O PRZEKĄTNYCH WIELOKĄTÓW FOREMNYCH. Wojciech Guzicki. Instytut Matematyki Uniwersytetu Warszawskiego. Warszawa, 4 marca 2010 r.

Wielkość: px
Rozpocząć pokaz od strony:

Download "O PRZEKĄTNYCH WIELOKĄTÓW FOREMNYCH. Wojciech Guzicki. Instytut Matematyki Uniwersytetu Warszawskiego. Warszawa, 4 marca 2010 r."

Transkrypt

1 O PRZEKĄTNYCH WIELOKĄTÓW FOREMNYCH Wojciech Guzicki Instytut Matematyki Uniwersytetu Warszawskiego

2 TRZY PRZEKĄTNE DWUNASTOKĄTA FOREMNEGO A 11 A 12 A 1 Twierdzenie. Przekątne A 10 P A 2 A 1 A 8, A 3 A 11 i A 5 A 12 A 9 A 3 dwunastokąta foremnego A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A 10 A 11 A 12 A 8 A 4 przecinająsięwjednympunkciep. A 7 A 6 A 5

3 WSZYSTKIE PRZEKĄTNE DWUNASTOKĄTA FOREMNEGO A 11 A 12 A 1 A 10 A 2 A 9 A 3 A 8 A 4 A 7 A 5 A 6

4 TRZY PRZEKĄTNE OSIEMNASTOKĄTA FOREMNEGO A 17 A 18 A 1 A 2 A 15 A 16 A 3 Twierdzenie. Przekątne A 14 P A 4 A 1 A 7, A 2 A 11 i A 4 A 17 osiemnastokąta foremnego A 13 A 5 A 1 A 2 A 3...A 16 A 17 A 18 A 12 A 11 A 7 A 6 przecinająsięwjednympunkciep. A 10 A9 A 8

5 WSZYSTKIE PRZEKĄTNE OSIEMNASTOKĄTA FOREMNEGO A 16 A 17 A 18 A 1 A 2 A 15 A 3 A 14 A 4 A 13 A 5 A 12 A 6 A 11 A 7 A 10 A 9 A 8

6 WSZYSTKIE PRZEKĄTNE PIĘTNASTOKĄTA FOREMNEGO A 14 A 15 A 1 A 13 A 2 A 12 A 3 A 11 A 4 A 10 A 5 A 9 A 6 A 8 A 7

7 WSZYSTKIE PRZEKĄTNE PIĘTNASTOKĄTA FOREMNEGO A 15 A 1

8 WSZYSTKIE PRZEKĄTNE DWUDZIESTOTRZYKĄTA FOREMNEGO A 22 A 23 A 1 A 2 A 20 A 21 A 3 A 19 A 4 A 18 A 5 A 17 A 6 A 16 A 7 A 15 A 8 A 14 A 9 A 13 A 12 A 11 A 10

9 WSZYSTKIE PRZEKĄTNE DWUDZIESTOTRZYKĄTA FOREMNEGO A 23 A 1

10 A 23 A 1

11

12

13 ZADANIEOTRÓJKĄCIE C Zadanie. Dany jest trójkąt równoramienny ABC, w którym: A= B=80 oraz C= WtymtrójkąciepoprowadzonoodcinkiADiBEtak,że BAD=50 oraz ABE=60 E? D (zob. rysunek). Oblicz miarę kąta BED. A B

14 ROZWIĄZANIEZADANIAOTRÓJKĄCIE C Oznaczmy przez x szukany kąt BED. Nietrudno obliczyć, że ADB=50 oraz AEB= Stądwynikawszczególności,żeAB=BD.Następnieztwierdzenia sinusów dla trójkątów ABE i BDE otrzymujemy: BE AB sin80 = sin40 oraz BE sin(x+20 ) =BD sinx. E? D PonieważAB=BD,więc sin(x+20 ) sinx = sin80 sin40, czyli A B sinxcos20 +cosxsin20 sinx = 2sin40 cos40 sin40.

15 ROZWIĄZANIE RÓWNANIA TRYGONOMETRYCZNEGO Otrzymaliśmy równanie trygonometryczne: sinxcos20 +cosxsin20 sinx = 2sin40 cos40 sin40, czyli cos20 +ctgxsin20 =2cos40. Stąd otrzymujemy ctgx= 2cos40 cos20 sin20 = 2sin50 sin70 sin20 = sin50 +sin50 sin70 sin20 = Zatemx=30. = sin50 2sin10 cos60 sin20 = sin50 sin10 sin20 = 2sin20 cos30 sin20 = 3.

16 KĄTY ŚRODKOWE I WPISANE; KĄT MIĘDZY PRZEKĄTNYMI W OSIEMNASTOKĄCIE FOREMNYM A 15 A 16 A 17 A A 1 A 2 A 3 Kąt środkowy oparty na łuku łączącym dwa kolejne wierzchołki osiemnastokąta foremnego wpisanego w okrąg (np.kąta 1 OA 2 )jestrówny 360 :18=20. A 14 A O A 4 A 5 Kątśrodkowyopartynałukukrazy większymjestrównyk 20,np. A 11 OA 17 =120. A 12 A 11 A 10 A 9 60 A 8 A 7 A 6 Kąt wpisany jest dwa razy mniejszy od kąta środkowego opartego na tym samym łuku. Zatem np. A 11 A 7 A 17 =60.

17 ROZWIĄZANIEZADANIAOTRÓJKĄCIE C NiechA=A 11 orazb=a 7. NiechCbędziepunktemprzecięciaprostychA 17 AiA 1 B. Zauważmy, że wtedy BAA 17 =ABA 1 =80, a więc trójkąt ABC jest trójkątem danym w zadaniu. A 15 A 14 E=A A A 16 A 1 A 2 D A 3 A 4 Ponieważ ABA 17 =60,więcA 17 =E. Ponieważ BAA 2 =50,więcpunktDjestpunktem przecięciaprzekątnycha 11 A 2 ia 7 A 1. Pokażemy, że przekątne osiemnastokąta A 13 A 5 A 1 A 7, A 2 A 11 i A 4 A 17 A 12 A 6 przecinają się w jednym punkcie. Wówczas A=A 11 A 10 A9 A 8 B=A 7 BED= A 7 A 17 A 4 =30.

