Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10"

Transkrypt

1 Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10, ACE = 60, ADB = 40 i BEC = 20. Oblicz miarę kąta CAD. B C A D E

2 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

3 Zadanie PP-GP-2. Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). C B A D E Udowodnij, że CAD + DBE + ACE + ADB + BEC = 180.

4 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

5 Zadanie PP-GP-3. Punkty A, B, C, D i E są wierzchołkami gwiazdy pięcioramiennej (zob. rysunek). Wiadomo, że DBE = 10, ACE = 60, ADB = 40 i BEC = 20. Oblicz miarę kąta CAD. B C A D E

6 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

7 Zadanie PP-GP-4. Punkty A, B, C, D i E są wierzchołkami gwiazdy pięcioramiennej (zob. rysunek). C B A D E Udowodnij, że CAD + DBE + ACE + ADB + BEC = 180.

8 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

9 Zadanie PP-GP-5. Punkt D leży na boku BC trójkąta równoramiennego ABC, w którym AC = BC. Odcinek AD dzieli trójkąt ABC na dwa trójkąty równoramienne w taki sposób, że AB = AD = CD (zob. rysunek). Oblicz miary kątów trójkąta ABC. C D A B

10 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

11 Zadanie PP-GP-6. Punkt D leży na podstawie AB trójkąta równoramiennego ABC. Odcinek CD dzieli trójkąt ABC na dwa trójkąty równoramienne w taki sposób, że AD = CD oraz BC = BD (zob. rysunek). Oblicz miary kątów trójkąta ABC. C A D B

12 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

13 Zadanie PP-GP-7. Punkt D leży na boku BC trójkąta równoramiennego ABC, w którym AC AD dzieli trójkąt ABC na dwa trójkąty równoramienne w taki sposób, że AD AB = BD (zob. rysunek). Udowodnij, że ADC = 5 ACD. C = BC. Odcinek = CD oraz D A B

14 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

15 Zadanie PP-GP-8. Na zewnątrz trójkąta prostokątnego ABC, w którym C = 90 oraz AC = 5, BC = 12 zbudowano kwadrat ACDE (zob. rysunek). Punkt H jest rzutem punktu E na prostą AB. Oblicz pole trójkąta HAE. D C E H A B

16 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

17 Zadanie PP-GP-9. Na bokach BC i CD kwadratu ABCD zbudowano trójkąty równoboczne BCK i CDL (zob. rysunek).udowodnij, że trójkąt AKL jest równoboczny. L D C K A B

18 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

19 Zadanie PP-GP-10. Na bokach AB, BC i CA trójkąta równobocznego ABC wybrano odpowiednio punkty K, L i M w taki sposób, ze AB KM, BC KL i CA ML (zob. rysunek). Udowodnij, ze trójkąt KLM jest równoboczny. C M L A K B

20 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

21 Zadanie PP-GP-11. Punkt K jest środkiem boku AB kwadratu ABCD. Punkt L leży na przekątnej AC i dzieli ją w stosunku AL : LC = 3:1 (zob. rysunek). Udowodnij, że kąt KLD jest prosty. D C L A K B

22 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

23 Zadanie PP-GP-12. Punkt K jest środkiem boku AB kwadratu ABCD. Punkt L leży na przekątnej AC i dzieli ją w stosunku AL : LC = 3:1 (zob. rysunek). Oblicz miary kątów trójkąta KLD. D C L A K B

24 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

25 Zadanie PP-GP-13. Punkty A, B, C,, L dzielą okrąg na 12 równych łuków (zobacz rysunek). Udowodnij, że trójkąt PQK jest równoramienny. K L A J B I C H P Q D G F E

26 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

27 Zadanie PP-GP-14. Dany jest romb ABCD, w którym A = 60. Na bokach AB i BC wzięto punkty M i N takie, że AM = BN (zob. rysunek). Udowodnij, że MND jest równoboczny. D C N A M B

28 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

29 Zadanie PP-GP-15. W trapezie równoramiennym przekątne dzielą kąty przy dłuższej podstawie na połowy i przecinają się pod kątem 120. Dłuższa podstawa ma długość 24 cm. Oblicz obwód tego trapezu.

30 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

31 Zadanie PP-GP-16. Kąt między ramionami AC i BC trójkąta równoramiennego ABC ma miarę 40. Punkt O jest środkiem okręgu wpisanego w trójkąt ABC, a punkt S środkiem okręgu opisanego na tym trójkącie. Oblicz miarę kąta SAO.

32 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

33 Zadanie PP-GP-17. Stosunek pola trójkąta prostokątnego do pola kwadratu, którego jednym z boków jest przeciwprostokątna tego trójkąta, jest równy 1. Oblicz sumę tangensów kątów ostrych tego 4 trójkąta.

34 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

35 Zadanie PP-GP W trójkącie równoramiennym ABC, AC = BC,tg ABC =. Obwód tego trójkąta jest 3 równy 16. Oblicz długości boków trójkąta ABC.

36 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

37 Zadanie PP-GP-19. Dany jest okrąg o środku w punkcie S i promieniu r = 5. Z punktu B, którego odległość od punktu S jest równa 13, prowadzimy prostą przecinającą ten okrąg w punktach C i D takich, że DC = CB. Oblicz DB.

