd 7 dr Adm Ćme cme@gh.edu.p łtwo zeźć w przypdu zy ortogoej. Rzeczywśce możąc sre wetor przez wetor e otrzymujemy orzystjąc z włsośc oczyu srego ortogoośc z α e, e α e, e α e, e. Stąd, e α,...,. e, e Nech V sp{e,...,e m } ędze podprzestrzeą rozpętą przez perwsze m wetorów zy ortogoej e,..., e ). Dowoy wetor R moż jedozcze przedstwć w postc ( +, gdze V jest rzutem ortogoym wetor podprzestrzeń V, ortogoym do podprzestrze V tz. + (tw. Ptgors), jest wetorem y d żdego y V. Podto prwdzw jest rówość sąd tychmst otrzymujemy. Rzut ortogoy V wetor V podprzestrzeń V m pewą optymą włsośćmowce rg m y V y. tz. spośród wszystch możwych przedstweń wetor y + ( y ), y V w postc sumy wetor y z podprzestrze V jego uzupełe -y orm wetor uzupełjącego -y jest mm gdy wetorem y z przestrze V jest rzut ortogoy wetor podprzestrzeń V. Poprzez ogę wprowdzmy powyższe pojęc w pewej przestrzech fucyjej. Nech V R[,] ędze przestrzeą rzeczywstych fucj cłowych w sese Rem przedze [,]. V jest rzeczywśce przestrzeą ową- fucje umemy dodwć możyć je przez sry. W przestrze tej zdefujemy oczy sry wzorem f g f ( ) g( ) d, (Uwg: oczy fucj R cłowych jest fucją R cłową).

3 Automty Rooty Az Wyłd 7 dr Adm Ćme cme@gh.edu.p Łtwo zuwżyć, że są spełoe wszyste włsośc ( - ) oczyu srego oprócz drugej częśc putu ). Z rówośc f, f f ( ) d e wy że f. Woec tego utożsmmy fucje różące sę zorze mry. Forme rozwżmy sy rówowżośc recj zdej wzorem f g ( f ( ) g( ) ) d. Od tego mometu przestrzeń V, to przestrzeń s rówowżośc fucj cłowych w sese Rem. Przestrzeń V jest przestrzeą uormową z ormą f f, f f ( ) d. Przestrzeń V z powyższą ormą zywć ędzemy przestrzeą L [,]. Uwg. W podręczch zy przestrzeń L [,] rozum jest zwye jo przestrzeń s rówowżośc fucj cłowych w sese Leesgue.. Cąg e (), e (), e 3 (),... fucj ędących eemetm (wetorm) przestrze V zywmy ortogoym jeś e, e j e ( ) e j ( ) d j. Szereg fucyjy e ( ), gdze jest cągem czowym e (), e (), e 3 (),... jest cągem ortogoym, zywmy szeregem ortogoym Dej fucj f V L [,] możemy przyporządowć szereg f e ( ), gdze współczy zde są wzorm Euer-Fourer f, e. e, e Pojw sę ture pyte: J eży rozumeć zeżość szeregu ortogoego do czego jest zeży szereg ortogoy? Zeżość szeregu do sumy S() moż rozumeć w sese ormy L [,] (tzw. zeżość f, e średowdrtow) tz. m S e ( ) e, e, e e gwrtuje to zeżośc putowej 3

4 Automty Rooty Az Wyłd 7 dr Adm Ćme cme@gh.edu.p Zeżość szeregu do sumy S() moż rozumeć tże w sese zeżośc putowej szeregu, e wówczs może ozć sę, że sum szeregu e jest cłow w sese Rem czy jest eemetem spoz przestrze L [,] D żdej fucj f V L [,] prwdzw jest stępując erówość Besse f, e e, e f (odpowed erówośc Jeże d żdej fucj f V L [,] prwdzw jest rówość Prsev f, e e, e f wyjącej z tw. Ptgors). to ułd ortogoy zywmy zupełym w V L [,]. Ozcz to, że jedyą ( z dołdoścą do zoru mry ) fucją ortogoą do wszystch fucj ułdu ortogoego jest fucj f Tw. Jeże ułd ortogoy jest zupeły, to szereg ortogoy dej fucj f V L [,] jest zeży do tej fucj w sese ormy L. Szereg Fourer Rozwżmy przestrzeń V L [-,]. Ułd trygoometryczy, cos, s, cos, s,... jest ułdem ortogoym zupełym w V L [-,]. Kżdej fucj f V L [,] odpowd jej szereg ortogoy f + cos + s,gdze f ( ) cos d, f ( )s d zwy szeregem Fourer zeży średowdrtowo do fucj f. Nstępujące twerdzee Drchet podje wrue wystrczjący putowej zeżośc szeregu dej fucj f do tej fucj. Tw. Jeże fucj f jest przedzłm mootocz w [-, ] fucj f jest cągł z wyjątem w [-, ] z wyjątem sończoej ośc putów w tórych m ecągłośc I-go rodzju w żdym puce ecągłośc spełoy jest wrue f ( ) ( f ( ) f ( + + f ) f ( ) ( f ( ) f ( )) ( + + ))

5 Automty Rooty Az Wyłd 7 dr Adm Ćme cme@gh.edu.p to f ( ) + cos + s [-, ]. Podto, jeś f jest oresow o orese to powyższ rówość jest prwdzw R. Wos. jeś f jest przyst, to jeś f jest eprzyst, to Ułd trygoometryczy jest zupeły węc prwdzw jest rówość Prsev f ( ) d + ( + ). ; < Przyłd. D fucj f()sg() ; oreśoej przedze [-,] zeźć jej szereg ; > Fourer. Do jej fucj jest putowo zeży te szereg. f ( ) + cos + s, f ( ) cos d, f d ( ) s. Poewż f jest eprzyst, to., f ( )s d s d ( cos ) ( ), sg() Szereg Fourer s( ),, < < s( ) jest putowo zeży do fucj f ( ),., < <, Jeś fucję oresowo przedłużymy cłą oś czową, to szereg Fourer jest zeży do przedłużoej fucj cłej os R. Wos uocze. Ustjąc rgumet otrzymujemy (espodzewe) sumę szeregu + ) s( ) ( ) f (, stąd + ( ). 6 Z rówośc Prsev otrzymujemy podto, ( ) stąd ( ). 8 5

6 Automty Rooty Az Wyłd 7 dr Adm Ćme cme@gh.edu.p Uzupełć. Z uwg tożsmość cos + s A s( + ϕ ) szereg Fourer + cos + f ( ) s moż przedstwć w postc f ( ) + A s( ) + ϕ Wdmo mptudowe fzowe Zsd ozcj (zchowe sę szeregu Fourer fucj f w puce zeży wyłącze od zchow sę fucj f dowoe młym otoczeu putu ). 6

