takimi, że W każdym przedziale k 1 x k wybieramy punkt k ) i tworzymy sumę gdzie jest długością przedziału, x ). 1 k
|
|
- Marta Przybylska
- 5 lat temu
- Przeglądów:
Transkrypt
1 RACHUNEK CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ Cł ozczo Niech ędzie ucją oreśloą i ogriczoą w przedzile <,>. Przedził e dzielimy pumi,,,..., imi, że....,,.,..., W żdym przedzile wyiermy pu, i worzymy sumę gdzie S,,,...,, jes długością przedziłu,.,
2 ,,,...,, m. y
3 Deiicj Ciąg podziłów przedziłu <,> pumi... zywmy ormlym, jeżeli gdzie lim, m. Deiicj Jeśli dl żdego ormlego ciągu podziłów przedziłu <,> iezleżie od wyoru puów, ciąg sum S dąży do ej smej gricy, o gricę ę zywmy cłą ozczoą ucji w przedzile <,> i ozczmy symolem Czyli d lim d.
4 Twierzeie Newo-Leiiz Jeżeli ucj jes ciągł w przedzile <,> orz gdy C F d F F d o Dowód szic Wyierzmy pewie ormly ciąg podziłów przedziłu <,> orz przyjmijmy: d lim De Sąd: Zuwżmy, że: F F F,,...,, lim '... F F lim F F F F
5 c c d d d d d d d c d d d d g d d g d c d c ,. ] [.. gdy, gdy, Włsości cłi ozczoej jes przys jes ieprzys
6 d 6 9. Przyłdy d d d d d 6 6 Leiiz Newo Tw
7 Przyłdy. d d d d d 6 d, d d 6 d d d d d d d 8
8 Przyłdy. rcg d rcg rc g rc g N mocy włsości 8: rcg d
9 Przyłdy 4. l d Zuwżmy, że dl > mmy: l orz Podoie, dl < mmy: Niech l l l l orz l l Sd: Wiose: l 7 d l d
10 d l d d d l g g ' ' l d l C l C l C l Wrcjąc do szej cli ozczoej : d d 7 l l l l l l
11 Twierdzeie o cłowiu przez podswieie dl cłi ozczoej Jeśli ucj g m ciągłą pochodą g', i przeszłc go przedził oreślo jes ciągł ucj g orz g, o, podo w przedzile,, órym g g' d g g' d d d g g g d
12 Przyłdy jeszcze rz przyłd 4. z podswieiem l l g' g 7 d ' l d d d g d l l l l l d l d
13 Cł ozczo-zsosowi. Oliczie pól oszrów płsich Z deiicji cłi ozczoej i jej ierprecji griczej wyi że: D g d Gdzie D jes polem oszru, ogriczego liimi: y, y g,,
14 Cł ozczo-zsosowi. Oliczie pól oszrów płsich Z deiicji cłi ozczoej i jej ierprecji griczej wyi że: D g d RYSUNEK Gdzie D jes polem oszru, ogriczoego liimi: y, y g,,
15 . Oliczie długości łuu Twierdzeie Jeżeli ucje i są ciągłe w przedzile <,>, o długość łuu rzywej wyzczoej rówiem y= w przedzile <,> jes d wzorem: l ' d Jeżeli rzyw d jes prmeryczie: = i y=y gdzie є <α,β>, o długość łuu rzywej jes d wzorem: ' y' d l
16 l l l o dl dużego l
17 Przyłdy:. Oliczyć owód oręgu o promieiu r.. Oliczyć długość cyloidy: r si, y r cos, cos si d l r r cosd r si d r cos r 4 4rcos cos 8r Cyloid rzyw, opisując or puu leżącego owodzie oł, óre oczy się ez poślizgu po prosej. cos d
18 . Oliczie ojęości rył oroowych Twierdzeie Jeżeli ucj jes ciągł w przedzile <,>, o ojęość ryły powsłej przez oró doooł osi X rzywej wyzczoej rówiem y= w przedzile <,> oreślo jes wzorem: V d Jeżeli rzyw d jes prmeryczie: = i y=y gdzie є <α,β>, o : V y ' d L4.Prz 6 od ońc
19 V P P
20 4. Oliczie pól powierzchi rył oroowych Twierdzeie Jeżeli ucje i są ciągłe w przedzile <,>, o pole powierzchi powsłej przez oró doooł osi X rzywej wyzczoej rówiem y= w przedzile <,> oreślo jes wzorem: P ' d Jeżeli rzyw d jes prmeryczie: = i y=y gdzie є <α,β>, o : P y y d ' ' L4.Prz,5 od ońc
21 V P P
22 Ie zsosowi cłi ozczoej: wrości średie środe cięzości łuu środe cięzości oszru
23 Twierdzeie o wrości średiej Jeżeli ucj jes ciągł w przedzile <,>, o isieje licz c є <,>, że: c d Liczę c zywmy średią wrością ucji w przedzile <,>. Będziemy j ozczć symolem śr
24 Oliczyć wrość średią ucji..,64. cos si,, si d śr,. 6,, d śr
25 Deiicj Cłą iewłściwą ucji w przedzile zywmy d lim d, A A, omis cłą iewłściwą ucji w przedzile, zywmy d lim d. B B Cłi ie zywmy zieżymi, gdy isieją grice włściwe wysępujące w ich oreśleich, w przeciwym przypdu cłi e zywmy rozieżymi.