38 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

39 Zadanie PP-GP-20. Dany jest trójkąt równoboczny o boku długości 10. Na boku BC obrano punkt P dzielący ten bok w stosunku 2:3, licząc od punktu B. Oblicz sinus kąta BAP.

40 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

41 Zadanie PP-GP-21. W kwadracie ABCD o boku a połączono wierzchołki A, B ze środkiem E boku CD oraz wierzchołki C, D połączono ze środkiem F boku AB. Oblicz pole części wspólnej trójkątów ABE i CDF.

42 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

43 Zadanie PP-GP-22. W okręgu rysujemy średnicę AB i równoległą do niej cięciwę CD (patrz rysunek). Udowodnij, że w trójkącie ACD, różnica kątów przy wierzchołkach C i D jest kątem prostym. A B D C

44 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

45 Zadanie PP-GP-23. W trójkącie prostokątnym jedna przyprostokątna jest dwa razy dłuższa od drugiej. Wyznacz długość promienia okręgu stycznego do obu przyprostokątnych, którego środek leży na przeciwprostokątnej.

46 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

47 Zadanie PP-GP-24. Punkt styczności okręgu wpisanego w trójkąt prostokątny dzieli przeciwprostokątną na dwa odcinki. Udowodnij, że iloczyn długości tych odcinków jest równy polu tego trójkąta.

48 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

49 Zadanie PP-GP-25. Udowodnij, że środki boków trapezu równoramiennego są wierzchołkami rombu.

50 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

51 Zadanie PP-GP-26. W trójkącie ABC, o polu równym 20, na boku AB wybrano punkt D tak, że 1 1 AD = AB, a na boku BC - punkt E tak, że BE = BC. Oblicz pole trójkąta BDE. 4 5

52 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

53 Zadanie PP-GP-27. W trójkącie równoramiennym ABC ( AC AD = DC = AB. Oblicz miarę kąta ACB. = BC ), na boku BC wybrano punkt D tak, że

54 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

55 Zadanie PP-GP-28. Wierzchołki A i C trójkąta ABC leżą na okręgu o promieniu r. Środek tego okręgu leży na boku AB trójkąta. Oblicz miary kątów tego trójkąta wiedząc, że AC = r 3 i AB = 3r.

56 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

57 Zadanie PP-GP-29. W trójkącie ABC dane są: BAC = 60 trójkąta., ABC = 45 i AC = 4. Oblicz pole tego

58 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

59 Zadanie PP-GP-30. Krótsza przekątna trapezu prostokątnego ma długość 6 i dzieli ten trapez na trójkąt prostokątny i równoboczny. Oblicz pole tego trapezu.

60 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

61 Zadanie PP-GP-31. Jeden bok trójkąta równobocznego podzielono na cztery równe części. Punkty podziału połączono z przeciwległym wierzchołkiem, dzieląc kąt przy tym wierzchołku trójkąta na cztery kąty. Oblicz miary tych kątów. Wyniki podaj w zaokrągleniu do 1.

62 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

63 Zadanie PP-GP-32. W trójkącie ABC dane są miary kątów: CAB = 30 i ABC = 45. Suma długości boków AC i BC równa się 10. Oblicz długości boków AC i BC.

64 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

65 Zadanie PP-GP-33. Podstawy trapezu mają długości 10 cm i 15 cm. Obwód tego trapezu równa się 35 cm. Ramiona tego trapezu przedłużamy do punktu przecięcia. Oblicz obwód trójkąta dobudowanego w taki sposób do tego trapezu.

66 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

67 Zadanie PP-GP-34. Przekątne czworokąta ABCD są prostopadłe i przecinają się w punkcie S. Trójkąty ABS i CDS mają równe pola. Wykaż, że trójkąty ADS i BCS są podobne.

68 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

69 Zadanie PP-GP-35. Stosunek wysokości rombu do boku rombu jest równy 8. Oblicz stosunek krótszej 17 przekątnej tego rombu do długości jego boku.

70 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

71 Zadanie PP-GP-36. Długości boków równoległoboku są równe 12 i 10. Symetralna dłuższego boku przechodzi przez wierzchołek równoległoboku. Oblicz długości przekątnych tego równoległoboku.

72 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

73 Zadanie PP-GP-37. W trójkącie prostokątnym ABC odcinek CD jest wysokością opuszczoną na przeciwprostokątną AB, której długość jest równa 18, a punkt D dzieli ją na dwa odcinki, których stosunek długości wynosi 1:5. Oblicz pole trójkąta ABC.

74 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

75 Zadanie PP-GP-38. W trójkącie prostokątnym ABC odcinek CD jest wysokością opuszczoną na przeciwprostokątną AB. Udowodnij, że CD = AD BD.

76 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

77 Zadanie PP-GP-39. W trójkącie prostokątnym ABC odcinek CD jest wysokością opuszczoną na przeciwprostokątną AB. Udowodnij, że AC 2 = AD AB.

78 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

79 Zadanie PP-GP-40. Oblicz kąty równoległoboku znając długości dwóch wysokości: h1 = 2cm, h2 = 3cm oraz obwód l = 20 cm.