Matematyka wybrane zagadnienia. Lista nr 4

Matematyka wybrane zagadnienia. Lista nr 4 Mtemty wyre zgdiei List r 4 Zdie Jeżeli ułd wetorów v, v przestrzei liiowej V ie jest liiowo iezleży, to mówimy, że wetory v, v są liiowo zleże Udowodić stępujące twierdzeie: Ułd wetorów v, v ( ) jest

Bardziej szczegółowo

Całka oznaczona. długość k-tego odcinka podziału P. średnica podziału P. punkt pośredni k-tego odcinka podziału P

Całka oznaczona. długość k-tego odcinka podziału P. średnica podziału P. punkt pośredni k-tego odcinka podziału P Cł ozczo. De.. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De. sum cłow Niech ucj ędzie ogriczo przedzile

Bardziej szczegółowo

Całka oznaczona. długość k-tego odcinka podziału P. punkt pośredni k-tego odcinka podziału P. Niech funkcja f będzie ograniczona na przedziale

Całka oznaczona. długość k-tego odcinka podziału P. punkt pośredni k-tego odcinka podziału P. Niech funkcja f będzie ograniczona na przedziale Cł ozczo. De.1. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De.2 sum cłow Niech ucj ędzie ogriczo przedzile

Bardziej szczegółowo

Całka oznaczona. długość k-tego odcinka podziału P. punkt pośredni k-tego odcinka podziału P. Niech funkcja f będzie ograniczona na przedziale

Całka oznaczona. długość k-tego odcinka podziału P. punkt pośredni k-tego odcinka podziału P. Niech funkcja f będzie ograniczona na przedziale Cł ozczo. De.1. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De.2 (sum cłow) Niech ucj ędzie ogriczo przedzile

Bardziej szczegółowo

4. Rekurencja. Zależności rekurencyjne, algorytmy rekurencyjne, szczególne funkcje tworzące.

4. Rekurencja. Zależności rekurencyjne, algorytmy rekurencyjne, szczególne funkcje tworzące. 4. Reurecj. Zleżości reurecyje, lgorytmy reurecyje, szczególe fucje tworzące. Reurecj poleg rozwiązywiu problemu w oprciu o rozwiązi tego smego problemu dl dych o miejszych rozmirch. W iformtyce reurecj

Bardziej szczegółowo

Analiza Matematyczna Ćwiczenia. J. de Lucas

Analiza Matematyczna Ćwiczenia. J. de Lucas Aalza Matematycza Ćwczea J. de Lucas Zadae. Oblczyć grace astępujących fucj a lm y 3,y 0,0 b lm y 3 y ++y,y 0,0 +y c lm,y 0,0 + 4 y 4 y d lm y,y 0,0 3 y 3 e lm,y 0,0 +y 4 +y 4 f lm,y 0,0 4 y 6 +y 3 g lm,y

Bardziej szczegółowo

Algebra macierzowa i inne takie (krótka i prowizoryczna powtórka

Algebra macierzowa i inne takie (krótka i prowizoryczna powtórka lgebr mcerzow e te (rót prowzorycz powtór (uwg: tutj jest ezupełe osewet otcj tj. mcerze czsem są pogruboe czsem ursywe (tlcs) proszę sę e przejmowć t po prostu wyszło) PEWNE WZNE OPERCJE MCIERZOWE ozcz

Bardziej szczegółowo

Metody numeryczne w przykładach

Metody numeryczne w przykładach Metody umerycze w przyłdch Podręcz Poltech Lubels Poltech Lubels Wydzł Eletrotech Iformty ul. Ndbystrzyc 38A -68 Lubl Bet Pńczy Edyt Łus J Sor Teres Guz Metody umerycze w przyłdch Poltech Lubels Lubl Recezet:

Bardziej szczegółowo

Rozpraszania twardych kul

Rozpraszania twardych kul Wyłd XVIII Rozprszn twrdych u Rozwżmy oddzływne twrdych u opsywne potencjłem V r r Ponewż potencjł jest seryczne symetryczny uncję ową możn zpsć w postc ( r Cm R Ym( m gdze Ym( to hrmon seryczne Rozprszne

Bardziej szczegółowo

VIII. RÓŻNICZKOWANIE NUMERYCZNE

VIII. RÓŻNICZKOWANIE NUMERYCZNE VIII. RÓŻICZKOWAIE UMERYCZE Z defcj pocodej wey, że f ( x+ ) f ( x) f ( x) = ( ), >. (8.) Fucję f(x + ) ożey rozwąć przez zstosowe wzoru ylor: + f x f x f x f x + ( + ) = ( ) + ( ) + ( ) + K + f ( x) +

Bardziej szczegółowo

Projekt 3 3. APROKSYMACJA FUNKCJI

Projekt 3 3. APROKSYMACJA FUNKCJI Projekt 3 3. APROKSYMACJA FUNKCJI 3. Krter proksmcj. Złóżm że () jest ukcją cągłą w przedzle [ b ]. Zlezee przblże (proksmcj) poleg wzczeu współczków pewego welomu P() któr będze dobrze przblżł w tm przedzle

Bardziej szczegółowo

i = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3

i = 0, 1, 2 i = 0, 1 33,115 1,698 0,087 0,005!0,002 34,813 1,785 0,092 0,003 36,598 1,877 0,095 38,475 1,972 40,447 i = 0, 1, 2, 3 35 Iterpoaca Herte a 3 f ( x f ( x,,, 3, 4 f ( x,,, 3 f ( x,, 3 f ( x, 4 f ( x 33,5,698,87,5!, 34,83,785,9,3 36,598,877,95 38,475,97 4,447 Na podstawe wzoru (38 ay zate 87,, 5, L4 ( t 335, +, 698t+ t(

Bardziej szczegółowo

Spójne przestrzenie metryczne

Spójne przestrzenie metryczne Spóe pzeszee ecze De. Pzeszeń eczą zw spóą eżel e d sę e pzedswć w posc s dwóc zoów epsc owc ozłączc. - pzeszeń spó ~ owe Icze es zoe spó eżel dl dowolc pów czl see cągł c : : = = see dog łącząc Tw. ągł