26 Przyłdy:. Oliczyć pole między osią OX rzywą w przedzile <, > y 5 P d 5 lim 5 d... lim l 5 lim l 5 l 5 l 6
27 Deiicj Cłą iewłściwą ucji w przedzile <,>, ieogriczoej w prwosroym sąsiedzwie puu, zywmy d lim d, omis cłą ucji w przedzile <,>, ieogriczoej w lewosroym sąsiedzwie puu, zywmy d lim d Cłą iewłściwą ucji w przedzile <,>, ieogriczoej w dołdie jedym pucie c,, d lim c d lim c d zywmy Cłi iewłściwe -go rodzju zywmy zieżymi, gdy isieją grice włściwe wysępujące w ich oreśleich, w przeciwym przypdu cłi e zywmy rozieżymi
Rozszerzenie znaczenia symbolu całki Riemanna
Rozszerzeie zczei smolu cłi Riem Z deiicji cłi Riem widć że isoą rolę odrw uporządowie prosej R prz worzeiu podziłu P. Jeżeli zmieim uporządowie prosej o sum cłowe zmieiją z o zmieiją z różice - -. Przjmiem
Całka oznaczona. długość k-tego odcinka podziału P. średnica podziału P. punkt pośredni k-tego odcinka podziału P
Cł ozczo. De.. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De. sum cłow Niech ucj ędzie ogriczo przedzile
Całka oznaczona. długość k-tego odcinka podziału P. punkt pośredni k-tego odcinka podziału P. Niech funkcja f będzie ograniczona na przedziale
Cł ozczo. De.1. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De.2 (sum cłow) Niech ucj ędzie ogriczo przedzile
Całka oznaczona. długość k-tego odcinka podziału P. punkt pośredni k-tego odcinka podziału P. Niech funkcja f będzie ograniczona na przedziale
Cł ozczo. De.1. Podziłem odci części, N, zywmy ziór przy czym. Wprowdzmy ozczei: długość -tego odci podziłu P średic podziłu P put pośredi -tego odci podziłu P De.2 sum cłow Niech ucj ędzie ogriczo przedzile
Zadania z analizy matematycznej - sem. II Całki oznaczone i zastosowania
Zdi z lizy mtemtyczej - sem. II Cłki ozczoe i zstosowi Defiicj. Niech P = x x.. x będzie podziłem odcik [ b] części ( N przy czym x k = x k x k gdzie k δ(p = mx{ x k : k } = x < x
Wykład 8: Całka oznanczona
Wykłd 8: Cłk ozczo dr Mriusz Grządziel grudi 28 Pole trójkt prboliczego Problem. Chcemy obliczyć pole s figury S ogriczoej prostą y =, prostą = i wykresem fukcji f() = 2. Rozwizie przybliżoe. Dzielimy
3.6. Całka oznaczona Riemanna i jej własności. Zastosowania geometryczne całki oznaczonej.
WYKŁAD 3.6. Cłk ozzo Riem i jej włsośi. Zsosowi geomeryze łki ozzoej. 3A+B35 (Deiij: łk ozzo Riem). Rozwżmy ukję :[, ]. Puky... worzą podził odik [, ] zęśi. Nieh k k k - długość k-ego odik, m - średi k
Analiza Matematyczna
Aliz Mtemtycz Przykłdy: Cłki ozczoe. Oprcowie: dr hb. iż. Agieszk Jurlewicz, prof. PWr Przykłd 9. : Korzystjąc z defiicji cłki ozczoej orz fktu, że fukcj ciągł jest cłkowl, oblicz e x dx przyjmując podził
3.1. Ciągi liczbowe - ograniczoność, monotoniczność, zbieżność ciągu. Liczba e. Twierdzenie o trzech ciągach.
WYKŁAD 6 3 RACHUNEK RÓŻNICZKOWY I CAŁKOWY FUNKCJI JEDNEJ ZMIENNEJ 31 Ciągi liczbowe - ogriczoość, mootoiczość, zbieżość ciągu Liczb e Twierdzeie o trzech ciągch 3A+B1 (Defiicj: ieskończoość) Symbole,,
Ekoenergetyka Matematyka 1. Wykład 15. CAŁKI OZNACZONE. Egzaminy I termin poniedziałek :00 Aula B sala 12B Wydział Informatyki
Ekoenergetyk Mtemtyk 1. Wykłd 15. CAŁKI OZNACZONE Egzminy I termin poniedziłek 31.01 14:00 Aul B sl 12B Wydził Informtyki Definicj (podził odcink) II termin poprwkowy czwrtek 9.02 14:00 WE-030 Podziłem
1.1 Pochodna funkcji w punkcie
Pochod fukcji w pukcie BLOK I RACHUNEK RÓŻNICZKOWY I CAŁKOWY Zkłdmy, że fukcj f jest określo w przedzile, ) orz, że, ), jest liczą, dl której + ), ) Liczę zywmy przyrostem rgumetu w pukcie, tomist różicę
dz istnieje, e f V obszar jak w definicji całki potrójnej (ograniczony powierzchniami o mierze 0) T prostopadłościan nakrywający V ( V T )
Cłi potróje Niech 3 : R R ędie cją oreśloą ogricom osre domiętm o reg mir Jord cli osre mjącm ojętość. Podoie j ostrcji cłi podójej dielim osr poierchimi o ojętości osr or torm logicą smę cłoą: ξ i ηi
Wykład 6 Całka oznaczona: obliczanie pól obszarów płaskich. Całki niewłaściwe.