80 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

81 Zadanie PP-GP-41. W równoległoboku o obwodzie 25 cm krótsza wysokość równy 3 2. Oblicz pole tego równoległoboku. h = 5cm, a sinus kąta ostrego jest

82 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

83 Zadanie PP-GP-42. W trójkącie równoramiennym ABC ( AC BC ) = wysokość CD = 6, a kąt przy wierzchołku C ma miarę 45. Oblicz długość promienia okręgu opisanego na tym trójkącie.

84 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

85 Zadanie PP-GP-43. Dany jest romb, którego bok ma długość 13 cm, a dłuższa przekątna 24 cm. Oblicz sinus kąta ostrego rombu.

86 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

87 Zadanie PP-GP-44. Dwie cięciwy przecinają się wewnątrz koła tak, że odcinki jednej z nich mają długości 36 i 21, a odcinki drugiej pozostają ze sobą w stosunku 3:7. Oblicz długość drugiej cięciwy.

88 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

89 Zadanie PP-GP-45. Z punktu leżącego na zewnątrz okręgu poprowadzono dwie sieczne. Odcinek wewnętrzny pierwszej siecznej jest równy 47, a zewnętrzny 9. Odcinek wewnętrzny drugiej siecznej jest o 72 większy od jej odcinka zewnętrznego. Obliczyć długości obu odcinków drugiej siecznej.

90 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

91 Zadanie PP-GP-46. Wewnątrz okręgu o promieniu 13 jest dany punkt M odległy od środka okręgu o 5. Przez punkt M przeprowadzono cięciwę AB, której długość równa się 25. Obliczyć długość odcinków, na które cięciwa AB została podzielona przez punkt M.

92 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

93 Zadanie PP-GP-47. Z jednego punktu leżącego na zewnątrz okręgu wyprowadzono sieczną i styczną do tego okręgu. Odcinek wewnętrzny siecznej jest o 20 dłuższy od odcinka stycznej, a odcinek zewnętrzny siecznej jest trzy razy krótszy od odcinka stycznej. Oblicz długość odcinka stycznej.

94 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

95 Zadanie PP-GP-48. Z punktu leżącego na zewnątrz okręgu wykreślono sieczną i styczną do tego okręgu. Długość odcinka stycznej równa się 18, a sieczna jest oddalona od środka okręgu o 4 i łączna długość obu jej odcinków (wewnętrznego i zewnętrznego) równa się 27. Oblicz długość promienia okręgu.

96 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

97 Zadanie PP-GP-49. Dwie cięciwy przecinają się wewnątrz okręgu o promieniu 13. Odcinki jednej cięciwy są równe 12 i 9, a druga cięciwa jest oddalona od środka okręgu o 5. Oblicz długości odcinków drugiej cięciwy.

98 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

99 Zadanie PP-GP-50. Z punktu A leżącego na zewnątrz koła poprowadzono styczną i sieczną do tego koła. ch B będzie punktem styczności, a C i D punktami przecięcia siecznej i okręgu. Wykaż, że 2 AB = AC AD.

100 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

101 Zadanie PP-GP-51. Udowodnij, że pole czworokąta, powstałego z połączenia środków kolejnych boków trapezu, jest równe połowie pola tego trapezu.

102 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

103 Zadanie PP-GP-52. Trapez ABCD jest równoramienny. Punkt O jest środkiem boku BC, zaś S jest punktem wspólnym prostej AB i prostej OD. Udowodnij, że pole trójkąta ADS równa się polu trapezu ABCD.

104 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

105 Zadanie PP-GP-53. Stosunek pola trójkąta prostokątnego do pola kwadratu, którego jednym z boków jest przeciwprostokątna tego trójkąta, jest równy 1. Oblicz sumę tangensów kątów ostrych tego 4 trójkąta.

106 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

107 Zadanie PP-GP-54. W trapezie równoramiennym połączono odcinkami środki sąsiednich boków. Oblicz pole powstałego czworokąta mając dane długości podstaw trapezu a = 30 i b = 10 oraz kąt ostry α = 60.

108 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

109 Zadanie PP-GP-55. Oblicz odległość środka okręgu opisanego na trójkącie prostokątnym o przyprostokątnych, których długości są równe 3a i 4a od środka okręgu wpisanego w ten trójkąt.

110 Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym programem matematyki? Czy zamierzasz zdawać maturę z matematyki?

Planimetria VII. Wymagania egzaminacyjne:

Planimetria VII. Wymagania egzaminacyjne: Wymagania egzaminacyjne: a) korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu, b) wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych

Bardziej szczegółowo

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty

Bardziej szczegółowo

Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie

Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/) 1. W trójkącie prostokątnym wysokość poprowadzona na przeciwprostokątną ma długość 10 cm, a promień okręgu

Bardziej szczegółowo

Matematyka podstawowa VII Planimetria Teoria

Matematyka podstawowa VII Planimetria Teoria Matematyka podstawowa VII Planimetria Teoria 1. Rodzaje kątów: a) Kąty wierzchołkowe; tworzą je dwie przecinające się proste, mają takie same miary. b) Kąty przyległe; mają wspólne jedno ramię, ich suma

Bardziej szczegółowo

Zadania otwarte krótkiej odpowiedzi na dowodzenie

Zadania otwarte krótkiej odpowiedzi na dowodzenie Zadania otwarte krótkiej odpowiedzi na dowodzenie Zadanie 1. Na bokach trójkąta równobocznego ABC tak wybrano punkty E, F oraz D, że AE = BF = CD = 1 AB (rysunek obok). a) Udowodnij, że trójkąt EFD jest

Bardziej szczegółowo

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2). 1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego

Bardziej szczegółowo

Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość:

Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: Klasa 3. Trójkąty. 1. Trójkąt prostokątny ma przyprostokątne p i q oraz przeciwprostokątną r. Z twierdzenia Pitagorasa wynika równość: A. r 2 + q 2 = p 2 B. p 2 + r 2 = q 2 C. p 2 + q 2 = r 2 D. p + q

Bardziej szczegółowo

2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia.