18 PRZEKĄTNE SZEŚCIOKĄTA WPISANEGO W OKRĄG D Twierdzenie2.PrzekątneAD,BEiCFsześciokąta ABCDEF wpisanego w okrąg przecinająsięwjednympunkciepwtedyitylko wtedy, gdy F E P C AB BC CD DE EF FA =1. A B

19 DŁUGOŚCI PRZEKĄTNYCH 1 k n d d7 d 9 d d d n 2 <k<n: d k=d n k

20 TRZY PRZEKĄTNE WIELOKĄTA FOREMNEGO E d m d v D d l C Twierdzenie. Przekątne AD, BE i CF wielokąta foremnego ABCDEF przecinająsięwjednympunkciepwtedyitylko wtedy, gdy d k d u dl d v dm d w =1, F d u czyli d w d k d l d m =d u d v d w. A d k B

21 KONFIGURACJE TRYWIALNE Przypuśćmy, że tak jak wyżej, AD, BE i CF są przekątnymi sześciokąta ABCDEF wpisanego w okrąg, przy czym AB=d k, BC=d u, CD=d l, DE=d v, EF=d m, FA=d w oraz d k d l d m =d u d v d w. Konfigurację przekątnych nazywamy trywialną, gdy liczby u, v, w tworzą permutację liczbk,l,m. Istnieją trzy rodzaje konfiguracji trywialnych powstających z następujących permutacji: u=m,v=k,w=l; u=k,v=m,w=l; u=k,v=l,w=m.

22 PIERWSZA KONFIGURACJA TRYWIALNA F d m E d k D n=48, k=4, l=13, m=7. d l d l u=m, v=k, w=l. A d k B d m C Trzy średnice przecinające się w środku okręgu

23 DRUGA KONFIGURACJA TRYWIALNA E F d m d m D n=48, k=4, l=13, m=7. d l d l u=k, v=m, w=l. A d k B d k C Przekątne symetryczne przecinające się na osi symetrii(średnicy)

24 TRZECIA KONFIGURACJA TRYWIALNA E d l D d m n=48, k=4, l=13, m=7. F d l u=k, v=l, w=m. d m Dwusieczne kątów trójkąta ACE A d k B d k C

25 TRZY PRZEKĄTNE DWUNASTOKĄTA FOREMNEGO A 12 A 11 A 1 Przekątne A 10 A 2 A 1 A 8, A 3 A 11 i A 5 A 12 A 9 A 3 dwunastokąta foremnego A 8 A 4 A 1 A 2 A 3 A 4 A 5 A 6 A 7 A 8 A 9 A 10 A 11 A 12 sądwusiecznymikątówtrójkątaa 1 A 5 A 11. A 7 A 6 A 5

26 TRZY PRZEKĄTNE OSIEMNASTOKĄTA FOREMNEGO Twierdzenie. Przekątne A 15 A 16 A 17 A 18 A 1 A 2 A 3 A 1 A 7, A 2 A 11 i A 4 A 17 osiemnastokąta foremnego A 1 A 2 A 3...A 16 A 17 A 18 A 14 P A 4 przecinająsięwjednympunkciep. A 13 A 12 A 11 A 7 A 6 A 5 Dowód. Niech P będzie punktem przecięcia przekątnycha 2 A 11 ia 1 A 7.Zauważmy,żeprzekątna A 2 A 11 jestosiąsymetriiosiemnastokątaforemnego.przekątnąsymetrycznądoa 1 A 7 jesta 3 A 15. Wystarczy zatem pokazać, że przekątne A 10 A9 A 8 A 1 A 7, A 3 A 15 i A 4 A 17 przecinają się w jednym punkcie.

27 TRZY NOWE PRZEKĄTNE OSIEMNASTOKĄTA FOREMNEGO Mamy pokazać, że przekątne A 17 A 18 A 1 A 2 A 1 A 7, A 3 A 15 i A 4 A 17 A 15 A 16 P A 3 osiemnastokąta foremnego A 1 A 2 A 3...A 16 A 17 A 18 A 14 A 4 przecinająsięwjednympunkciep. A 13 A 5 Do tego wystarczy, by A 12 A 11 A 10 A9 A 8 A 7 A 6 czyli d 8 d 3 d1 d 2 d2 d 2 =1, d 8 d 1 =d 3 d 2.

28 LEMAT O DELTOIDZIE A 17 A 18 A 1 Mamypokazać,że: d 8 d 1 =d 3 d 2. Niech r będzie promieniem okręgu opisanego na osiemnastokącie. Nietrudno zauważyć, że wtedy r=d 3.Mamywięcpokazać,że d 8 d 1 =r d 2. O WeźmydeltoidA 18 A 17 A 9 A 1.Wówczasjegopole jest równe P= 1 2 A 18A 9 A 17 A 1 = 1 2 2r d 2=r d 2. ZdrugiejstronykątyA 18 A 17 A 9 ia 18 A 1 A 9 są proste, skąd wynika, że P= 1 2 (A 18A 17 A 17 A 9 +A 18 A 1 A 1 A 9 )=d 8 d 1, A 9 co kończy dowód.

29 LEMAT O DELTOIDZIE OGÓLNIE A 2n A 2n k A k Twierdzenie.Danyjestwielokątforemnymający2nbokówwpisanywokrągopromieniur idanajestliczbaktaka,że1 k< n 2.Wtedy d k d n k =d 2k r. A n

30 TWIERDZENIE O PRZEKĄTNYCH WIELOKĄTÓW FOREMNYCH Niech n będzie liczbą boków wielokąta foremnego. Wówczas: 1. Jeśli n jest liczbą nieparzystą, to żadne trzy przekątne nie przecinają się w jednym punkcie. 2. Jeśli n jest liczbą parzystą, niepodzielną przez 6, to istnieją tylko konfiguracje trywialne przekątnych przecinających się w jednym punkcie. 3. Jeśli n jest liczbą podzielną przez 6, to oprócz konfiguracji trywialnych istnieją 4 serie konfiguracji nietrywialnych oraz 65 tzw. konfiguracji sporadycznych.

31 CZTERY SERIE KONFIGURACJI NIETRYWIALNYCH Dany jest wielokąt foremny mający 6n boków. Następujące równości opisują cztery serie konfiguracji nietrywialnych: d n d k d 2n 2k =d 2n+k d k d n k, gdzie0<k<n, d n d k d 3n 3k =d n+k d 2k d n k, gdzie0<k<n, d n d n 2k d 2k =d 3n+k d k d n 2k, gdzie0<k< n 2, d 2n+k d k d 2n 4k =d n+k d 3k d n 2k, gdzie0<k< n 2.