Wykłd 6 Cłk ozczo: olcze pól oszrów płskch. Cłk ewłścwe. Wprowdźmy jperw ocję sumow: Dl dego zoru lcz {,,..., } symol ozcz ch sumę, z.... Cłk ozczo zosł wprowdzo w celu wyzcz pól rpezów krzywolowych (rys.
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki oznaczone. lim δ n = 0. σ n = f(ξ i ) x i. (1)
Mciej Grzesik Istytut Mtemtyki Politechiki Pozńskiej Cłki ozczoe. Defiicj cłki ozczoej Niech d będzie fukcj f ciągł w przedzile [, b]. Przedził [, b] podziey podprzedziłów puktmi = x < x < x
Materiały dydaktyczne. Matematyka. Semestr II. Wykłady
Projekt współfisowy ze środków Uii Europejskiej w rmch Europejskiego Fuduszu Społeczego Mteriły dydktycze Mtemtyk Semestr II Wykłdy Projekt Rozwój i promocj kieruków techiczych w Akdemii Morskiej w Szczeciie
5. CIĄGI. 5.1 Definicja ciągu. Ciągiem liczbowym nazywamy funkcję przyporządkowującą każdej liczbie naturalnej n liczbę rzeczywistej.
5 CIĄGI 5 Defiicj ciągu Ciągiem liczbowym zywmy fukcję przyporządkowującą kżdej liczbie turlej liczbę rzeczywistej Ciąg zpisujemy często wyliczjąc wyrzy,, lub używmy zpisu { } lbo ( ) Ciągi liczbowe moż
CAŁKA KRZYWOLINIOWA NIESKIEROWANA
Auomy i Rooy Aliz Wyłd 4 d Adm Ćmiel cmiel@gh.edu.pl AŁA RZYWOLINIOWA NIESIEROWANA Niech ędzie płsim lu pzeszeym łuiem głdim o pmeyzcji: x : y weoowo ; ) z z [ ] Uwg: Złożeie głdości x,, z, ) gwuje posowlość
7. Szeregi funkcyjne
7 Szeregi ukcyje Podstwowe deiicje i twierdzei Niech u,,,, X o wrtościch w przestrzei Y będą ukcjmi określoymi zbiorze X Mówimy, że szereg ukcyjy u jest zbieży puktowo do sumy, jeżeli ciąg sum częściowych
21. CAŁKA KRZYWOLINIOWA NIESKIEROWANA. x = x(t), y = y(t), a < t < b,
CAŁA RZYWOLINIOWA NIESIEROWANA rzywą o rówaiach parameryczych: = (), y = y(), a < < b, azywamy łukiem regularym (gładkim), gdy spełioe są asępujące waruki: a) fukcje () i y() mają ciągłe pochode, kóre
Powtórka dotychczasowego materiału.
Powtórk dotychczsowego mteriłu. Zdi do smodzielego rozwiązi. N ćwiczeich w środę 7.6.7 grupy 4 leży wskzć zdi, które sprwiły jwięcej problemów. 43. W kżdym z zdń 43.-43.5 podj wzór fukcję różiczkowlą f
Całka Riemanna. Analiza Matematyczna. Alexander Denisjuk
Anliz Mtemtyczn Cłk Riemnn Alexnder Denisjuk denisjuk@pjwstk.edu.pl Polsko-Jpońsk Wyższ Szkoł Technik Komputerowych zmiejscowy ośrodek dydktyczny w Gdńsku ul. Brzegi 55 80-045 Gdńsk Anliz Mtemtyczn p.
Matematyka wybrane zagadnienia. Lista nr 4
Mtemty wyre zgdiei List r 4 Zdie Jeżeli ułd wetorów v, v przestrzei liiowej V ie jest liiowo iezleży, to mówimy, że wetory v, v są liiowo zleże Udowodić stępujące twierdzeie: Ułd wetorów v, v ( ) jest
Analiza matematyczna i algebra liniowa Całka oznaczona
Anliz mtemtyczn i lgebr liniow Cłk oznczon Wojciech Kotłowski Instytut Informtyki Politechniki Poznńskiej emil: imię.nzwisko@cs.put.poznn.pl pok. 2 (CW) tel. (61)665-2936 konsultcje: piątek 15:10-16:40
1 Definicja całki oznaczonej
Definicj cłki oznczonej Niech dn będzie funkcj y = g(x) ciągł w przedzile [, b]. Przedził [, b] podzielimy n n podprzedziłów punktmi = x < x < x
nazywamy n -tym wyrazem ciągu ( f n
Rk II Temt 7 SZEREGI FUNKCYJNE SZEREG POTĘGOWY SZEREG TAYLORA Ciąg ukcyjy Szeregi ukcyje Zbieżść jedstj Szereg ptęgwy Prmień zbieżści szeregu ptęgweg Szereg Tylr Ciąg ukcyjy Niech U zcz iepusty pdzbiór
1 3 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є
1 3 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1є7 1 3 1є7 1є7 1є7 1є7 1є7
Ekoenergetyka Matematyka 1. Wykład 8. CIĄGI LICZBOWE
Ekoeergetk Mtemtk 1. Wkłd 8. CIĄGI LICZBOWE Defiicj (ciąg liczbow) Ciągiem liczbowm zwm fukcję odwzorowującą zbiór liczb turlch w zbiór liczb rzeczwistch. Wrtość tej fukcji dl liczb turlej zwm -tm wrzem
Matematyka finansowa 25.01.2003 r.