2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia. 1. Wykaż, że liczba 2 2 jest odwrotnością liczby 1 2. 2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia. 3. Wykaż, że dla każdej liczby całkowitej

Bardziej szczegółowo

PLANIMETRIA pp 2015/16. WŁASNOŚCI TRÓJKĄTÓW (nierówność trójkąta, odcinek łączący środki boków, środkowe, wysokość z kąta prostego)

PLANIMETRIA pp 2015/16. WŁASNOŚCI TRÓJKĄTÓW (nierówność trójkąta, odcinek łączący środki boków, środkowe, wysokość z kąta prostego) PLNIMETRI pp 2015/16 WŁSNOŚI TRÓJKĄTÓW (nierówność trójkąta, odcinek łączący środki boków, środkowe, wysokość z kąta prostego) Zad.1 Wyznacz kąty trójkąta jeżeli stosunek ich miar wynosi 5:3:1. Zad.2 Znajdź

Bardziej szczegółowo

Zadanie 1. W trapezie ABCD poprowadzono przekątne, które podzieliły go na cztery trójkąty. Mając dane pole S 1

Zadanie 1. W trapezie ABCD poprowadzono przekątne, które podzieliły go na cztery trójkąty. Mając dane pole S 1 Zadanie. W trapezie ABCD poprowadzono przekątne, które podzieliły go na cztery trójkąty. Mając dane pole S i S 2 obliczyć pole trapezu ABCD. Zadanie 2. Mamy trapez, w którym suma kątów przy dłuższej podstawie

Bardziej szczegółowo

Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap wojewódzki 02.04.2005 rok Czas rozwiązywania zadań 150 minut

Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap wojewódzki 02.04.2005 rok Czas rozwiązywania zadań 150 minut Klasa I - zakres podstawowy Etap wojewódzki 17.04.004 rok Zad 1 ( 6 pkt) Znajdź wszystkie liczby czterocyfrowe podzielne przez 15, w których cyfrą tysięcy jest jeden, a cyfrą dziesiątek dwa. Odpowiedź

Bardziej szczegółowo

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =

Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n = /9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n

Bardziej szczegółowo

ZADANIA MATURALNE PLANIMETRIA POZIOM PODSTAWOWY Opracowała mgr Danuta Brzezińska

ZADANIA MATURALNE PLANIMETRIA POZIOM PODSTAWOWY Opracowała mgr Danuta Brzezińska ZADANIA MATURALNE PLANIMETRIA POZIOM PODSTAWOWY Opracowała mgr Danuta Brzezińska Zad.1. ( 1pkt) Kąt środkowy i kąt wpisany są oparte na tym samym łuku. Suma ich miar jest równa. Jaka jest miara kąta środkowego?

Bardziej szczegółowo

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018. Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory

Bardziej szczegółowo

7. PLANIMETRIA.GEOMETRIA ANALITYCZNA

7. PLANIMETRIA.GEOMETRIA ANALITYCZNA 7. PLANIMETRIA.GEOMETRIA ANALITYCZNA ZADANIA ZAMKNIĘTE 1. Okrąg o równaniu : A) nie przecina osi, B) nie przecina osi, C) przechodzi przez początek układu współrzędnych, D) przechodzi przez punkt. 2. Stosunek

Bardziej szczegółowo

Skrypt 33. Powtórzenie do matury:

Skrypt 33. Powtórzenie do matury: Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 33 Powtórzenie do matury:

Bardziej szczegółowo

Praca klasowa nr 2 - figury geometryczne (klasa 6)

Praca klasowa nr 2 - figury geometryczne (klasa 6) Praca klasowa nr 2 - figury geometryczne (klasa 6) MARIUSZ WRÓBLEWSKI IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Dany jest równoległobok ABCD. Narysuj za pomocą linijki i ekierki odcinek BF prostopadły do odcinka

Bardziej szczegółowo

Mini tablice matematyczne. Figury geometryczne

Mini tablice matematyczne. Figury geometryczne Mini tablice matematyczne Figury geometryczne Spis treści Własności kwadratu Ciekawostka:Kwadrat magiczny Prostokąt Własności prostokąta Trapez Własności trapezu Równoległobok Własności równoległoboku

Bardziej szczegółowo

Ćwiczenia z Geometrii I, czerwiec 2006 r.