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

Rozwiązanie niektórych zadań treningowych do I kolokwium sem. zimowy, 2018/19

Rozwiązanie niektórych zadań treningowych do I kolokwium sem. zimowy, 2018/19 Rozwąze ektóryh zdń tregowyh do I kolokwum sem. zmowy, 8/9 Zd.. V = ost, = 98 K W wrukh dtyzyh Q = ΔU =. Końową temperturę zjdzemy rozwązują rówe ΔU =. Zm eerg wewętrzej zhodz wskutek rekj hemzej jlepej

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzee macerzowe werdzee: Dla dwóch macerzy A B o tych samych wymarach zachodz: ( ) ( ) wersz a) R A R B A ~ B Dowód: wersz a) A ~ B stee P taka że PA B 3 0 A 4 3 0 0 E A B 0 0 0 E B 3 6 4 0 0 0

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Iducja matematycza Twerdzee. zasada ducj matematyczej Nech T ozacza pewą tezę o lczbe aturalej. Jeżel dla pewej lczby aturalej 0 teza T 0 jest prawdzwa dla ażdej lczby aturalej 0 z prawdzwośc tezy T wya

Bardziej szczegółowo

460 Szeregi Fouriera. Definicja. Definicja. Układ trygonometryczny. Definicja Układ ortogonalny funkcji ( ϕ n

460 Szeregi Fouriera. Definicja. Definicja. Układ trygonometryczny. Definicja Układ ortogonalny funkcji ( ϕ n 6 Szeregi Fourier Defiij Dwie fuje ψ :< > C zywmy fujmi ortogolymi przedzile < > gdy ψ Defiij Ciąg fuji ) :< > C zywmy ułdem ortogolym przedzile < > gdy fuje są prmi ortogole przedzile < > tz gdy j j λ

Bardziej szczegółowo

Automatyka i Robotyka Analiza Wykład 23 dr Adam Ćmiel

Automatyka i Robotyka Analiza Wykład 23 dr Adam Ćmiel Automty i ooty Aliz Wyłd dr Adm Ćmil mil@gh.du.pl SZEEGI POTĘGOWE iąg liz zspoloyh z z - szrg potęgowy, gdzi - iąg współzyiów szrgu, z C - środ, trum ustlo, z C - zmi. Dl dowolgo ustlogo z C szrg potęgowy

Bardziej szczegółowo

Pojęcie statystyki. Definicja. Wektorową funkcję mierzalną T: X T(X)=(T 1 (X),...,T k (X)) R k wymiarową statystyką. próby X nazywamy k

Pojęcie statystyki. Definicja. Wektorową funkcję mierzalną T: X T(X)=(T 1 (X),...,T k (X)) R k wymiarową statystyką. próby X nazywamy k Statystya Wyład Adam Ćmel A4 5 cmel@agh.edu.pl Pojęce statysty Pojęce statysty w statystyce matematyczej jest odpowedem pojęca zmeej losowej w rachuu prawdopodobeństwa. Nech X(X,...,X ) będze próbą z pewej

Bardziej szczegółowo

I. CIĄGI I SZEREGI FUNKCYJNE. odwzorowań zbioru X w zbiór R [lub C] nazywamy ciągiem funkcyjnym.

I. CIĄGI I SZEREGI FUNKCYJNE. odwzorowań zbioru X w zbiór R [lub C] nazywamy ciągiem funkcyjnym. I. CIĄGI I SZEREGI FUNKCYJNE 1. Zbieżość puktow i jedostj ciągów fukcyjych Niech X będzie iepustym podzbiorem zbioru liczb rzeczywistych R (lub zbioru liczb zespoloych C). Defiicj 1.1. Ciąg (f ) N odwzorowń

Bardziej szczegółowo

2π Ciągi te są ortogonalne w kaŝdym przedziale < t 0, t 0 +T > o długości T =.

2π Ciągi te są ortogonalne w kaŝdym przedziale < t 0, t 0 +T > o długości T =. Obwody SLS prąd orsowgo SLS PO Obwody SLS prąd orsowgo o obwody SLS prcjąc w s soy przy pobdzch orsowych. Obwody zywy obwod prąd orsowgo OPO b obwod prąd odszłcogo OPO od sygł ssodgo. Mody posępow z OPO:

Bardziej szczegółowo

UWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ.

UWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ. L.Kowls - Uwg o rozłdz uc zm losow UWAI O ROZKŁADZIE UNKCJI ZMIENNEJ LOSOWEJ. - d zm losow cągł o gęstośc. Y g g - borlows tz. g - B BR dl B BR Wzczć gęstość g zm losow Y. Jśl g - ścśl mootocz różczowl

Bardziej szczegółowo

Rozkłady prawdopodobieństwa 1

Rozkłady prawdopodobieństwa 1 Rozkłdy rwdoodoeństw Rozkłdy rwdoodoeństw. Rozkłdy dyskrete cągłe. W rzydku rozkłdu dyskretego określmy wrtośc rwdoodoeństw dl rzelczlej skończoej lu eskończoej lczy wrtośc zmeej losowej. N.... wszystke

Bardziej szczegółowo

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X

PERMUTACJE Permutacją zbioru n-elementowego X nazywamy dowolną wzajemnie jednoznaczną funkcję f : X X X PERMUTACJE Permutacą zboru -elemetowego X azywamy dowolą wzaeme edozaczą fucę f : X X f : X X Przyład permutac X = { a, b, c, d } f (a) = d, f (b) = a, f (c) = c, f (d) = b a b c d Zaps permutac w postac

Bardziej szczegółowo

Wykład 6 Całka oznaczona: obliczanie pól obszarów płaskich. Całki niewłaściwe.

Wykład 6 Całka oznaczona: obliczanie pól obszarów płaskich. Całki niewłaściwe. Wykłd 6 Cłk ozczo: olcze pól oszrów płskch. Cłk ewłścwe. Wprowdźmy jperw ocję sumow: Dl dego zoru lcz {,,..., } symol ozcz ch sumę, z.... Cłk ozczo zosł wprowdzo w celu wyzcz pól rpezów krzywolowych (rys.