Memyk fisow 5.0.003 r.. Kóre z poiższych ożsmości są prwdziwe? (i) ( ) i v v i k m k m + (ii) ( ) ( ) ( ) m m v (iii) ( ) ( ) 0 + + + v i v i i Odpowiedź: A. ylko (i) B. ylko (ii) C. ylko (iii) D. (i),
Funkcje jednej zmiennej - ćwiczenia 1. Narysuj relacje. Które z nich są funkcjami?
Fukcj jdj zmij - ćwiczi. Nrysuj rlcj. Kór z ich są fukcjmi? A = (.y) R : y = A = (.y) R : y = A = (.y) R : y = A = (.y) R : y = - A 5 = (.y) R : y = ( + A 6 = (.y) R : y +. Zlźć dzidzię fukcji okrśloj
Ciągi liczbowe podstawowe definicje i własności
Ciągi liczbowe podstwowe defiicje i włsości DEF *. Ciągiem liczbowym (ieskończoym) zywmy odwzorowie zbioru liczb turlych w zbiór liczb rzeczywistych, tj. :. Przyjęto zpis:,,...,,... Przy czym zywmy -tym
Jako elektroniczny skryba pracował: Marcin Okraszewski
/ Błd! Niezy rgumet przełczi. To zerie twierdze i defiicji zostło wyoe podstwie podrczi demiciego W. owsiego i iych, ez zgody utor (i moliwe, e przy jego sprzeciwie, poiew zostł wyo w celu stworzei wygodej
RÓWNANIA RÓŻNICZKOWE WYKŁAD 7
RÓWNANIA RÓŻNIZKOWE WYKŁAD 7 Deiicj Ukłdem rówń różiczkowch rzędu pierwszego w posci ormlej zwm ukłd rówń o iewidomch > zmie iezleż. Uwg Jeżeli = o zzwczj piszem x zmis orz g zmis jeżeli = o piszem x z
CIĄGI LICZBOWE N = zbiór liczb naturalnych. R zbiór liczb rzeczywistych (zbiór reprezentowany przez punkty osi liczbowej).
MATEMATYKA I - Lucj Kowlski {,,,... } CIĄGI LICZBOWE N zbiór liczb turlych. R zbiór liczb rzeczywistych (zbiór reprezetowy przez pukty osi liczbowej. Nieskończoy ciąg liczbowy to przyporządkowie liczbom
Rozwiązanie. Metoda I Stosujemy twierdzenie, mówiące że rzuty prędkości dwóch punktów ciała sztywnego na prostą łączącą te punkty są sobie równe.
Wyzczie prędkości i przyspieszeń cił w ruchu posępowym, obroowym i płskim orz chwilowych środków obrou w ruchu płskim. Ruch korbowodu część II Zdie.. Prę o długości L ślizg się jedym końcem (puk po podłodze,
ZADANIA Z ANALIZY MATEMATYCZNEJ dla I roku kierunku informatyka WSZiB
pro. dr hb. Stisłw Biłs ZADANIA Z ANALIZY MATEMATYCZNEJ I roku kieruku iormtyk WSZiB I. ELEMENTARNE WŁASNOŚCI FUNKCJI. Wyzczyć dziedzię ukcji: 5 7 log[ log 5 6. b c ] d. Wyzczyć przeciwdziedzię ukcji:
2. Ciągi liczbowe. Definicja 2.1 Funkcję a : N R nazywamy ciągiem liczbowym. Wartość funkcji a(n) oznaczamy symbolem a
Ciągi liczbowe Defiicj Fukcję : N R zywmy iem liczbowym Wrtość fukcji () ozczmy symbolem i zywmy -tym lub ogólym wyrzem u Ciąg Przykłdy Defiicj róŝic zpisujemy rówieŝ w postci { } + Ciąg liczbowy { } zywmy
Wykład 1 Pojęcie funkcji, nieskończone ciągi liczbowe, dziedzina funkcji, wykres funkcji, funkcje elementarne, funkcje złożone, funkcje odwrotne.
Wykłd Pojęcie fukcji, ieskończoe ciągi liczbowe, dziedzi fukcji, wykres fukcji, fukcje elemetre, fukcje złożoe, fukcje odwrote.. Fukcje Defiicj.. Mówimy, że w zbiorze liczb X jest określo pew fukcj f,
RACHUNEK CAŁKOWY. Funkcja F jest funkcją pierwotną funkcji f na przedziale I R, jeżeli. F (x) = f (x), dla każdego x I.