Ćwiczenia z Geometrii I, czerwiec 2006 r. Waldemar ompe echy przystawania trójkątów 1. unkt leży na przekątnej kwadratu (rys. 1). unkty i R są rzutami prostokątnymi punktu odpowiednio na proste i. Wykazać, że = R. R 2. any jest trójkąt ostrokątny,

Bardziej szczegółowo

Klasówka gr. A str. 1/3

Klasówka gr. A str. 1/3 Klasówka gr. A str. 1/3 1. Boki trójkąta ABC mają długości 9 cm, 7cm, 8 cm. Boki trójkąta podobnego A B C w skali 1 2 mają długości: A. 18 cm, 14 cm, 16 cm B. 4 1 2 cm, 3 1 2 cm, 4 cm C. 4 1 2 cm, 7 cm,

Bardziej szczegółowo

SPRAWDZIAN NR Zaznacz poprawne dokończenie zdania. 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych skonstruuj kąt o

SPRAWDZIAN NR Zaznacz poprawne dokończenie zdania. 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych skonstruuj kąt o SPRAWDZIAN NR 1 ANNA KLAUZA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Średnica koła jest o 4 cm dłuższa od promienia. Pole tego koła jest równe 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia

Bardziej szczegółowo

2 5 C). Bok rombu ma długość: 8 6

2 5 C). Bok rombu ma długość: 8 6 Zadanie 1 W trójkącie prostokątnym o przeciwprostokątnej 6 i przyprostokątnej sinus większego z kątów ostrych ma wartość: C) Zadanie Krótsza przekątna rombu o długości tworzy z bokiem rombu kąt 60 0. Bok

Bardziej szczegółowo

SPIS TREŚCI. Do Nauczyciela Regulamin konkursu Zadania

SPIS TREŚCI. Do Nauczyciela Regulamin konkursu Zadania SPIS TREŚCI Do Nauczyciela... 6 Regulamin konkursu... 7 Zadania Liczby i działania... 9 Procenty... 14 Figury geometryczne... 19 Kąty w kole... 24 Wyrażenia algebraiczne... 29 Równania i nierówności...

Bardziej szczegółowo

Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących

Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt dla ucznia Planimetria: 5.

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Próbny egzamin maturalny z matematyki listopad 009 Klucz odpowiedzi do

Bardziej szczegółowo

Geometria. Zadanie 1. Liczba przekątnych pięciokąta foremnego jest równa A. 4 B. 5 C. 6 D. 7

Geometria. Zadanie 1. Liczba przekątnych pięciokąta foremnego jest równa A. 4 B. 5 C. 6 D. 7 Geometria Zadanie 1. Liczba przekątnych pięciokąta foremnego jest równa A. 4 B. 5 C. 6 D. 7 W tym przypadku możemy wykonać szkic pięciokąta i policzyć przekątne: Zadanie. Promień okręgu opisanego na kwadracie

Bardziej szczegółowo

Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii. Trójkąty. Trójkąt dowolny. Wielokąty trygonometria 1.

Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii. Trójkąty. Trójkąt dowolny. Wielokąty trygonometria 1. Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Wielokąt wypukły miara każdego kąt wewnętrznego jest mniejsza od 180 o. Liczba przekątnych: n*(n-2) Suma kątów wewnętrznych wielokąta

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 DEFINICJE PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 Czworokąt to wielokąt o 4 bokach i 4 kątach. Przekątną czworokąta nazywamy odcinek łączący przeciwległe wierzchołki. Wysokością czworokąta nazywamy

Bardziej szczegółowo

Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii

Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Obliczenia geometryczne z zastosowaniem własności funkcji trygonometrycznych w wielokątach wypukłych Wielokąt - figura płaską będąca sumą

Bardziej szczegółowo

Zadanie 1. Przekątna prostopadłościanu o wymiarach ma długość A. 2 5 B. 2 3 C. 5 2 D Zadanie 2.

Zadanie 1. Przekątna prostopadłościanu o wymiarach ma długość A. 2 5 B. 2 3 C. 5 2 D Zadanie 2. Zadanie 1. Przekątna prostopadłościanu o wymiarach 3 4 5 ma długość A. 2 5 B. 2 3 C. 5 2 D. 2 15 Zadanie 2. Pole powierzchni całkowitej prostopadłościanu jest równe 198. Stosunki długości krawędzi prostopadłościanu

Bardziej szczegółowo

Bukiety matematyczne dla gimnazjum

Bukiety matematyczne dla gimnazjum Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 5 IX rok 2003/2004 Bukiet 1 1. W trójkącie ABC prosta równoległa do boku AB przecina boki AC i BC odpowiednio w punktach D i E. Zauważ,

Bardziej szczegółowo

9. PLANIMETRIA zadania

9. PLANIMETRIA zadania Zad.9.1. Czy boki trójkąta mogą mieć długości: a),6, 10 b) 5,8, 10 9. PLANIMETRIA zadania Zad.9.. Dwa kąty trójkąta mają miary: 5, 40. Jaki to trójkąt: ostrokątny, prostokątny, czy rozwartokątny? Zad.9..

Bardziej szczegółowo

Twierdzenia o czworokącie wpisanym w okrąg i o czworokącie opisanym na okręgu.

Twierdzenia o czworokącie wpisanym w okrąg i o czworokącie opisanym na okręgu. Twierdzenia o czworokącie wpisanym w okrąg i o czworokącie opisanym na okręgu. Adrian Łydka Bernadeta Tomasz Teoria Definicja 1. Klasyfikacja czworokątów (wypukłych): Trapez jest czworokątem, w którym

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16)

Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 2015/16) Wymagania na egzamin poprawkowy z matematyki dla klasy I A LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język

Bardziej szczegółowo

Tematy: zadania tematyczne

Tematy: zadania tematyczne Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.