32 TRZY PRZEKĄTNE OSIEMNASTOKĄTA FOREMNEGO Twierdzenie. Przekątne A 1 A 7, A 2 A 11 i A 4 A 17 A 17 A 18 A 1 A 2 osiemnastokąta foremnego A 15 A 16 A 3 A 1 A 2 A 3...A 16 A 17 A 18 przecinająsięwjednympunkciep. A 14 A 13 P A 4 A 5 Dowód. Jest to konfiguracja nietrywialna II serii. Wielokątforemnymający6nboków,0<k<n. d n d k d 3n 3k =d n+k d 2k d n k. A 12 A 6 Dlan=3ik=1dostajemy A 11 A 7 d 3 d 1 d 6 =d 4 d 2 d 2, A 10 A9 A 8 czyli d 6 d 4 d3 d 2 d1 d 2 =1.

33 CZTERY SERIE KONFIGURACJI NIETRYWIALNYCH W TRZYDZIESTOKĄCIE FOREMNYM Nr 6n k l m u v w n jest liczbą boków wielokąta d k d l d m =d u d v d w. k+l+m+u+v+w=6n.

34 PRZYKŁADY KONFIGURACJI NIETRYWIALNYCH I SeriaI; n=5,k=1 SeriaII; n=5,k=1 d 1 d 4 d 11 =d 1 d 5 d 8 d 1 d 5 d 12 =d 2 d 4 d 6

35 PRZYKŁADY KONFIGURACJI NIETRYWIALNYCH II SeriaIII; n=5,k=1 SeriaIV; n=5,k=1 d 1 d 3 d 16 =d 2 d 3 d 5 d 1 d 6 d 11 =d 3 d 3 d 6 13

36 KONFIGURACJE SPORADYCZNE I Nr 6n k l m u v w Nr 6n k l m u v w

37 KONFIGURACJE SPORADYCZNE II Nr 6n k l m u v w Nr 6n k l m u v w

38 KONFIGURACJE SPORADYCZNE III Nr 6n k l m u v w Nr 6n k l m u v w

39 PRZYKŁAD KONFIGURACJI SPORADYCZNEJ d 1 d 7 d 8 =d 2 d 3 d 9

40 NOWE ZADANIE O TRÓJKĄCIE C Zadanie. Dany jest trójkąt ABC, w którym: A=70, B=84 oraz C=26. W tym trójkącie poprowadzono odcinki AD ibetak,że BAD=22 oraz ABE=46 E (zob. rysunek). Oblicz miarę kąta BED. D A B

41 NOWE ZADANIE O TRÓJKĄCIE Zadanie. Dany jest trójkąt ABC, w którym: A=70, B=84 oraz C=26. A 84 W tym trójkącie poprowadzono odcinki AD ibetak,że D A 13 A 18 A 20 BAD=22 oraz ABE=46 (zob. rysunek). Oblicz miarę kąta BED. Rozwiązanie. Wystarczy zauważyć, że d 32 d 9 d 2 =d 5 d 19 d 23 A 61 A 29 (konfiguracja sporadyczna nr 51 w 90-kącie foremnym). Wówczas BED= A 29 A 84 A 20 =18.

42 LICZBY ZESPOLONE a+bi, gdzie i 2 = 1. INTERPRETACJA GEOMETRYCZNA b a + bi a

43 PIERWIASTKI Z JEDNOŚCI Liczby1,z,z 2,...,z n 1 sąpierwiastkamirównaniaz n =1. Narysunkun=17: z 6 z 7 z 8 z 9 z 10 z 11 z 5 z 4 z 3 z 2 z15 z 12 z z z 1 z 16

44 Lemat algebraiczny. Niechnbędzieliczbąnieparzystąiniech1,z,z 2,...,z n 1 będąpierwiastkamistopnia nzjedności(tzn.pierwiastkamirównaniaz n =1).NiechnastępnieW(X)iV(X) będą takimi wielomianami o współczynnikach całkowitych, że W(z) = V(z). Wtedy W(z 2 )=V(z 2 ). Lemat geometryczny. Liczbyzespolonez,t,viuleżąnaokręgujednostkowym.Wówczasodcinekokońcach zitjestrównoległydoodcinkaokońcachuivwtedyitylkowtedy,gdyzt=uv.

45 Twierdzenie. Jeśli n jest liczbą nieparzystą, to żadne trzy przekątne n-kąta foremnego nie przecinają się w jednym punkcie. Szkicdowodu.Przypuśćmy,żeprzekątneokońcach1iz r,z s iz t orazz u iz v przecinają się w jednym punkcie: z r z u z s z t z z v 1

46 Można wówczas udowodnić, że zachodzi równość: (z s 1)(z t 1)(z u+v r 1)=(z u 1)(z v 1)(z s+t r 1). (1) Definiujemy dwa wielomiany: A(X)=(X s 1)(X t 1)(X u+v r 1), B(X)=(X u 1)(X v 1)(X s+t r 1). Wtedy Z lematu algebraicznego wynika, że A(z)=B(z). A(z 2 )=B(z 2 ) istąd czyli A(z 2 ) A(z) =B(z2 ) B(z), (z s +1)(z t +1)(z u+v r +1)=(z u +1)(z v +1)(z s+t r +1). (2)

47 Dodajemy równości(1) i(2), korzystając z tożsamości (a+1)(b+1)(c+1)+(a 1)(b 1)(c 1)=2(abc+a+b+c). Otrzymujemy z s +z t +z u+v r =z u +z v +z s+t r istąd (z u z r )(z v z r )=(z s z r )(z t z r ). (3) Definiujemy następne wielomiany: C(X)=(X u X r )(X v X r ), D(X)=(X s X r )(X t X r ). Mamy wówczas C(z)=D(z). Znów korzystamy z lematu algebraicznego, otrzymując kolejno: C(z 2 )=D(z 2 ), C(z 2 ) ) C(z) =D(z2 D(z), (z u +z r )(z v +z r )=(z s +z r )(z t +z r ). (4)

48 Dodajemy stronami równości(3) i(4), otrzymując 2z u z v +2z r z r =2z s z t +2z r z r, czyli z u z v =z s z t. Zlematugeometrycznegowynika,żeodcinkiokońcachz u iz v orazz s iz t sąrównoległe, wbrew założeniu, że przecinają się w punkcie P. Ta sprzeczność pokazuje, że wybrane trzy przekątne nie mogły przecinać się w jednym punkcie, co kończy dowód twierdzenia.