Bardziej szczegółowo

Metody numeryczne procedury

Metody numeryczne procedury Metod umercze procedur podstwe [Mrc et. l. 997] orz [Broszte et. l. 004] dr ż. Pweł Zlews Adem Mors w Szczece Iterpolc welomow: Zde terpolc poleg zlezeu pewe uc tór przlż dą ucę. Dl uc ze są prz tm wrtośc

Bardziej szczegółowo

Metody obliczeniowe - Budownictwo semestr 2 - wykład nr 4. Nr: 1. Metody obliczeniowe. wykład nr 4. różniczkowanie przybliżone całkowanie numeryczne

Metody obliczeniowe - Budownictwo semestr 2 - wykład nr 4. Nr: 1. Metody obliczeniowe. wykład nr 4. różniczkowanie przybliżone całkowanie numeryczne r: Metody olczeowe - Budowctwo semestr - wyłd r Metody olczeowe wyłd r różczowe przylżoe cłowe umerycze r: Metody olczeowe - Budowctwo semestr - wyłd r Perwsz pocod uc Perwsz pocod uc dec: ' lm Ozcze:

Bardziej szczegółowo

ę żą ć Ś Ś Ż Ś Ś ą Ś Ż Ś Ą Ś Ś Ó Ą Ż Ą Ę Ż ą Ż Ą ż Ą Ą ż ą ą ą ż Ń ŚĆ ą ęć ę ż ą ą ż ź ą Ą Ż Ą Ą Ę ą Ą Ą Ę Ą ż Ą ż Ą ą Ę ę Ę Ż Ę Ę ę ą ęć ż ę ż ą ą Ę Ż Ś Ą Ó ż Ż ęć ą ż ą ą ą Ę ż Ć ę ż ą ą Ę Ś ą ą Ń ź

Bardziej szczegółowo

Spójne przestrzenie metryczne

Spójne przestrzenie metryczne lz Włd 5 d d Ćel cel@gedpl Spóe pzeszee ecze De Pzeszeń eczą ρ zw spóą eżel e d sę e pzedswć w psc s dwóc zów epsc wc złączc ρ - pzeszeń spó ~ we Icze es ze spó eżel dl dwlc pów czl see cągł c γ : : γ

Bardziej szczegółowo

SZTUCZNA INTELIGENCJA

SZTUCZNA INTELIGENCJA SZTUCZA ITELIGECJA WYKŁAD. SYSTEMY EUROOWO-ROZMYTE Częstocow 4 Dr b. ż. Grzegorz Dude Wdzł Eletrcz Poltec Częstocows SIECI EUROOWO-ROZMYTE Sec euroowo-rozmte pozwlją utomtcze tworzee reguł podstwe przłdów

Bardziej szczegółowo

Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej. Literatura. W. Rudin: Podstawy analizy matematycznej, PWN, Warszawa, 1982.

Wykłady z Analizy rzeczywistej i zespolonej w Matematyce stosowanej. Literatura. W. Rudin: Podstawy analizy matematycznej, PWN, Warszawa, 1982. Wyłady z Aalzy rzeczywstej zespoloej w Matematyce stosowaej Lteratura W Rud: Podstawy aalzy matematyczej, PWN, Warszawa, 1982 W Rud: Aalza rzeczywsta zespoloa, PZWS, Warszawa, 1986 W Szabat: Wstęp do aalzy

Bardziej szczegółowo

Rachunek różniczkowy funkcji wielu zmiennych

Rachunek różniczkowy funkcji wielu zmiennych Automatya i Robotya Aaliza Wyład dr Adam Ćmiel cmiel@agh.edu.pl Rachue różiczowy fucji wielu zmieych W olejych wyładach uogólimy pojęcia rachuu różiczowego i całowego fucji jedej zmieej a przypade fucji

Bardziej szczegółowo

impuls o profilu f(x ) rozchodzący się w kierunku x: harmoniczna fala bieżąca rozchodząca się w kierunku +x: cos

impuls o profilu f(x ) rozchodzący się w kierunku x: harmoniczna fala bieżąca rozchodząca się w kierunku +x: cos Rów Scrodgr Fucj flow wow rprcj jdo wrow pułp lroów fucj flow sońco sońco sud pocjłu o wodoru rów Scrodgr wprowd rową lro swobod lro w sońcoj sud pocjłu PRZYPOMNINI: Fl bżąc sojąc w pęj sru Hlld, Rsc,

Bardziej szczegółowo

Rozszerzenie znaczenia symbolu całki Riemanna

Rozszerzenie znaczenia symbolu całki Riemanna Rozszerzeie zczei smolu cłi Riem Z deiicji cłi Riem widć że isoą rolę odrw uporządowie prosej R prz worzeiu podziłu P. Jeżeli zmieim uporządowie prosej o sum cłowe zmieiją z o zmieiją z różice - -. Przjmiem

Bardziej szczegółowo

Tw: (O promieniu zbieżności R szeregu potęgowego ) Jeżeli istnieje granica. to R = ) ciąg liczb zespolonych

Tw: (O promieniu zbieżności R szeregu potęgowego ) Jeżeli istnieje granica. to R = ) ciąg liczb zespolonych Automatya i Rootya Aaliza Wyład dr Adam Ćmil cmil@agh.du.pl SZEREGI POTĘGOWE ( c ciąg licz zspoloych c ( z z - szrg potęgowy, gdzi ( c - ciąg współczyiów szrgu, z C - środ, ctrum (ustalo, z C - zmia. Dla

Bardziej szczegółowo

CAŁKA KRZYWOLINIOWA NIESKIEROWANA

CAŁKA KRZYWOLINIOWA NIESKIEROWANA Auomy i Rooy Aliz Wyłd 4 d Adm Ćmiel cmiel@gh.edu.pl AŁA RZYWOLINIOWA NIESIEROWANA Niech ędzie płsim lu pzeszeym łuiem głdim o pmeyzcji: x : y weoowo ; ) z z [ ] Uwg: Złożeie głdości x,, z, ) gwuje posowlość

Bardziej szczegółowo

takimi, że W każdym przedziale k 1 x k wybieramy punkt k ) i tworzymy sumę gdzie jest długością przedziału, x ). 1 k

takimi, że W każdym przedziale k 1 x k wybieramy punkt k ) i tworzymy sumę gdzie jest długością przedziału, x ). 1 k RACHUNEK CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ Cł ozczo Niech ędzie ucją oreśloą i ogriczoą w przedzile . Przedził e dzielimy pumi,,,..., imi, że....,,.,..., W żdym przedzile wyiermy pu, i worzymy sumę gdzie

Bardziej szczegółowo

Nr: 1. Metody obliczeniowe - Budownictwo semestr 2 - wykład nr 1. Metody obliczeniowe

Nr: 1. Metody obliczeniowe - Budownictwo semestr 2 - wykład nr 1. Metody obliczeniowe Nr: Metody olczeowe - Budowctwo semestr - wyłd r Metody olczeowe Metody umerycze - sposoy rozwąz zd mtemtyczego z pomocą operc lczch t, y zde mogło yć rozwąze przez omputer. Rozwązywe ułdów rówń lowych.