Bardziej szczegółowo

Elżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki

Elżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki Elżbieta Świda Elżbieta Kurczab Marcin Kurczab Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki Zadanie Trójkąt ABC jest trójkątem prostokątnym. Z punktu M, należącego

Bardziej szczegółowo

Geometria płaska - matura Przyprostokątne trójkąta prostokątnego mają długości 3 7cm poprowadzona z wierzchołka kąta prostego ma długość: 12

Geometria płaska - matura Przyprostokątne trójkąta prostokątnego mają długości 3 7cm poprowadzona z wierzchołka kąta prostego ma długość: 12 Geometria płaska - matura 010 1. Przyprostokątne trójkąta prostokątnego mają ługości 7cm i 4 7cm. Wysokość poprowazona z wierzchołka kąta prostego ma ługość: 1 5 A. 7cm B. cm C. 8 7cm D. 7 7cm 5 7. Miara

Bardziej szczegółowo

Wielokąty i Okręgi- zagadnienia

Wielokąty i Okręgi- zagadnienia Wielokąty i Okręgi- zagadnienia 1. Okrąg opisany na trójkącie. na każdym trójkącie można opisać okrąg, środkiem okręgu opisanego na trójkącie jest punkt przecięcia symetralnych boków tego trójkąta, jeżeli

Bardziej szczegółowo

ETAP 3 GEOMETRIA NA PŁASZCZYŹNIE ZADANIA PRZYGOTOWAWCZE

ETAP 3 GEOMETRIA NA PŁASZCZYŹNIE ZADANIA PRZYGOTOWAWCZE LAMBDA Zespół Szkół w Chełmży ul. Hallera 23, 87 140 Chełmża tel./fax. 675 24 19 Konkurs matematyczny dla uczniów klas III gimnazjum www.lamdba.neth.pl ETAP 3 GEOMETRIA NA PŁASZCZYŹNIE ZADANIA PRZYGOTOWAWCZE

Bardziej szczegółowo

Tomasz Zamek-Gliszczyński. Zadania powtórkowe przed maturą. Zakres podstawowy. Matematyka. atematyka

Tomasz Zamek-Gliszczyński. Zadania powtórkowe przed maturą. Zakres podstawowy. Matematyka. atematyka atematyka Tomasz Zamek-Gliszczyński Matematyka Zadania powtórkowe przed maturą Zakres podstawowy Spis treści Wstęp 4 1 Liczby 5 2 Algebra 24 3 Funkcje 31 4 Ciągi 61 5 Geometria na płaszczyźnie 69 6 Trygonometria

Bardziej szczegółowo

MATURA PRÓBNA PODSTAWOWA GEOMETRIA Z TRYGONOMETRIA

MATURA PRÓBNA PODSTAWOWA GEOMETRIA Z TRYGONOMETRIA www.zadania.info NJWIEKSZY INTERNETOWY ZIÓR ZŃ Z MTEMTYKI MTUR PRÓN POSTWOW GEOMETRI Z TRYGONOMETRI ZNIE 1 (1 PKT) W trójkacie prostokatnym naprzeciw kata ostrego α leży przyprostokatna długości 3 cm.

Bardziej szczegółowo

Przykładowe zadania z matematyki na poziomie podstawowym. Zadanie 1. (0 1) Liczba A. 3. Zadanie 2. (0 1) Liczba log 24 jest równa

Przykładowe zadania z matematyki na poziomie podstawowym. Zadanie 1. (0 1) Liczba A. 3. Zadanie 2. (0 1) Liczba log 24 jest równa Przykładowe zadania z rozwiązaniami: poziom podstawowy 1. Przykładowe zadania z matematyki na poziomie podstawowym Zadanie 1. (0 1) Liczba 8 3 3 2 3 9 jest równa A. 3 3 B. 32 3 9 C. 3 D. 5 3 Zadanie 2.

Bardziej szczegółowo

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH B D C A B B A B A C D A

Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH B D C A B B A B A C D A Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KLUCZ PUNKTOWANIA ZADAŃ ZAMKNIĘTYCH Nr zad Odp. 1 2 3 4 5 6 7 8 9 10 11 12 B D C A B B A B A C D A Nr zad Odp. 13 14 15

Bardziej szczegółowo

ZADANIA MATURALNE STEREOMETRIA POZIOM PODSTAWOWY Opracowała mgr Danuta Brzezińska

ZADANIA MATURALNE STEREOMETRIA POZIOM PODSTAWOWY Opracowała mgr Danuta Brzezińska ZADANIA MATURALNE STEREOMETRIA POZIOM PODSTAWOWY Opracowała mgr Danuta Brzezińska Zad.1. ( 5 pkt) Objętość ostrosłupa prawidłowego trójkątnego, o długości krawędzi podstawy 6 cm, jest równa cm 3. Oblicz

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum

Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 2015/16) Wykaz zakładanych osiągnięć ucznia klasy I liceum Wymagania na egzamin poprawkowy z matematyki dla klasy I C LO (Rok szkolny 05/6) Wykaz zakładanych osiągnięć ucznia klasy I liceum (osiągnięcia ucznia w zakresie podstawowym) I. Liczby rzeczywiste. Język

Bardziej szczegółowo

a) Wykaż, że przekształcenie P jest izometrią b) W prostokątnym układzie współrzędnych narysuj trójkąt o wierzchołkach A ( 1;2)

a) Wykaż, że przekształcenie P jest izometrią b) W prostokątnym układzie współrzędnych narysuj trójkąt o wierzchołkach A ( 1;2) ZESTAW I R Zad (3 pkt) Suma pierwiastków trójmianu a, c R R trójmianu jest równa 8 y ax bx c jest równa log c log a, gdzie Uzasadnij, że odcięta wierzchołka paraboli będącej wykresem tego a c Zad (7 pkt)

Bardziej szczegółowo

Klasa 5. Figury na płaszczyźnie. Astr. 1/6. 1. Na którym rysunku nie przedstawiono trapezu?