49 BIBLIOGRAFIA [P] V. V. Prasolov, Intersection Points of the Diagonals of Regular Polygons, w: Essays on Number and Figures [R] T. Rike, An Intriguing Geometry Problem, Berkeley Math Circle [PR] B. Poonen, M. Rubinstein, The Number of Intersection Points Made by the Diagonals of a Regular Polygon, www-math.mit.edu/~poonen/papers/ngon.ps cache/math/pdf/9508/ v3.pdf W obu ostatnich pracach znajduje się obszerna bibliografia. Wiele prac można znaleźć w Internecie.

50 BIBLIOGRAFIA- ciąg dalszy [C] The Triangle, Cut-the-Knot [K]C.Knop,NineSolutionstoOneProblem,Kvant,1993,no6 K.Knop, Istori s geometrie, ili dev tь rexeni odno zadaqi s geometriej.htm [L] S. M. R. Lopes, Complexidade em geometria euclidiana plana, praca magisterska, Pontifícia Universidade Católica do Rio de Janeiro complexidade-em-geometria.pdf

51 KONIEC

9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie

9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie 9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (c.d).

Bardziej szczegółowo

Jarosław Wróblewski Matematyka dla Myślących, 2008/09

Jarosław Wróblewski Matematyka dla Myślących, 2008/09 9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (dokończenie).

Bardziej szczegółowo

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 11 Zadania planimetria

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 11 Zadania planimetria 1 TEST WSTĘPNY 1. (1p) Wysokość rombu o boku długości 6 i kącie ostrym 60 o jest równa: A. 6 3 B. 6 C. 3 3 D. 3 2. (1p) W trójkącie równoramiennym długość ramienia wynosi 10 a podstawa 16. Wysokość opuszczona

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2011/12

Jarosław Wróblewski Matematyka Elementarna, zima 2011/12 168. Uporządkować podane liczby w kolejności niemalejącej. sin50, cos80, sin170, cos200, sin250, cos280. 169. Naszkicować wykres funkcji f zdefiniowanej wzorem a) f(x) = sin2x b) f(x) = cos3x c) f(x) =

Bardziej szczegółowo

Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów

Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów stycznych, c) rozpoznaje trójkąty podobne i wykorzystuje

Bardziej szczegółowo

9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie

9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie 9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (c.d).

Bardziej szczegółowo

Bukiety matematyczne dla gimnazjum

Bukiety matematyczne dla gimnazjum Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 5 IX rok 2003/2004 Bukiet 1 1. W trójkącie ABC prosta równoległa do boku AB przecina boki AC i BC odpowiednio w punktach D i E. Zauważ,

Bardziej szczegółowo

Obozowa liga zadaniowa (seria I wskazówki)

Obozowa liga zadaniowa (seria I wskazówki) Obozowa liga zadaniowa (seria I wskazówki) 1. Rozstrzygnij, która liczba jest większa: 9 czy 3 1? 9 < 30 8 10 < 9 10 3 0 < 3 1.. Rozstrzygnij, która liczba jest większa: 81 czy 3 49? 81 > 80 56 10 > 43

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

Jarosław Wróblewski Matematyka Elementarna, zima 2014/15

Jarosław Wróblewski Matematyka Elementarna, zima 2014/15 Kolokwium nr 3: 27.01.2015 (wtorek), godz. 8:15-10:00 (materiał zad. 1-309) Kolokwium nr 4: 3.02.2015 (wtorek), godz. 8:15-10:00 (materiał zad. 1-309) Ćwiczenia 13,15,20,22.01.2015 (wtorki, czwartki) 266.

Bardziej szczegółowo

Zadania otwarte krótkiej odpowiedzi na dowodzenie

Zadania otwarte krótkiej odpowiedzi na dowodzenie Zadania otwarte krótkiej odpowiedzi na dowodzenie Zadanie 1. Na bokach trójkąta równobocznego ABC tak wybrano punkty E, F oraz D, że AE = BF = CD = 1 AB (rysunek obok). a) Udowodnij, że trójkąt EFD jest

Bardziej szczegółowo

2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia.

2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia. 1. Wykaż, że liczba 2 2 jest odwrotnością liczby 1 2. 2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia. 3. Wykaż, że dla każdej liczby całkowitej

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 10 MARCA 2018 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 4 7 8 25 0, 5

Bardziej szczegółowo

KLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe:

KLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe: KLASA I LO Poziom podstawowy (styczeń) Treści nauczania wymagania szczegółowe: ZAKRES PODSTAWOWY 7. Planimetria. Uczeń: 1) rozpoznaje trójkąty podobne i wykorzystuje (także w kontekstach praktycznych)

Bardziej szczegółowo

Zadania na dowodzenie Opracowała: Ewa Ślubowska

Zadania na dowodzenie Opracowała: Ewa Ślubowska Egzamin Gimnazjalny Zadania na dowodzenie Opracowała: Ewa Ślubowska W nauczaniu matematyki ważne jest rozwijanie różnych aktywności umysłu. Ma temu służyć min. rozwiązywanie jednego zadania czy dowodzenie

Bardziej szczegółowo

IX Olimpiada Matematyczna Gimnazjalistów

IX Olimpiada Matematyczna Gimnazjalistów IX Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (3 października 2013 r.) Rozwiązania zadań testowych 1. Liczba 3 9 3 27 jest a) niewymierna; b) równa 3 27;

Bardziej szczegółowo

ZADANIA PRZED EGZAMINEM KLASA I LICEUM

ZADANIA PRZED EGZAMINEM KLASA I LICEUM ZADANIA PRZED EGZAMINEM KLASA I LICEUM + 7. Równanie = 0 : + A. ma tylko jedno rozwiązanie równe 7 B. ma tylko jedno rozwiązania równe 7 C. ma tylko jedno rozwiązanie równe D. nie ma rozwiązań.. Do przedziału,

Bardziej szczegółowo

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018. Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory

Bardziej szczegółowo

W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1

W. Guzicki Próbna matura, grudzień 2014 r. poziom rozszerzony 1 W. Guzicki Próbna matura, grudzień 01 r. poziom rozszerzony 1 Próbna matura rozszerzona (jesień 01 r.) Zadanie 18 kilka innych rozwiązań Wojciech Guzicki Zadanie 18. Okno na poddaszu ma mieć kształt trapezu

Bardziej szczegółowo

V Międzyszkolny Konkurs Matematyczny

V Międzyszkolny Konkurs Matematyczny V Międzyszkolny Konkurs Matematyczny im. Stefana Banacha dla uczniów szkół średnich Zespół Szkół Nr 1 im. Adama Mickiewicza w Lublińcu 42-700 Lubliniec, ul. Sobieskiego 22 18. kwiecień 2011 rok 1. W trapezie

Bardziej szczegółowo

XII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2016 r. 17 października 2016 r.)