RACHUNEK CAŁKOWY Funkcj F jest funkcją pierwotną funkcji f n przedzile I R, jeżeli F (x) = f (x), dl kżdego x I. Przykłd. Niech f (x) = 2x dl x (, ). Wtedy funkcje F (x) = x 2 + 5, F (x) = x 2 + 5, F (x)
Algebra WYKŁAD 5 ALGEBRA 1
lger WYKŁD 5 LGEBR Defiicj Mcierzą ieosoliwą zywmy mcierz kwdrtową, której wyzczik jest róży od zer. Mcierzą osoliwą zywmy mcierz, której wyzczik jest rówy zeru. Defiicj Mcierz odwrot Mcierzą odwrotą do
Ó Ą Ó Ó Ó Ó Ż Ą Ę Ś Ż Ś Ó Ó Ó Ż Ś Ó Ó Ć Ż Ę Óż ż Ę Ó Ę Ś Ó Ó Ą Ż Ś Ż Ż Ź Ż ź Ż Ż ż Ó Ę Ę Ż Ó Ó Ó Ó Ó Ż Ó Ó Ż Ó Ę ÓĘ Ó Ó ż Ó Ó Ż ź ź ź ź Ó ż Ę Ó Ś Ó ź ż ź ó Ó Ó Ó Ż Ó Ż ź Ś Ś Ś Ż ż Ż Ś Ż Ż Ż Ż Ż Ó Ż Ż
ÓŁ Ą Ś ż ę Ę ć ż ż ę ż ż ń ż ń ż ę ę ż ż ż ż ę ż ć ę żę ę ń ę ęć ż Ę ż ż ę ę ń Ą ęć ń ę ć ęć ęż ę ń ęć ń ęć ęż ę Ł ę ęć ę ęć Ł ę ę ę ęć ęć ę ę Ę ęż ę ń ęć Ę ć ęć ę ę ż ę ęż ę ń ż ę ń ż ć Ą Ą Ą żę ż ż ż
ZADANIA Z GEOMETRII RÓŻNICZKOWEJ NA PIERWSZE KOLOKWIUM
ZADANIA Z GEOMETRII RÓŻNICZKOWEJ NA PIERWSZE KOLOKWIUM. Koło o promieniu n płszczyźnie Oxy oczy się bez poślizgu wzdłuż osi Ox. Miejsce geomeryczne opisne przez punk M leżący n obwodzie ego koł jes cykloidą.
Wzory uproszczonego mno zenia: (a + b) 2 = a 2 + 2ab + b 2, (a b) 2 = a 2 2ab + b 2, a 2 b 2 = (a b) (a + b).
Wzory uproszczonego mno zeni: ( + b) = + b + b, ( b) = b + b, b = ( b) ( + b). Dzi ni n pot ¾egch: Dl ; y R orz ; b > 0 (dl pewnych wyk dników ; y z o zeni o ; b mog¾ być os bine w zle zności od sytucji)
Notatki z Analizy Matematycznej 4. Jacek M. Jędrzejewski
Nottki z Anlizy Mtemtycznej 4 Jcek M. Jędrzejewski ROZDZIAŁ 7 Cłk Riemnn 1. Cłk nieoznczon Definicj 7.1. Niech f : (, b) R będzie dowolną funkcją. Jeżeli dl pewnej funkcji F : (, b) R spełnion jest równość
Całka Riemanna Dolna i górna suma całkowa Darboux
Doln i górn sum cłkow Drboux π = {x 0,..., x k }, x 0 =, x k = b - podził odcink [, b]; x i = x i x i 1, i = 1, 2,..., k; P = P[, b] - rodzin podziłów odcink [, b]. m i = m i (f, π) := inf x [xi 1,x i
WYKŁAD 7. UKŁADY RÓWNAŃ LINIOWYCH Macierzowa Metoda Rozwiązywania Układu Równań Cramera
/9/ WYKŁ. UKŁY RÓWNŃ LINIOWYCH Mcierzow Metod Rozwiązywi Ukłdu Rówń Crmer Ogól postć ukłdu rówń z iewidomymi gdzie : i i... ozczją iewidome; i R k i R i ik... ;... efiicj Ukłdem Crmer zywmy tki ukłd rówń
Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 Wykład 1
Mtemtyk II Bezpieczeństwo jądrowe i ochron rdiologiczn Semestr letni 2018/2019 Wykłd 1 Zsdy współprcy przypomnienie Wykłdy są nieobowiązkowe, le Egzmin: pytni teoretyczne z łtwymi ćwiczenimi (będzie list)
Analiza numeryczna Kurs INP002009W. Wykład 1 Narzędzia matematyczne. Karol Tarnowski A-1 p.223
Aaliza umerycza Kurs INP002009W Wykład Narzędzia matematycze Karol Tarowski karol.tarowski@pwr.wroc.pl A- p.223 Pla wykładu Czym jest aaliza umerycza? Podstawowe pojęcia Wzór Taylora Twierdzeie o wartości
Ciągi i szeregi funkcyjne
Mteriły do ćwiczeń Aliz Mtemtycz II 7/8 Mri Frotczk, Ludwik Kczmrek, Ktrzy Klimczk, Mri Michlsk, Bet Osińsk-Ulrych, Tomsz Rodk, Adm Różycki, Grzegorz Sklski, Stisłw Spodziej Teori pod przed ćwiczeimi pochodzi
Obrazowo, zbiór jest ograniczony, gdy wszystkie jego elementy są położone między dwoma punktami osi liczbowej.
ZBIORY I FUNKCJE LICZBOWE ZBIORY LICZB { 3 } { ± ± } N ziór licz turlych Z ziór licz cłkowitych p Q : p Z q N ziór licz wymierych q R ziór licz rzeczywistych ZBIORY OGRANICZONE Def ziór ogriczoy z dołu
WYKŁAD 2: CAŁKI POTRÓJNE
WYKŁAD : CAŁKI OTRÓJNE 1 CAŁKI OTRÓJNE O ROSTOADŁOŚCIANIE Oznaczenia w definicji całi po prostopadłościanie: = {(: a x, c y d, p z q} prostopadłościan w przestrzeni; = { 1,,, n } podział prostopadłościanu
zestaw DO ĆWICZEŃ z matematyki
Mtemtyk Poziom podstwowy zestaw DO ĆWICZEŃ z mtemtyki poziom podstwowy rozumownie i rgumentcj krty prcy ZESTAW I Zdnie 1 Uzsdnij, że pole romu o przekątnych p i q wyrż się wzorem P = 1 pq Rozwiąznie: Przyjmij
Struna nieograniczona
Rówie sry Rówie okreś rch sry sprężysej kórą ie dziłją siły zewęrze Sł okreśo jes przez włsości izycze sry Zkłdmy że w położei rówowgi sr pokryw się z pewym przedziłem osi OX Fkcj okreś wychyeie z położei
Wykład III. Granice funkcji. f : R A R, A przedział. f określona w x. K M x. lim. lim. Granice niewłaściwe:
: R A R, A przedział A, Wykład III Graice ukcji określoa w, S \ Deiicja 3. (deiicja Caucy eo raicy ukcji) : D U,, ( ) : ot Iaczej: Uot D U K M U ot U ot K M Graice iewłaściwe: k K R D M K K R M R D De.