Klasa 5. Figury na płaszczyźnie. Astr. 1/6. 1. Na którym rysunku nie przedstawiono trapezu? Klasa 5. Figury na płaszczyźnie Astr. 1/6... imię i nazwisko...... klasa data 1. Na którym rysunku nie przedstawiono trapezu? 2. Oblicz obwód trapezu równoramiennego o podstawach długości 18 cm i 12 cm

Bardziej szczegółowo

Sprawdzian 2. MATEMATYKA. Przed próbną maturą. (poziom podstawowy) Czas pracy: 90 minut Maksymalna liczba punktów: 26. Imię i nazwisko ...

Sprawdzian 2. MATEMATYKA. Przed próbną maturą. (poziom podstawowy) Czas pracy: 90 minut Maksymalna liczba punktów: 26. Imię i nazwisko ... MATEMATYKA Przed próbną maturą Sprawdzian. (poziom podstawowy) Czas pracy: 90 minut Maksymalna liczba punktów: 6 Imię i nazwisko... Liczba punktów Procent Przed próbną maturą. Sprawdzian. Zadanie 1. (0

Bardziej szczegółowo

PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM

PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM Zad.1. (0-1) Liczba 3 8 3 3 9 2 A. 3 3 Zad.2. (0-1) jest równa: Liczba log24 jest równa: B. 3 32 9 C. 3 4 D. 3 5 A. 2log2 + log20 B. log6 + 2log2

Bardziej szczegółowo

= [6; 2]. Wyznacz wierzchołki tego równoległoboku.

= [6; 2]. Wyznacz wierzchołki tego równoległoboku. ZADANIE 1 (5 PKT) Wyznacz współrzędne wierzchołków trójkata jeżeli środki jego boków maja współrzędne: P = (1, 3), Q = ( 5, 4), R = ( 6, 7). ZADANIE 2 (5 PKT) Dla jakich wartości parametru α odległość

Bardziej szczegółowo

9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie

9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie 9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (c.d).

Bardziej szczegółowo

METODY KONSTRUKCJI ZA POMOCĄ CYRKLA. WYKŁAD 1 Czas: 45

METODY KONSTRUKCJI ZA POMOCĄ CYRKLA. WYKŁAD 1 Czas: 45 METODY KONSTRUKCJI ZA POMOCĄ CYRKLA WYKŁAD 1 Czas: 45 TWIERDZENIE PONCELETA-STEINERA W roku 1833, Szwajcarski matematyk Jakob Steiner udowodnił, że wszystkie klasyczne konstrukcje (za pomocą cyrkla i linijki)

Bardziej szczegółowo

2 Figury geometryczne

2 Figury geometryczne Płaszczyzna, proste... 21 2 igury geometryczne 1 Płaszczyzna, proste i półproste P 1. Wypisz proste, do których: a) prosta k jest równoległa, o n k l b) prosta p jest prostopadła, m c) prosta k nie jest

Bardziej szczegółowo

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste

Bardziej szczegółowo

Pole trójkata, trapezu

Pole trójkata, trapezu Pole trójkata, trapezu gr. A str. 1/6... imię i nazwisko...... klasa data 1. Poprowadź wysokość do boku AB. Zmierz długości odpowiednich odcinków i oblicz pole trójkąta ABC. 2. W obydwu trójkątach dorysuj

Bardziej szczegółowo

Dział I FUNKCJE TRYGONOMETRYCZNE

Dział I FUNKCJE TRYGONOMETRYCZNE MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: III Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE TRYGONOMETRYCZNE Lp. Zagadnienie Osiągnięcia ucznia. 1. Miara kąta. Sprawnie operuje pojęciami:

Bardziej szczegółowo

Podstawowe pojęcia geometryczne

Podstawowe pojęcia geometryczne PLANIMETRIA Podstawowe pojęcia geometryczne Geometria (słowo to pochodzi z języka greckiego i oznacza mierzenie ziemi) jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych

Bardziej szczegółowo

PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach:

PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: PODSTAWY > Figury płaskie (1) KĄTY Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: Kąt możemy opisać wpisując w łuk jego miarę (gdy jest znana). Gdy nie znamy miary kąta,

Bardziej szczegółowo

Odległośc w układzie współrzędnych. Środek odcinka.