XII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2016 r. 17 października 2016 r.) XII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna ( września 06 r. 7 października 06 r.) Szkice rozwiązań zadań konkursowych. Liczby wymierne a, b, c spełniają równanie

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

VIII Olimpiada Matematyczna Gimnazjalistów

VIII Olimpiada Matematyczna Gimnazjalistów VIII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (18 października 01 r.) Rozwiązania zadań testowych 1. Miary α, β, γ kątów pewnego trójkąta spełniają warunek

Bardziej szczegółowo

LVII Olimpiada Matematyczna

LVII Olimpiada Matematyczna Zadanie 1. LVII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 5 kwietnia 2006 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych a, b, c, d, e układ równań

Bardziej szczegółowo

1. ODPOWIEDZI DO ZADAŃ TESTOWYCH

1. ODPOWIEDZI DO ZADAŃ TESTOWYCH R O Z W I A Z A N I A 1. ODPOWIEDZI DO ZADAŃ TESTOWYCH 1. Dla dowolnych zbiorów A, B, C zachodzi równość (A B) (B C) (C A) = (A B C) (A B C), A (B C) = (A B) (A C), A (B C) = (A B) (A C). 2. Wyrażenie

Bardziej szczegółowo

Wykłady z matematyki Liczby zespolone

Wykłady z matematyki Liczby zespolone Wykłady z matematyki Liczby zespolone Rok akademicki 015/16 UTP Bydgoszcz Liczby zespolone Wstęp Formalnie rzecz biorąc liczby zespolone to punkty na płaszczyźnie z działaniami zdefiniowanymi następująco:

Bardziej szczegółowo

Elżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki

Elżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki Elżbieta Świda Elżbieta Kurczab Marcin Kurczab Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki Zadanie Trójkąt ABC jest trójkątem prostokątnym. Z punktu M, należącego

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna Arkusz A01 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba log 1 3 3 27 jest równa:

Bardziej szczegółowo

Praca domowa - seria 2

Praca domowa - seria 2 Praca domowa - seria 0 listopada 01 Zadanie 1. Zaznacz na płaszczyźnie zespolonej zbiór liczb spełniających nierówność: A = {z C : i z < Im(z)}. Rozwiązanie 1 Niech z = a + ib, gdzie a, b R. Wtedy z =

Bardziej szczegółowo

LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów)

LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów) LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów) Zadanie 1. Dana jest liczba całkowita n 2. Wyznaczyć liczbę rozwiązań (x 1,x

Bardziej szczegółowo

Trójkąty jako figury geometryczne płaskie i ich najważniejsze elementy

Trójkąty jako figury geometryczne płaskie i ich najważniejsze elementy Artykuł pobrano ze strony eioba.pl Trójkąty jako figury geometryczne płaskie i ich najważniejsze elementy Trójkąt jest wielokątem o trzech bokach Suma miar kątów wewnętrznych trójkąta jest równa 180. +

Bardziej szczegółowo

MATURA Przygotowanie do matury z matematyki

MATURA Przygotowanie do matury z matematyki MATURA 2012 Przygotowanie do matury z matematyki Część VII: Planimetria ROZWIĄZANIA Powtórka jest organizowana przez redaktorów portalu MatmaNa6.pl we współpracy z dziennikarzami Gazety Lubuskiej. Witaj,

Bardziej szczegółowo

Rozwiązania zadań otwartych i schematy oceniania Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych

Rozwiązania zadań otwartych i schematy oceniania Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zadań zamkniętych 5 6 7 8 9 0 5 6 7 8 9 0 A D B B C D C C D D A B D B B A C B C A Zadanie. (0-) Rozwiąż nierówność

Bardziej szczegółowo

Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie

Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/) 1. W trójkącie prostokątnym wysokość poprowadzona na przeciwprostokątną ma długość 10 cm, a promień okręgu

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.

Bardziej szczegółowo

VII Olimpiada Matematyczna Gimnazjalistów

VII Olimpiada Matematyczna Gimnazjalistów VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa, test próbny www.omg.edu.pl (wrzesień 2011 r.) Rozwiązania zadań testowych 1. Liczba krawędzi pewnego ostrosłupa jest o

Bardziej szczegółowo

Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10

Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10 Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10, ACE = 60, ADB = 40 i BEC = 20. Oblicz miarę kąta CAD. B C A D E Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym

Bardziej szczegółowo

Przykładowy zestaw zadań nr 2 z matematyki Odpowiedzi i schemat punktowania poziom rozszerzony

Przykładowy zestaw zadań nr 2 z matematyki Odpowiedzi i schemat punktowania poziom rozszerzony ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi... Wprowadzenie oznaczeń: x, x, y poszukiwane liczby i zapisanie równania:

Bardziej szczegółowo

LVIII Olimpiada Matematyczna

LVIII Olimpiada Matematyczna LVIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 23 lutego 2007 r. (pierwszy dzień zawodów) Zadanie. Wielomian P (x) ma współczynniki całkowite. Udowodnić, że jeżeli

Bardziej szczegółowo

Treści zadań Obozu Naukowego OMG

Treści zadań Obozu Naukowego OMG STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OM 2015 rok SZCZYRK 2015 Pierwsze zawody indywidualne Treści

Bardziej szczegółowo

Przykładowe zadania z matematyki na poziomie podstawowym. Zadanie 1. (0 1) Liczba A. 3. Zadanie 2. (0 1) Liczba log 24 jest równa

Przykładowe zadania z matematyki na poziomie podstawowym. Zadanie 1. (0 1) Liczba A. 3. Zadanie 2. (0 1) Liczba log 24 jest równa Przykładowe zadania z rozwiązaniami: poziom podstawowy 1. Przykładowe zadania z matematyki na poziomie podstawowym Zadanie 1. (0 1) Liczba 8 3 3 2 3 9 jest równa A. 3 3 B. 32 3 9 C. 3 D. 5 3 Zadanie 2.