4. Rekurencja. Zależności rekurencyjne, algorytmy rekurencyjne, szczególne funkcje tworzące.
4. Reurecj. Zleżości reurecyje, lgorytmy reurecyje, szczególe fucje tworzące. Reurecj poleg rozwiązywiu problemu w oprciu o rozwiązi tego smego problemu dl dych o miejszych rozmirch. W iformtyce reurecj
Wykład 2. Granice, ciągłość, pochodna funkcji i jej interpretacja geometryczna
1 Wykłd Grnice, ciągłość, pocodn unkcji i jej interpretcj geometryczn.1 Grnic unkcji. Grnic lewostronn i grnic prwostronn unkcji Deinicj.1 Mówimy, że liczb g jest grnicą lewostronną unkcji w punkcie =,
ę Ł Ó ę ę ć ę ę ż ę ę Ź Ć ć ę ę ż ę ę Ł ć ż ż ć ć ź ć ę Ń ć ę ż ę ć ęż Ń ć ż ć ź ę ę ź ę ć ż ć Ź ż ę Ł Ż ż ć Ź ę Ń ż ć ę ę ż ę ę ć ę ż ż ż Ł ę żę ż ć ź ę Ó ć ć ż ć ę ę ę ę ę ć ę Źć ę ę ę ę ę ę ż ż ż ć
I. CIĄGI I SZEREGI FUNKCYJNE. odwzorowań zbioru X w zbiór R [lub C] nazywamy ciągiem funkcyjnym.
I. CIĄGI I SZEREGI FUNKCYJNE 1. Zbieżość puktow i jedostj ciągów fukcyjych Niech X będzie iepustym podzbiorem zbioru liczb rzeczywistych R (lub zbioru liczb zespoloych C). Defiicj 1.1. Ciąg (f ) N odwzorowń
Całka oznaczona. Matematyka. Aleksander Denisiuk. Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza Elblag.
Mtemtyk Cłk oznczon Aleksnder Denisiuk denisjuk@euh-e.edu.pl Elblsk Uczelni Humnistyczno-Ekonomiczn ul. Lotnicz 2 82-3 Elblg Mtemtyk p. 1 Cłk oznczon Njnowsz wersj tego dokumentu dostępn jest pod dresem
Całki oznaczone. wykład z MATEMATYKI
Cłki oznzone wkłd z MATEMATYKI Budownitwo, studi niestjonrne sem. I, rok k. 28/29 Ktedr Mtemtki Wdził Informtki Politehnik Biłostok 1 Podstwowe pojęi 1.1 Podził P przedziłu, Nieh f ędzie funkją ogrnizoną
Wykład 9: Różne rodzaje zbieżności ciągów zmiennych losowych. Prawa wielkich liczb.
Rchuek prwopoobieństw MA1181 Wyził T, MS, rok k. 2013/14, sem. zimowy Wykłowc: r hb. A. Jurlewicz Wykł 9: Róże rozje zbieżości ciągów zmieych losowych. rw wielkich liczb. Zbieżość z prwopoobieństwem 1:
460 Szeregi Fouriera. Definicja. Definicja. Układ trygonometryczny. Definicja Układ ortogonalny funkcji ( ϕ n
6 Szeregi Fourier Defiij Dwie fuje ψ :< > C zywmy fujmi ortogolymi przedzile < > gdy ψ Defiij Ciąg fuji ) :< > C zywmy ułdem ortogolym przedzile < > gdy fuje są prmi ortogole przedzile < > tz gdy j j λ
Ą Ą Ł Ś ÓŁ Ł ć ć ź ÓŁ ć ć Ś ć ć Ą ć ć ć ź ć ć ć ć ć Ą Ó ÓŁ ć ć Ł Ł ź Ś ć ć ć ć Ł Ł ć ć Ł Ł Ł ć Ó ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ź Ż ź Ł ć Ż Ć Ż Ś Ż ć ć ć ć Ł Ż Ś ć Ś ź ć ź ć ć ć ź ć Ś Ź ŚĆ ź ć ć Ś Ś