Bardziej szczegółowo

5. Maszyna Turinga. q 1 Q. Konfiguracja: (q,α β) q stan αβ niepusta część taśmy wskazanie położenia głowicy

5. Maszyna Turinga. q 1 Q. Konfiguracja: (q,α β) q stan αβ niepusta część taśmy wskazanie położenia głowicy 5. Maszyna Turnga = T Q skończony zór stanów q 0 stan początkowy F zór stanów końcowych Γ skończony zór symol taśmy T Γ alfaet wejścowy T Γ symol pusty (lank) δ: Q Γ! 2 Q Γ {L,R} funkcja

Bardziej szczegółowo

Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2

Permutacje. } r ( ) ( ) ( ) 1 2 n. f = M. Przybycień Matematyczne Metody Fizyki I Wykład 2-2 Permutacje { 2,,..., } Defcja: Permutacją zboru lczb azywamy dowolą różowartoścową fukcję określoą a tym zborze o wartoścach w tym zborze. Uwaga: Lczba wszystkch permutacj wyos! Permutacje zapsujemy w

Bardziej szczegółowo

Proces decyzyjny: 1. Sformułuj jasno problem decyzyjny. 2. Wylicz wszystkie możliwe decyzje. 3. Zidentyfikuj wszystkie możliwe stany natury.

Proces decyzyjny: 1. Sformułuj jasno problem decyzyjny. 2. Wylicz wszystkie możliwe decyzje. 3. Zidentyfikuj wszystkie możliwe stany natury. Proces decyzyny: 1. Sformułu sno problem decyzyny. 2. Wylcz wszyste możlwe decyze. 3. Zdentyfu wszyste możlwe stny ntury. 4. Oreśl wypłtę dl wszystch możlwych sytuc, ( tzn. ombnc decyz / stn ntury ). 5.

Bardziej szczegółowo

Ł Ł Ą Ą Ą ż ń ż ń ż ń Ż Ż Ś ń Ż ń ć Ł Ą ń Ż Ś ń ć ń ć ń Ż ć ć ń ń ń ż ć ń ŁĄ ż ć ć ć ć ń Ż Ź ć ć ć ń ż ŁĄ Ł ż Ł Ąż ń ć ż ŚĆ ż Ł ń Ć Ś Ę ń ń ż ź Ż ń ć Ę ń ć ż ć ć ń ń Ć ć ż Ż ć ć ć ćż Ż ć Ż Ę Ż Ż Ść Ż ż

Bardziej szczegółowo

Szeregi trygonometryczne Fouriera. sin(

Szeregi trygonometryczne Fouriera. sin( Szrg rygoomryz Fourr / Szrg rygoomryz Fourr D js ukj: s os Pożj pod są włsoś ukj kór wykorzysmy w późjszym zs Ozzmy przz zę zspooą pos: Wówzs s os orz os s Fukję zpsujmy w pos: s s os os os u os W szzgóoś

Bardziej szczegółowo

Równania liniowe. gdzie. Automatyka i Robotyka Algebra -Wykład 8- dr Adam Ćmiel,

Równania liniowe. gdzie. Automatyka i Robotyka Algebra -Wykład 8- dr Adam Ćmiel, utomtyk Robotyk lgebr -Wykłd - dr dm Ćmel cmel@ghedupl Równn lnowe Nech V W będą przestrzenm lnowym nd tym smym cłem K T: V W przeksztłcenem lnowym Rozwżmy równne lnowe T(v)w Powyższe równne nzywmy równnem

Bardziej szczegółowo

Wykład 1 Pojęcie funkcji, nieskończone ciągi liczbowe, dziedzina funkcji, wykres funkcji, funkcje elementarne, funkcje złożone, funkcje odwrotne.

Wykład 1 Pojęcie funkcji, nieskończone ciągi liczbowe, dziedzina funkcji, wykres funkcji, funkcje elementarne, funkcje złożone, funkcje odwrotne. Wykłd Pojęcie fukcji, ieskończoe ciągi liczbowe, dziedzi fukcji, wykres fukcji, fukcje elemetre, fukcje złożoe, fukcje odwrote.. Fukcje Defiicj.. Mówimy, że w zbiorze liczb X jest określo pew fukcj f,

Bardziej szczegółowo

ć Ą ą ą Ż Ż ó ą ż Ć ą ĆŻ Ż Ó Ó Ó ą Ó ń ą ę ą ę Ź ń ą Ó ą ą ą ą ą ą Ó Ż ęż ę ą ę ą ą ż ĘĆ ż ę Żą ż ą ń Ó ą Ó ą ę ż ęż ó ó ć ż ń ęż ń ń ć ń ż ć ć ą ą Ó Ó ó ó ń ó ę ó Ó ą ż Ć ę Ó ę ż Ó ó ą ó Ó ż Ć ę ó Ó ó

Bardziej szczegółowo

Ł ź ź ź ź Ź ż ź źą Ś Ą Ł Ń Ę ź Ś Ł Ś Ę Ę Ł ż ż Ę Ś ć ż ź Ą ż ż ź ż ż ż ż Ę Ł ż Ź Ę ć Ę ć ć Ź ć Ą Ę Ł ż ż ć ż ż ć ż Ę ć ż ż ż ż Ą ż ż Ś Ą ż ż ź ż ż Ą ż Ł Ź ż Ą ż ć Ę ż ć Ę ż ć ż Ę ż Ś Ź ć Ś ż Ę ż ź ż ź

Bardziej szczegółowo

Ą Ę Ę Ą Ł Ą Ą Ż ź Ę Ł Ż Ą Ł ź Ł Ą Ł Ź Ź Ż Ź ź Ź Ź Ż Ę ź Ę Ę Ż Ę ź Ę Ż Ź ź Ź Ż Ź Ż ŻĄ Ś Ż Ż Ę Ś Ć Ś Ż Ż Ż Ę Ę Ż ź ź ź Ę ź Ę Ę Ź Ż Ć Ą Ż Ę Ł Ę ź Ź Ź Ź Ą Ż Ć Ż Ę Ę Ę Ę Ę Ę ź Ę Ę ź Ć Ś Ą Ć Ł Ć Ś ź Ś ź Ż Ł

Bardziej szczegółowo

ź ź ź Ć Ń ŻĄ Ó Ą ć Ą Ą Ó ć ć Ż Ó ć Ń ć Ą Ż Ż Ź Ż ź Ż Ą Ę ć Ż Ż Ł Ą Ś ć Ń Ó ć ć Ś ź Ą Ą ć ć Ż Ć Ż Ż Ż Ż Ą Ż Ś ć Ż Ż Ż ź Ę Ż ź Ż Ż Ż Ę Ś Ą ć ć Ż ć Ż Ą Ś ć ź Ą ć ź ź ć ć ć ć ć Ż ć ć Ź Ż Ż Ż Ą Ą ź Ś ź ć Ż