Bardziej szczegółowo

Wielokąty i Okręgi- zagadnienia

Wielokąty i Okręgi- zagadnienia Wielokąty i Okręgi- zagadnienia 1. Okrąg opisany na trójkącie. na każdym trójkącie można opisać okrąg, środkiem okręgu opisanego na trójkącie jest punkt przecięcia symetralnych boków tego trójkąta, jeżeli

Bardziej szczegółowo

Równania prostych i krzywych; współrzędne punktu

Równania prostych i krzywych; współrzędne punktu Równania prostych i krzywych; współrzędne punktu Zad 1: Na paraboli o równaniu y = 1 x znajdź punkt P leŝący najbliŝej prostej o równaniu x + y = 0 Napisz równanie stycznej do tej paraboli, poprowadzonej

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zad. 1 (2 pkt) Rozwiąż równanie Zad.2 (2 pkt) 2 3x 1 = 1 2x 2 Rozwiąż układ równań x +3y =5 2x y = 3 Zad.3 (2 pkt) 2 Rozwiąż nierówność x + 6x 7 0 Zad.4 (2 pkt) 3 2

Bardziej szczegółowo

Ćwiczenia z Geometrii I, czerwiec 2006 r.

Ćwiczenia z Geometrii I, czerwiec 2006 r. Waldemar ompe echy przystawania trójkątów 1. unkt leży na przekątnej kwadratu (rys. 1). unkty i R są rzutami prostokątnymi punktu odpowiednio na proste i. Wykazać, że = R. R 2. any jest trójkąt ostrokątny,

Bardziej szczegółowo

LX Olimpiada Matematyczna

LX Olimpiada Matematyczna LX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 13 lutego 2009 r. (pierwszy dzień zawodów) Zadanie 1. Liczby rzeczywiste a 1, a 2,..., a n (n 2) spełniają warunek a 1

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 DEFINICJE PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 Czworokąt to wielokąt o 4 bokach i 4 kątach. Przekątną czworokąta nazywamy odcinek łączący przeciwległe wierzchołki. Wysokością czworokąta nazywamy

Bardziej szczegółowo

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2). 1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego

Bardziej szczegółowo

10. Elementy kombinatoryki geometrycznej: suma kątów wielokąta,

10. Elementy kombinatoryki geometrycznej: suma kątów wielokąta, 10. Elementy kombinatoryki geometrycznej: suma kątów wielokąta, liczba przekątnych wielokąta, porównywanie pól wielokątów w oparciu o proste zależności geometryczne jak np. przystawanie i zawieranie, rozpoznawanie

Bardziej szczegółowo

A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla

A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla Zadanie 1 Liczba jest równa A. B. C. 10 D. Odpowiedź B. Zadanie 2 Liczba jest równa A. 3 B. 2 C. D. Odpowiedź D. Zadanie 3. Liczba jest równa Odpowiedź D. Zadanie 4. Liczba osobników pewnego zagrożonego

Bardziej szczegółowo

GEOMETRIA ELEMENTARNA

GEOMETRIA ELEMENTARNA Bardo, 7 11 XII A. D. 2016 I Uniwersytecki Obóz Olimpiady Matematycznej GEOMETRIA ELEMENTARNA materiały przygotował Antoni Kamiński na podstawie zbiorów zadań: Przygotowanie do olimpiad matematycznych

Bardziej szczegółowo

Twierdzenie Talesa. Adrian Łydka Bernadeta Tomasz. Teoria

Twierdzenie Talesa. Adrian Łydka Bernadeta Tomasz. Teoria Twierdzenie Talesa. drian Łydka ernadeta Tomasz Teoria Definicja 1. Mówimy, że odcinki i CD są proporcjonalne odpowiednio do odcinków EF i GH, jeżeli CD = EF GH. Twierdzenie 1. (Twierdzenie Talesa) Jeżeli

Bardziej szczegółowo

rys. 4 BK KC AM MB CL LA = 1.

rys. 4 BK KC AM MB CL LA = 1. Joanna Zakrzewska Wspólny punkt Na najnowszym, trzecim już, plakacie Stowarzyszenia na rzecz Edukacji Matematycznej (zob. www.sem.edu.pl) widnieje dwanaście konfiguracji geometrycznych. Ich wspólną cechą

Bardziej szczegółowo

Geometria. Zadanie 1. Liczba przekątnych pięciokąta foremnego jest równa A. 4 B. 5 C. 6 D. 7

Geometria. Zadanie 1. Liczba przekątnych pięciokąta foremnego jest równa A. 4 B. 5 C. 6 D. 7 Geometria Zadanie 1. Liczba przekątnych pięciokąta foremnego jest równa A. 4 B. 5 C. 6 D. 7 W tym przypadku możemy wykonać szkic pięciokąta i policzyć przekątne: Zadanie. Promień okręgu opisanego na kwadracie

Bardziej szczegółowo

LXI Olimpiada Matematyczna

LXI Olimpiada Matematyczna 1 Zadanie 1. LXI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 21 kwietnia 2010 r. (pierwszy dzień zawodów) Dana jest liczba całkowita n > 1 i zbiór S {0,1,2,...,n 1}

Bardziej szczegółowo

Dydaktyka matematyki, IV etap edukacyjny (ćwiczenia) Ćwiczenia nr 7 Semestr zimowy 2018/2019

Dydaktyka matematyki, IV etap edukacyjny (ćwiczenia) Ćwiczenia nr 7 Semestr zimowy 2018/2019 Dydaktyka matematyki, IV etap edukacyjny (ćwiczenia) Ćwiczenia nr 7 Semestr zimowy 2018/2019 Zadanie z wykładu i ćwiczeń Dany jest ciąg rekurencyjny: x 1 = 1, x n+1 = x n 2 + 1 x n dla n 1. Ograniczoność.