ć ź ź Ł ź ź ź Ś ć ć Ę ÓŁ ź Ń ź ź ź ć ć Ń ć ć ć Ń ź Ę Ś Ń ć ć ć ź ć ć ć ć ć ć ź Ś Ę ź ź Ż ć ź ź ć ź Ń ź ć ć ć ź ź Ł Ń ć Ń Ń ź Ś Ń Ę Ę Ę ź ć ć Ę ź Ń Ł Ę ź ź Ń Ę Ę Ł Ł Ś Ś ć ć Ł ź ć ć Ł Ó Ż Ś Ł Ó ź Ę Ń
Ł ś Ł Ą ś Ź Ł ś Ł ś ź ś ę ÓŁ ÓŁ ź ź ś ś ę ę ź ć ś ś ę ć ę ś ę ś ź ę ś ę ś ś ś ę ę ć ę ś Ł ę ę ę Ę Ą ś ś ś Ł ś ę ś Ł Ń Ł Ń ę ś ś ę Ż Ż ś Ż ś ś Ż ś ź ś ś ź ś ę ś ę Ń ę ę ę ś ę ś ę ś ź ś Ł ś ś ś ś ę ś ś
Ą Ł Ł Ł Ś ż ź ź Ł Ś Ą Ł Ś Ś Ł Ó ż Ł Ś Ą ć ć ż ż Ą ż ć ż ż ć ć ć Ś ć ż Ś ż ż Ą ć ż ż ć ć ć ć ż ż Ś ć ż ż ÓŁ ż ż ż Ł Ł Ś Ó ć ż Ł ż ż ż ż ż Ć Ó Ó ż ż Ó Ł Ł ż Ą ż ż ż ż ż ż ż ż ż ć ż ż ć ż ż ż ć ż ż ż Ł ć
Ń ÓŁ Ł Ś Ł Ł Ś ÓŁ Ł Ś Ń ÓŁ Ł Ń Ź ę Ą ę ę ę ę ę ę Ź ę ć ć ę ę ę ę ę Ź ć ę ę ę ć ć ę ę ę Ł ę ę ę Ł Ł ę ę ę ę ę ź ę ę ę ę ź ę ć ę ć ć ę ę ź ź ę ć ę ę ź Ź ę ź ę ę ć Ź Ą ć ć ć ę ę ę ę ę Ź ź ę ć Ł ź ę ę Ź Ę
Ł ÓŁ Ł Ą Ś Ą Ą Ś Ś ć ć ć ć ć ć ć ć ć ć ć Ę ć ń ć ć ć ć ć ć ć ń ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ą ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ń ń ć Ś ń ć ń ć ń ć ć Ś ć Ż Ś Ś ń Ł Ń ń ć ć ć ć Ś ń
Ł Ń Ś ś ę ę ś ś ś ś ę ę ę ę ś ś ę ś ę ś ę ś ś ć Ą ś ę ś ś ę ś ę ś ś Ń ś ś ś ś ś ś ę ę ę ę ś ś ę ć ś ś ę ś ę ś ę ę ś ę ś Ą ę ś ę ś ś ś ś ę ś ś ę ę ś ś ę ś ś ś ę ę ę ś ś ś ę ś ę ś ę ć ś ś ę ś ę ę Ą ę ę ę
ÓŁ Ą Ś Ą Ł Ś Ó Ą Ł ź ź Ą ż ż ż ż ż Ę Ę ź Ą ż Ę Ń Ę ż ż ź ż ż Ń ż Ą ż ć ż ć ć ć ć ż ć ć ć ć ż Ł Ę Ą ć ć ć ć ć ć ć ć ć ź ć ź Ę ć ź ć ż ć ć ć ż ź ć ć ć ć ż ź ż ż ć ż ż ć ż Ę Ą ć Ł ź ż ż Ł Ó ÓŁ ć Ą ć Ą ż ż
Analiza numeryczna. Stanisław Lewanowicz. Całkowanie numeryczne. Definicje, twierdzenia, algorytmy
http://wwwiiuniwrocpl/ sle/teching/n-wdrpdf Anliz numeryczn Stnisłw Lewnowicz Styczeń 008 r Cłownie numeryczne Definicje, twierdzeni, lgorytmy 1 Pojęci wstępne Niech IF IF [, b] ozncz zbiór wszystich funcji
EAIiIB- Informatyka - Wykład 1- dr Adam Ćmiel zbiór liczb wymiernych
EAIiIB- Iortyk - Wykłd - dr Ad Ćiel ciel@.gh.edu.pl dr Ad Ćiel (A3-A4 p.3, tel. 3-7, ciel@gh.edu.pl ; http://hoe.gh.edu.pl/~ciel/) Podręcziki Gewert M, Skoczyls Z. Aliz tetycz i. Deiicje twierdzei i wzory,
Twierdzenia o funkcjach ciągłych
Automatya i Robotya Aaliza Wyład 5 dr Adam Ćmiel cmiel@aghedupl Twierdzeia o ucjach ciągłych Tw (Weierstrassa Jeżeli ucja : R [ R jest ciągła a [, to ograiczoa i : ( sup ( i ( i ( [, Dowód Ograiczoość
CIĄGI LICZBOWE N 1,2,3,... zbiór liczb naturalnych. R zbiór liczb rzeczywistych (zbiór reprezentowany przez punkty osi liczbowej).