Bardziej szczegółowo

Ś Ż Ó ń ć ć Ż ć ć ń Ż ń ż Ż ć ń Ś ń Ę Ż ć ń ń Ż ć ż ż Ę Ż ń Ł Ż ź ń ż ź Ż Ż ź Ż ń Ę Ę Ż Ż ŻĄ ń Ż Ż Ż ć Ż ć Ż ń ż ż Ż Ż Ż ź Ż Ó Ż Ż ć Ś ć ń ż ć Ż Ę ń ń Ż ń ż Ż ć Ż ć Ż ć ż Ż Ż Ą Ż Ł ż ż Ż ć Ż Ż Ż Ż Ż ż

Bardziej szczegółowo

Ą Ż Ś Ą Ą ć Ź Ź Ś Ą Ż Ń Ż ź Ż ć ć ć Ź ć Ć ć Ż Ż ć ć ŻĄ Ń Ś Ć Ś Ą Ą Ś ć ć ć ć Ż Ż ź Ż ć Ą Ć Ś Ż Ż Ż ć Ż Ż Ż ć Ś Ż Ż Ą Ż Ź Ż ć Ż ć Ć ć Ś Ś Ż Ą Ś ć ź Ź Ż Ż Ź Ą ŻĄ Ź ć Ż ć ć Ż ŻĄ Ź Ż Ż Ż Ż Ś Ą Ż Ś Ą Ś Ą Ś

Bardziej szczegółowo

Ż Ł Ł Ł ż Ź ż Ą Ą Ł Ż Ż Ł Ł Ł ż Ą Ą Ą Ń Ś Ł Ż Ś Ś ż Ż Ł Ł Ź Ś Ż ć Ż Ś ż Ź Ż Ł Ż Ć Ś ż Ź Ć Ś Ś Ź Ź Ź Ś Ś Ś Ś Ś Ż Ź Ć Ś Ś Ś ż Ą Ą Ą Ż Ś ż ż Ź Ś Ś ż ż ż Ś Ź ż ż Ś ż Ś Ś ć Ż Ć ż Ć Ż Ś Ś Ś Ż ż ć Ż Ś Ź Ś Ń Ś

Bardziej szczegółowo

Ś ś ś Ż ś ść ś ś ś ś ś ś ś ś ś ś Ź ś ś Ź ś ś Ź Ę Ś ś Ę Ą Ą ś Ś ś Ą Ą ść ć ś ś ś Ś ś Ś Ś Ś ś ś Ź ś ś ś ś ś ź ś ś ć Ź Ń ś ś ś ś Ź Ń ś ś ć ś ć Ź ś ś ś ś ść ś ś Ź Ś Ź ś ś Ę ś ś ś ś Ź ć Ń ś ś Ń Ś ś ś ś ść ś

Bardziej szczegółowo

Ą Ł ś ś Ł Ł ś Ł Ł ś ż ż ś ś ś ś Ż ŻĄ Ż ć Ź ż Ć ć ś ś ś Ż Ż Ż Ż Ż Ż Ż ż Ź ś ś ż Ą ść Ć ś ś ż ś Ć Ę ż Ż ż ś ż Ę Ę Ę ż ść ś Ż Ć Ż Ż Ź Ż Ź Ż ś Ć Ż ś Ż Ł Ć Ż Ć Ż Ą Ż Ż ś Ż Ą Ż Ż Ż Ć ś Ż Ż Ź Ż Ć Ą Ć ś Ż Ż Ż

Bardziej szczegółowo

Ż Ż Ł Ą Ą Ą Ą ć Ą Ć ć ć ć ć ć ć ć Ó Ą Ż Ó Ó Ż ć ć Ą Ą ć ć ć ź ć Ź Ó ć ć ć ź ć ć ź Ł ć ć ć ć Ń ć Ą ć ć Ą Ż ć ć Ł ć ć Ź ć Ó ć ć Ł Ó ć ć ć Ł ć Ć ć ź ć ć ć Ść ź ć ć ć ć Ł Ó Ą Ź ć ć ć ć ź ź ź ć Ż ć ć ć ć ć

Bardziej szczegółowo

1.4. STAN ODKSZTAŁCENIA STRONA GEOMETRYCZNA

1.4. STAN ODKSZTAŁCENIA STRONA GEOMETRYCZNA .4. STAN ODKSZTAŁCENA STRONA GEOMETRYCZNA.4.. Wetor przemeszcze Rozwżmy bryłę (cło mterle) o dowolym sztłce meszczoą w prostoątym łdze odese O (rys. ) Rys. gdze ozcz położee (mesce) pt mterlego w tym łdze,,,

Bardziej szczegółowo

Ą Ś Ń ż ś ą Ę Ę ó ś ś ą ą Ą Ę ó ą ń żą Ś ż ó ą ć ż ś ą ą ą ą ś ą ó ó ą Ś ś ó Ż ą ó ó ó ó Ż ż ąż Ć ś żó ó ś Ą ó ó ó ń ń ą ą Ź ą ż ż ó ż ó ó Ś Ś ż Ć ś ą ą ó ś ć ą Ąą ą Ą óż ą ń ó ą ć ń ść ó ó ą ą ą Ą ż

Bardziej szczegółowo

ą ą ć ć Ż Ę ą ą ą ą ą Ę ą ą Ź ą ą ą Ż ć ą ć ć Ż ć ą Ź ć Ź ć ć ą ć ŚĆ ą Ś ć ą Ż ą ą ć Ą Ż ą Ó ą ć ą Ż Ą ą Ź ć ć ą ą Ź ą Ż ć ć Ś ą ą ć ą ą Ś Ą ć ą ą ć ć Ż ą Ę Ź ą Ź ą ć ą Ż ć ć Ż Ż Ź ą ą ć Ś ć ć ą ć ą ć

Bardziej szczegółowo

Plan wykładu. Sztuczne sieci neuronowe. Druga pochodna funkcji (f (x))

Plan wykładu. Sztuczne sieci neuronowe. Druga pochodna funkcji (f (x)) Pl wyłdu yłd 4: Algorytmy optymlzcj Młgorzt Krętows ydzł Iformty Poltech Błostoc Algorytmy grdetowe optymlzcj Algorytm jwęszego spdu e: Algorytm zmeej metry, Algorytm grdetów sprzężoych Algorytmy doboru