Bardziej szczegółowo

Przykładowe rozwiązania

Przykładowe rozwiązania Przykładowe rozwiązania (E. Ludwikowska, M. Zygora, M. Walkowiak) Zadanie 1. Rozwiąż równanie: w przedziale. ( ) ( ) ( )( ) ( ) ( ) ( ) Uwzględniając, że x otrzymujemy lub lub lub. Zadanie. Dany jest czworokąt

Bardziej szczegółowo

= a + 1. b + 1. b całkowita?

= a + 1. b + 1. b całkowita? 9 ALGEBRA Liczby wymierne Bukiet 1 1. Oblicz wartość wyrażenia 1+ 1 1+ 1 1+ 1 1. 2. Znajdź liczby naturalne a, b, c i d, dla których 151 115 = a + 1 b + 1. c + 1 d 3. W podobny sposób spróbuj przekształcić

Bardziej szczegółowo

( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x

( ) Arkusz I Zadanie 1. Wartość bezwzględna Rozwiąż równanie. Naszkicujmy wykresy funkcji f ( x) = x + 3 oraz g ( x) 2x Arkusz I Zadanie. Wartość bezwzględna Rozwiąż równanie x + 3 x 4 x 7. Naszkicujmy wykresy funkcji f ( x) x + 3 oraz g ( x) x 4 uwzględniając tylko ich miejsca zerowe i monotoniczność w ten sposób znajdziemy

Bardziej szczegółowo

LXV Olimpiada Matematyczna

LXV Olimpiada Matematyczna LXV Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 8 kwietnia 2014 r. (pierwszy dzień zawodów) Zadanie 1. Dane są względnie pierwsze liczby całkowite k,n 1. Na tablicy

Bardziej szczegółowo

Internetowe Ko³o M a t e m a t yc z n e

Internetowe Ko³o M a t e m a t yc z n e Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 1 szkice rozwiązań zadań 1 W wierszu zapisano kolejno 2010 liczb Pierwsza zapisana liczba jest równa 7 oraz

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16)

Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16) Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język

Bardziej szczegółowo

PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM

PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM Zad.1. (0-1) Liczba 3 8 3 3 9 2 A. 3 3 Zad.2. (0-1) jest równa: Liczba log24 jest równa: B. 3 32 9 C. 3 4 D. 3 5 A. 2log2 + log20 B. log6 + 2log2

Bardziej szczegółowo

Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość:

Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: A. r 2 + q 2 = p 2 B. p 2 + r 2 = q 2 C. p 2 + q 2 = r 2 D. p + q

Bardziej szczegółowo

Metoda siatek zadania

Metoda siatek zadania Metoda siatek zadania 1. (Leningrad 1984) Wykazać, że jeżeli suma kątów płaskich przy wierzchołku S ostrosłupa SA 1 A 2... A n (n 3) jest większa niż 180, to każda z krawędzi bocznych jest mniejsza od

Bardziej szczegółowo

Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii. Trójkąty. Trójkąt dowolny. Wielokąty trygonometria 1.

Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii. Trójkąty. Trójkąt dowolny. Wielokąty trygonometria 1. Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Wielokąt wypukły miara każdego kąt wewnętrznego jest mniejsza od 180 o. Liczba przekątnych: n*(n-2) Suma kątów wewnętrznych wielokąta

Bardziej szczegółowo

Wersja testu A 25 września 2011

Wersja testu A 25 września 2011 1. Czy istnieje liczba całkowita dodatnia o sumie cyfr równej 399, podzielna przez a) 3 ; b) 5 ; c) 6 ; d) 9? 2. Czy równość (a+b) 5 = a 3 +3a 2 b+3ab 2 +b 3 jest prawdziwa dla a) a = 8/7, b = 1/7 ; b)

Bardziej szczegółowo

Internetowe Kółko Matematyczne 2003/2004

Internetowe Kółko Matematyczne 2003/2004 Internetowe Kółko Matematyczne 003/004 http://www.mat.uni.torun.pl/~kolka/ Zadania dla szkoły średniej Zestaw I (5 IX) Zadanie 1. Które liczby całkowite można przedstawić w postaci różnicy kwadratów dwóch

Bardziej szczegółowo

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n = /9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n

Bardziej szczegółowo

X Olimpiada Matematyczna Gimnazjalistów

X Olimpiada Matematyczna Gimnazjalistów www.omg.edu.pl X Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część korespondencyjna (10 listopada 01 r. 15 grudnia 01 r.) Szkice rozwiązań zadań konkursowych 1. nia rozmieniła banknot

Bardziej szczegółowo

Planimetria VII. Wymagania egzaminacyjne:

Planimetria VII. Wymagania egzaminacyjne: Wymagania egzaminacyjne: a) korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu, b) wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych

Bardziej szczegółowo

VII POWIATOWY KONKURS MATEMATYCZNY SZKÓŁ GIMNAZJALNYCH W POGONI ZA INDEKSEM ZADANIA PRZYGOTOWAWCZE ROZWIĄZANIA I ODPOWIEDZI. rok szkolny 2016/2017

VII POWIATOWY KONKURS MATEMATYCZNY SZKÓŁ GIMNAZJALNYCH W POGONI ZA INDEKSEM ZADANIA PRZYGOTOWAWCZE ROZWIĄZANIA I ODPOWIEDZI. rok szkolny 2016/2017 1. 30. Tak 3. ----- 4. Równanie nie ma rozwiązania. Lewa strona nie równa się prawej dla żadnej pary liczb, y ponieważ prawa strona jest nieparzysta a prawa parzysta. Należy wykazać parzystości stron równania

Bardziej szczegółowo

TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH )

TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH ) Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA TO TRZEBA ROZWIĄZAĆ-(I MNÓSTWO INNYCH ) PAKIET ZADAŃ (zadania wybrano ze zbiorów autorów i wydawnictw: Kiełbasa, Res Polona,

Bardziej szczegółowo

LV Olimpiada Matematyczna

LV Olimpiada Matematyczna LV Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 15 kwietnia 004 r. (pierwszy dzień zawodów) Zadanie 1. Punkt D leży na boku AB trójkąta ABC. Okręgi styczne do prostych

Bardziej szczegółowo

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty

Bardziej szczegółowo

XI Olimpiada Matematyczna Gimnazjalistów

XI Olimpiada Matematyczna Gimnazjalistów www.omg.edu.pl I Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część korespondencyjna (1 września 2015 r. 12 października 2015 r.) Szkice rozwiązań zadań konkursowych 1. Wykaż, że istnieje