Ciągi i szeregi - Lucj owlski CIĄGI LICZBOWE N,,,... zbiór liczb turlych. R zbiór liczb rzeczywistych (zbiór reprezetowy przez pukty osi liczbowej). Nieskończoy ciąg liczbowy to przyporządkowie liczbom
zestaw DO ĆWICZEŃ z matematyki
zestaw DO ĆWICZEŃ z mtemtyki poziom rozszerzony rozumownie i rgumentcj krty prcy ZESTAW I Zdnie 1. Wykż, że odcinek łączący środki dwóch dowolnych oków trójkąt jest równoległy do trzeciego oku i jest równy
Arkusz 1 - karta pracy Całka oznaczona i jej zastosowania. Całka niewłaściwa
Arkusz - krt prcy Cłk oznczon i jj zstosowni. Cłk niwłściw Zdni : Obliczyć nstępując cłki oznczon 5 d 5 d + 5 + 7 d Zuwżmy, ż d, Stąd d, + 5 + 7 d + ] 7 + + ln d cos sin d d ]. d + d 5, d + 5 + 7 7 7 d
RÓWNANIA TRYGONOMETRYCZNE Z PARAMETREM
ÓWNANIA TYGONOMETYCZNE Z PAAMETEM Do grupy zgdnień eycznyc, w kóryc wysępuje pojęcie preru, nleżą równni rygonoeryczne. ozprywnie równń rygonoerycznyc z prere swrz ożliwość powórzeni i urwleni ożsości
Wykład 2. Pojęcie całki niewłaściwej do rachunku prawdopodobieństwa
Wykłd 2. Pojęcie cłki niewłściwej do rchunku prwdopodobieństw dr Mriusz Grządziel 4 mrc 24 Pole trpezu krzywoliniowego Przypomnienie: figurę ogrniczoną przez: wykres funkcji y = f(x), gdzie f jest funkcją
Analiza matematyczna ISIM I
Aliz mtemtycz ISIM I Ryszrd Szwrc Spis treści Ciągi liczbowe. Zbieżość ciągów......................... 3. Liczb e.............................. 0 Szeregi liczbowe 3. Łączość i przemieość w sumie ieskończoej.........
Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!
Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,
ż ę ć ę ę ę ę ę ę ę ć Ż ę ę ę ż ę ę ę ę ę Ż ć ż ż ę ż Ę ć ę ż ę ęż ę ę ę ę ż ć ź Ł Ę ę ż Ę ć ę Ż ę ęż ę ę ę ę ż ć ź Ę Ł ę ę Ą ż Ę ż Ę ż Ę ż ę Ą Ą ę Ę ę ę Ż ź Ż Ż ż ć ź ź ę ż Ę ż Ę ę Ę Ę ć ż ę ć ż ć ź Ł
ć ą ą ą ż ą ż ć Ę ą ą ż ć ą ą ń ą ą ż ń ą ą ą ą ą ą ą ą ż ż ń ą ą ą ż ą ń Ś ą ą Ó ą Ęż ż ń Ś ń ń ń Ę ą ą Ó ń ą ą Ż ą ą Ó ą Ó ą Ż Ó Ó ą Ż ą ą Ó Ó ą ą Ś ą ą ń ń ą ą ą Ó ą Ż Ó ą Ę Ę Ł ą ą Ł Ą Ł Ł Ś ć ą Ś
ż ż Ę Ę Ę Ó ś ó ę Ć ęż ś ę ę ó ś ę ó ę ę Ę ę ó ść Ę ęć Ż Ś ę ę ę ó ż ż ź ę ż ż ś ę Ó ę ę Ł ęż ś ę ę ó ś ę ż ó Ę ę ę ę ść Ę ę ę ę ęć ę ż ś ę ę ę ę ó ż ę Ł Ę ę ż Ę ęż ś ę ó ę ś ę ż ó ę ę ż ść ę ę ę ę ę ęć
Analiza Matematyczna. Całka Riemanna
Anliz Mtemtyczn. Cłk Riemnn Aleksnder Denisiuk denisiuk@pjwstk.edu.pl Polsko-Jpońsk Wyższ Szkoł Technik Komputerowych Wydził Informtyki w Gdńsku ul. Brzegi 55 8-45 Gdńsk 29 kwietni 217 1 / 2 Cłk Riemnn
3. F jest lewostronnie ciągła
Def. Zmienną losową nzywmy funkcję X: tką, że x R : { : X( ) < x }. Ozn.: zmist pisd A = { : X( ) < x } piszemy A = { X < x } zdrzenie poleg n tym, że X( )
Analiza Matematyczna część 3
[wersj z 5 III 7] Aliz Mtemtycz część 3 Kospekt wykłdu dl studetów fizyki/iformtyki Akdemi Świętokrzysk 6/7 Wojciech Broiowski Różiczkowlość Pochod fukcji jedej zmieej Pochod f : (, b) R w pukcie (, b)
Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas
Cłki oznczone Definicj, włsności i oblicznie cłek oznczonych. Wrtość średni funkcji. Funkcj górnej grnicy cłkowni. Zstosowni cłek oznczonych. Cłki niewłściwe. Młgorzt Wyrws Ktedr Mtemtyki Wydził Informtyki
Tw: (O promieniu zbieżności R szeregu potęgowego ) Jeżeli istnieje granica. to R = ) ciąg liczb zespolonych
Automatya i Rootya Aaliza Wyład dr Adam Ćmil cmil@agh.du.pl SZEREGI POTĘGOWE ( c ciąg licz zspoloych c ( z z - szrg potęgowy, gdzi ( c - ciąg współczyiów szrgu, z C - środ, ctrum (ustalo, z C - zmia. Dla
Całki oznaczone. Funkcja górnej granicy całkowania. Zastosowania całek oznaczonych. Całki niewłaściwe. Małgorzata Wyrwas
Cłki oznczone Definicj, włsności i oblicznie cłek oznczonych. Wrtość średni funkcji. Funkcj górnej grnicy cłkowni. Zstosowni cłek oznczonych. Cłki niewłściwe. Młgorzt Wyrws Ktedr Mtemtyki Wydził Informtyki