Bardziej szczegółowo

Metody Numeryczne 2017/2018

Metody Numeryczne 2017/2018 Mod urcz 7/8 Ior Sosow III ro Iżr Oczow II ro Włd 5 Rodzj roscj 8 8 8 - - - - 3 8 8 6 8 roscj rocj roscj jdosj [ ] roscj śrdowdrow d Twrdz Wrsrss ów ż d dowoj ucj oż zźć wo o dowo ł odchu s od j ucj Br

Bardziej szczegółowo

Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Różniczkowanie funkcji rzeczywistych wielu zmiennych. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Różczkowae fukcj rzeczywstych welu zmeych rzeczywstych Matematyka Studum doktoracke KAE SGH Semestr let 8/9 R. Łochowsk Pochoda fukcj jedej zmeej e spojrzee Nech f : ( α, β ) R, α, β R, α < β Fukcja f

Bardziej szczegółowo

Metody numeryczne. Wykład nr 7. dr hab. Piotr Fronczak

Metody numeryczne. Wykład nr 7. dr hab. Piotr Fronczak Metody numeryzne Wyłd nr 7 dr. Potr Fronz Cłowne numeryzne Cłowne numeryzne to przylżone olzne łe oznzony. Metody łown numeryznego polegją n przylżenu ł z pomoą odpowednej sumy wżonej wrtoś łownej unj

Bardziej szczegółowo

Matematyka dyskretna. 10. Funkcja Möbiusa

Matematyka dyskretna. 10. Funkcja Möbiusa Matematyka dyskreta 10. Fukcja Möbusa Defcja 10.1 Nech (P, ) będze zborem uporządkowaym. Mówmy, że zbór uporządkoway P jest lokale skończoy, jeśl każdy podzał [a, b] P jest skończoy, a, b P Uwaga 10.1

Bardziej szczegółowo

FUNKCJE DWÓCH ZMIENNYCH

FUNKCJE DWÓCH ZMIENNYCH FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam

Bardziej szczegółowo

Rachunek różniczkowy funkcji wielu zmiennych

Rachunek różniczkowy funkcji wielu zmiennych EAIB-Iormaa-Wład 9- dr Adam Ćmel cmel@.ag.edu.pl Racue różczow ucj welu zmec Z uwag a prosoę zapsu ławe erpreacje gracze ograczm sę jede do ucj lub zmec. Naurale uogólea wprowadzac pojęć a ucje zmec zosawam

Bardziej szczegółowo

Równania rekurencyjne

Równania rekurencyjne Rówaa reurecyje Ja stosować do przelczaa obetów obatoryczych? zaleźć zwąze reurecyjy, oblczyć la początowych wartośc, odgadąć ogóly wzór, tóry astępe udowaday stosując ducję ateatyczą. W etórych przypadach,

Bardziej szczegółowo

Wnioskowanie statystyczne dla korelacji i regresji.

Wnioskowanie statystyczne dla korelacji i regresji. STATYSTYKA MATEMATYCZNA WYKŁAD 6 Woskowae statstcze dla korelacj regresj. Aalza korelacj Założee: zmea losowa dwuwmarowa X, Y) ma rozkład ormal o współczku korelacj ρ. X, Y cech adae rówocześe. X X X...

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA W PRZESTRZENI

GEOMETRIA ANALITYCZNA W PRZESTRZENI GEOMETRIA ANALITYCZNA W PRZESTRZENI Współęde postoąte De są t osie OX OY OZ wjemie postopdłe peijąe się w puie O. Oiem pewie odie jo jedostow i om pe współęde putów odpowiedih osih. DEFINICJA Postoątm

Bardziej szczegółowo

Zasada wariacyjna mechaniki kwantowej

Zasada wariacyjna mechaniki kwantowej Zsd wry meh wtwe uł eerg: K ( [ ] Hˆ ( K de rmwe (łwe z wdrtem fu przyprz dw est wrt zew eerg w ste psym t fu. Jest t p e gze d p fu. u przyprz dwue wrt zbwe zb wrt fu. Argumetm s zby. D fułu rgumetm s

Bardziej szczegółowo

APROKSYMACJA I INTERPOLACJA. funkcja f jest zbyt skomplikowana; użycie f w dalszej analizie problemu jest trudne

APROKSYMACJA I INTERPOLACJA. funkcja f jest zbyt skomplikowana; użycie f w dalszej analizie problemu jest trudne APROKSYMACJA I INTERPOLACJA Przybliżeie fucji f(x) przez ią fucję g(x) fucja f jest zbyt sompliowaa; użycie f w dalszej aalizie problemu jest trude fucja f jest zaa tylo tabelaryczie; wymagaa jest zajomość

Bardziej szczegółowo

DYDAKTYCZNA PREZENTACJA PRÓBKOWANIA SYGNAŁÓW OKRESOWYCH

DYDAKTYCZNA PREZENTACJA PRÓBKOWANIA SYGNAŁÓW OKRESOWYCH POZA UIVE RSIY OF E CHOLOGY ACADE MIC JOURALS o 73 Electricl Engineering 3 Wojciech LIPIŃSI* DYDAYCZA PREZEACJA PRÓBOWAIA SYGAŁÓW ORESOWYCH Przedstwiono dydtyczną prezentcję próbowni przebiegów oresowych

Bardziej szczegółowo

Algebra WYKŁAD 5 ALGEBRA 1

Algebra WYKŁAD 5 ALGEBRA 1 lger WYKŁD 5 LGEBR Defiicj Mcierzą ieosoliwą zywmy mcierz kwdrtową, której wyzczik jest róży od zer. Mcierzą osoliwą zywmy mcierz, której wyzczik jest rówy zeru. Defiicj Mcierz odwrot Mcierzą odwrotą do

Bardziej szczegółowo

Twierdzenia o funkcjach ciągłych

Twierdzenia o funkcjach ciągłych Automatya i Robotya Aaliza Wyład 5 dr Adam Ćmiel cmiel@aghedupl Twierdzeia o ucjach ciągłych Tw (Weierstrassa Jeżeli ucja : R [ R jest ciągła a [, to ograiczoa i : ( sup ( i ( i ( [, Dowód Ograiczoość

Bardziej szczegółowo

8.1 Zbieżność ciągu i szeregu funkcyjnego

8.1 Zbieżność ciągu i szeregu funkcyjnego Rozdzał 8 Cąg szereg fukcyje 8.1 Zbeżość cągu szeregu fukcyjego Dla skrócea zapsu przyjmjmy pewe ozaczee. Defcja. Nech X, Y. Przez Y X ozaczamy zbór wszystkch fukcj określoych a zborze X o wartoścach w

Bardziej szczegółowo

Michał Pazdanowski Instytut Technologii Informacyjnych w Inżynierii Lądowej Wydział Inżynierii Lądowej Politechnika Krakowska.