Bardziej szczegółowo

Konkurs matematyczny im. Samuela Chróścikowskiego

Konkurs matematyczny im. Samuela Chróścikowskiego Konkurs matematyczny im. Samuela Chróścikowskiego Państwowa Wyższa Szkoła Zawodowa w Chełmie 13 marzec 2008 Imię i nazwisko:... Szkoła:... Wyrażam zgodę na przetwarzanie moich danych osobowych w zakresie

Bardziej szczegółowo

Regionalne Koło Matematyczne

Regionalne Koło Matematyczne Regionalne Koło Matematyczne Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki http://www.mat.umk.pl/rkm/ Lista rozwiązań zadań nr 3 (2-26.0.2009) Omówienie zadań I serii zawodów

Bardziej szczegółowo

1. Liczby zespolone i

1. Liczby zespolone i Zadania podstawowe Liczby zespolone Zadanie Podać część rzeczywistą i urojoną następujących liczb zespolonych: z = ( + 7i)( + i) + ( 5 i)( + 7i), z = + i, z = + i i, z 4 = i + i + i i Zadanie Dla jakich

Bardziej szczegółowo

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste

Bardziej szczegółowo

XXV Rozkosze Łamania Głowy konkurs matematyczny dla klas I i III szkół ponadgimnazjalnych. zestaw A klasa I

XXV Rozkosze Łamania Głowy konkurs matematyczny dla klas I i III szkół ponadgimnazjalnych. zestaw A klasa I XXV Rozkosze Łamania Głowy konkurs matematyczny dla klas I i III szkół ponadgimnazjalnych zestaw A klasa I 1. Zbiór wszystkich środków okręgów (leżących na jednej płaszczyźnie) przechodzących przez: a)

Bardziej szczegółowo

KURS MATURA PODSTAWOWA Część 2

KURS MATURA PODSTAWOWA Część 2 KURS MATURA PODSTAWOWA Część 2 LEKCJA 7 Planimetria ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Kąt na poniższym rysunku ma miarę:

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R_P-08 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 008 Czas pracy 80 minut Instrukcja

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum

Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język

Bardziej szczegółowo

Treści zadań Obozu Naukowego OMJ

Treści zadań Obozu Naukowego OMJ STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ JUNIORÓW Treści zadań Obozu Naukowego OMJ Poziom OM 2017 rok SZCZYRK 2017 Olimpiada Matematyczna Juniorów jest wspó³finansowana

Bardziej szczegółowo

Matematyka podstawowa VII Planimetria Teoria

Matematyka podstawowa VII Planimetria Teoria Matematyka podstawowa VII Planimetria Teoria 1. Rodzaje kątów: a) Kąty wierzchołkowe; tworzą je dwie przecinające się proste, mają takie same miary. b) Kąty przyległe; mają wspólne jedno ramię, ich suma

Bardziej szczegółowo

XI Olimpiada Matematyczna Gimnazjalistów

XI Olimpiada Matematyczna Gimnazjalistów XI Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (24 września 2015 r.) Rozwiązania zadań testowych 1. Dane są takie dodatnie liczby a i b, że 30% liczby a

Bardziej szczegółowo

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008 Zajęcia fakultatywne z matematyki 008 WYRAŻENIA ARYTMETYCZNE I ALGEBRAICZNE. Wylicz b z równania a) ba + a = + b; b) a = b ; b+a c) a b = b ; d) a +ab =. a b. Oblicz a) [ 4 (0, 5) ] + ; b) 5 5 5 5+ 5 5

Bardziej szczegółowo

LXIX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2018 r. (pierwszy dzień zawodów)

LXIX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2018 r. (pierwszy dzień zawodów) LXIX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2018 r. (pierwszy dzień zawodów) 1. Dany jest trójkąt ostrokątny ABC, w którym AB < AC. Dwusieczna kąta

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

Czworościany ortocentryczne zadania

Czworościany ortocentryczne zadania Czworościany ortocentryczne zadania 1. Wykazać, że nastepujące warunki są równoważne: a) istnieje przecięcie wysokości czworościanu, b) przeciwległe krawędzie są prostopadłe, c) sumy kwadratów długości

Bardziej szczegółowo

Matura próbna matematyka poziom rozszerzony

Matura próbna matematyka poziom rozszerzony Matura próbna matematyka poziom rozszerzony Zadanie 1 (1pkt) Jaki jest zbiór wartości funkcji f(x) = 5 cos x 1, jeśli x π, π? 4 (a) 0, + //gdy pominie przedział na x i policzy dla x R (b) 0, 7 + //prawidłowa

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY MARZEC 017 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 19 stron

Bardziej szczegółowo

KONSTRUKCJE ZA POMOCĄ CYRKLA. Ćwiczenia Czas: 90

KONSTRUKCJE ZA POMOCĄ CYRKLA. Ćwiczenia Czas: 90 KONSTRUKCJE ZA POMOCĄ CYRKLA Ćwiczenia Czas: 90 TWIERDZENIE MOHRA-MASCHERONIEGO jeżeli dana konstrukcja geometryczna jest wykonalna za pomocą cyrkla i linijki, to jest wykonalna za pomocą samego cyrkla,

Bardziej szczegółowo

STEREOMETRIA. Poziom podstawowy

STEREOMETRIA. Poziom podstawowy STEREOMETRIA Poziom podstawowy Zadanie ( 8 pkt ) W stożku tworząca o długości jest nachylona do powierzchni podstawy pod kątem, którego tangens jest równy Oblicz stosunek pola powierzchni bocznej do pola

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom podstawowy

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom podstawowy KRYTERIA OCENIANIA ODPOWIEDZI Matematyka Poziom podstawowy Marzec 09 Zadania zamknięte Za każdą poprawną odpowiedź zdający otrzymuje punkt. Poprawna odpowiedź. D 8 9 8 7. D. C 9 8 9 8 8 9 8 9 8 ( 89 )

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom rozszerzony

Próbny egzamin maturalny z matematyki Poziom rozszerzony Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Zadanie 1 (4 pkt) Rozwiąż równanie: w przedziale 1 pkt Przekształcenie równania do postaci: 2 pkt Przekształcenie równania

Bardziej szczegółowo