Michał Pazdanowski Instytut Technologii Informacyjnych w Inżynierii Lądowej Wydział Inżynierii Lądowej Politechnika Krakowska. chł zdows Istytut echolog Iforcyych w Iżyer ądowe Wydzł Iżyer ądowe oltech Krows Iterpolc Iterpolc oże być trtow o szczególy przypde prosyc polegący ty że fuc prosyow fuc prosyuąc przyuą te se wrtośc w

Bardziej szczegółowo

METODY KOMPUTEROWE 11

METODY KOMPUTEROWE 11 METOY KOMPUTEROWE METOA WAŻONYCH REZIUÓW Mchł PŁOTKOWIAK Adm ŁOYGOWSKI Konsultcje nukowe dr nż. Wtold Kąkol Poznń / METOY KOMPUTEROWE METOA WAŻONYCH REZIUÓW Metod wżonych rezduów jest slnym nrzędzem znjdown

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11 RÓWNANIA RÓŻNICZKOWE WYKŁAD Szeregi potęgowe Defiicja Fukcja y = f () jest klasy C jeżeli jest -krotie różiczkowala i jej -ta pochoda jest fukcją ciągłą. Defiicja Fukcja y = f () jest klasy C, jeżeli jest

Bardziej szczegółowo

Ż ż Ł ż ż ż Ż Ś ż ż ż Ł Ż Ż ć ż Ż Ż Ż Ń Ż Ź ż Ź Ź ż Ż ż ż Ż Ł Ż Ł Ż ż Ż ż Ż Ż Ń Ą Ż Ń Ż Ń ć ż Ż ź Ś ć Ł Ł Ź Ż Ż ż Ł ż Ż Ł Ż Ł ź ć ż Ż Ż ż ż Ó ż Ł Ż ć Ż Ż Ę Ż Ż Ż ż Ż ż ż Ś ż Ż ż ż ź Ż Ń ć Ż ż Ż Ż ż ż ż

Bardziej szczegółowo

Ś Ł Ą Ś Ś ź Ś ń ż ż Ó ż ż Ś Ł ż ń ń ń ż ń Ś ń ć ŚĘ Ó Ł Ę Ł Ś Ę Ę ń ń ń ń ń Ź ń ń ń ń ń ż ń ń ń ń ń Ę ż ż ć Ść ń ń ż Ń ż ż ń ń Ś Ą ń Ś ń ń ż Ó ż Ź ń ż ń Ś Ń Ó ż Ł ż Ą ź ź Ś Ł ć Ś ć ż ź ż ć ć Ę Ó Ś Ó ż ż

Bardziej szczegółowo

Ł Ł Ś ź ń ź ź ź Ś Ł Ę Ę Ś ż Ś ń Ą Ś Ą Ł ż ż ń ż ć ż ż ż ź ż ć ź Ę Ę ń ć ż Ł ń ż ż ż Ś ż Ś ż ż ż ż ż ż ż ń ń ż ż ż ć ż ń ż ń ź ż ć ż ż ć ń ż Ę Ę ć ń Ę ż ż ń ń ź Ę ź ż ń ż ń ź ż ż ż ń ż ż ż ż ż ż ż ż ń ń

Bardziej szczegółowo

Ł Ł Ś Ę ź ń ź ź Ś Ę Ę Ś Ą Ś Ę Ż Ł ń Ę Ś ć ć ń ć ń ń ń ź ń Ę ź ń ń ń ź ź Ś ź ź ć ń ń ń ń Ś ć Ś ń ń Ś ź ń Ę ń Ś ź ź ź ź ź Ę Ę Ę Ś ń Ś ć ń ń ń ń ń ń Ę ń ń ń ń ć ń ń ń ń ć ń Ś ć Ł ń ń ń ć ń ć ź ń ź ć ń ń ć

Bardziej szczegółowo

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3: Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego

Bardziej szczegółowo

3.1. Ciągi liczbowe - ograniczoność, monotoniczność, zbieżność ciągu. Liczba e. Twierdzenie o trzech ciągach.

3.1. Ciągi liczbowe - ograniczoność, monotoniczność, zbieżność ciągu. Liczba e. Twierdzenie o trzech ciągach. WYKŁAD 6 3 RACHUNEK RÓŻNICZKOWY I CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ 31 Ciągi liczbowe - ogriczoość, mootoiczość, zbieżość ciągu Liczb e Twierdzeie o trzech ciągch 3A+B1 (Defiicj: ieskończoość) Symbole,,

Bardziej szczegółowo

Ą Ą ĄŻ ŚĆ Ż Ś Ą Ą ć Ś ź ć Ż Ż Ż ż Ó ż Ł Ś Ą ć Ż Ą Ś Ł Ś Ą Ł Ą ź ć ż Ś Ł Ś Ż Ą Ś ć Ą ć Ł Ą Ó Ł ć ć ż ż ć ć ż Ą Ż Ł Ś Ś Ą Ż ż ż Ż Ś Ś ć Ż ż ż ż Ż ż Ś Ż ź ż ć Ó ć Ż ż ż ż ź Ą ż ć ż ż ź ż ż Ą Ł Ś Ż ż Ż Ż

Bardziej szczegółowo

STATYKA. Cel statyki. Prof. Edmund Wittbrodt

STATYKA. Cel statyki. Prof. Edmund Wittbrodt STATYKA Cel statyk Celem statyk jest zastąpee dowolego układu sł ym, rówoważym układem sł, w tym układem złożoym z jedej tylko sły jedej pary sł (redukcja do sły mometu główego) lub zbadae waruków, jake

Bardziej szczegółowo

Ż Ż ń ń ń Ź Ź Ż Ź Ą Ó ŚĆ Ż Ż Ó Ą Ą Ż Ż ĄŻ ĄŻ ŚĆ Ć ŚĆ Ż Ź Ó Ź Ś ń ń ń ń ń Ą Ż Ż Ż ń Ż Ż Ś ź ń Ą Ż Ż Ś Ó Ś Ś Ż Ó ń Ć Ż Ó Ź Ó Ó Ą Ź ź Ó Ó Ó ń Ń Ź Ó Ó Ó Ą Ś Ź Ó Ź ń Ą Ż ń Ó Ó Ś Ś ź Ą ń ź ń Ó Ż Ż Ś ń Ą Ś ź

Bardziej szczegółowo