Odległośc w układzie współrzędnych. Środek odcinka. GEOMETRIA ANALITYCZNA ZADANIA. Odległośc w układzie współrzędnych. Środek odcinka. Zad. 1 Wyznacz odległość między punktami A i B (długość odcinka AB) jeżeli: d = Zad. 2 a) A=(5,-3) B=(-2,3) b) A=(-2,2)

Bardziej szczegółowo

Zadanie 4. Krawędź sześcianu jest o 6 krótsza od jego przekątnej. Oblicz pole powierzchni całkowitej tego sześcianu

Zadanie 4. Krawędź sześcianu jest o 6 krótsza od jego przekątnej. Oblicz pole powierzchni całkowitej tego sześcianu Zadanie 4. Krawędź sześcianu jest o 6 krótsza od jego przekątnej. Oblicz pole powierzchni całkowitej tego sześcianu Zadanie 5. Sześcian o krawędzi 10 przecięto płaszczyzną zawierającą przekątną dolnej

Bardziej szczegółowo

ZBIÓR ZADAŃ - ROZUMOWANIE I ARGUMENTACJA

ZBIÓR ZADAŃ - ROZUMOWANIE I ARGUMENTACJA ZIÓR ZŃ - ROZUMOWNIE I RGUMENTJ 0--30 Strona ZIÓR ZO O WYMGNI EGZMINYJNEGO - ROZUMOWNIE I RGUMENTJ. Zapisz sumę trzech kolejnych liczb naturalnych, z których najmniejsza jest liczba n. zy suma ta jest

Bardziej szczegółowo

Zadania na dowodzenie Opracowała: Ewa Ślubowska

Zadania na dowodzenie Opracowała: Ewa Ślubowska Egzamin Gimnazjalny Zadania na dowodzenie Opracowała: Ewa Ślubowska W nauczaniu matematyki ważne jest rozwijanie różnych aktywności umysłu. Ma temu służyć min. rozwiązywanie jednego zadania czy dowodzenie

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY

WOJEWÓDZKI KONKURS MATEMATYCZNY Kod ucznia Suma punktów Numer zadania 1-20 21 22 23 Liczba punktów WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW GIMNAZJÓW W ROKU SZKOLNYM 2014/2015 13 STYCZNIA 2015R. 1. Test konkursowy zawiera 23 zadania.

Bardziej szczegółowo

Trójkąty jako figury geometryczne płaskie i ich najważniejsze elementy

Trójkąty jako figury geometryczne płaskie i ich najważniejsze elementy Artykuł pobrano ze strony eioba.pl Trójkąty jako figury geometryczne płaskie i ich najważniejsze elementy Trójkąt jest wielokątem o trzech bokach Suma miar kątów wewnętrznych trójkąta jest równa 180. +

Bardziej szczegółowo

Matematyka podstawowa IX. Stereometria

Matematyka podstawowa IX. Stereometria Zadania wprowadzające: Matematyka podstawowa IX Stereometria 1. Pole powierzchni całkowitej sześcianu jest równe 54. Oblicz objętość sześcianu. 2. Pole powierzchni sześcianu jest równe 96.Oblicz długość

Bardziej szczegółowo

9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie

9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie 9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (c.d).

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 200 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

Matura z matematyki 1920 r.

Matura z matematyki 1920 r. Matura z matematyki 1920 r. (źródło: Sprawozdanie Dyrekcji Państwowego Gimnazjum im. Karola Marcinkowskiego w Poznaniu: za 1-sze dziesięciolecie zakładu w niepodległej i wolnej ojczyźnie: 1919-1929) Żelazna

Bardziej szczegółowo

Odcinki, proste, kąty, okręgi i skala

Odcinki, proste, kąty, okręgi i skala Odcinki, proste, kąty, okręgi i skala str. 1/5...... imię i nazwisko lp. w dzienniku...... klasa data 1. Na którym rysunku przedstawiono odcinek? 2. Połącz figurę z jej nazwą. odcinek łamana prosta półprosta

Bardziej szczegółowo

Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)

Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3) Pytania zamknięte / TEST : Wybierz 1 odp prawidłową. 1. Punkt: A) jest aksjomatem in. pewnikiem; B) nie jest aksjomatem, bo można go zdefiniować. 2. Prosta: A) to zbiór punktów; B) to zbiór punktów współliniowych.

Bardziej szczegółowo

POWTÓRZENIE WIADOMOŚCI Z TRYGONOMETRII

POWTÓRZENIE WIADOMOŚCI Z TRYGONOMETRII Zad.1 Rozwiąż trójkąt prostokątny: a) a 4, 0 b) b 8, c 1 POWTÓRZENIE WIADOMOŚCI Z TRYGONOMETRII Zad. Oblicz wartość wyrażenia cos 0 cos 45 cos0 cos 45. Zad.4 Wyznacz długości przyprostokątnych trójkąta

Bardziej szczegółowo

Skrypt 30. Przygotowanie do egzaminu Okrąg wpisany i opisany na wielokącie

Skrypt 30. Przygotowanie do egzaminu Okrąg wpisany i opisany na wielokącie Projekt Innowacyjny program nauczania matematyki dla gimnazjów współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 30 Przygotowanie do egzaminu Okrąg wpisany

Bardziej szczegółowo

ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE

ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE ZBIÓR PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI POZIOM PODSTAWOWY ZADANIA ZAMKNIĘTE Zad.1. (1p) Liczba 3 30 9 90 jest równa: A. 3 210 B. 3 300 C. 9 120 D. 27 2700 Zad.2. (1p) Liczba 3 8 3 3 9 2 jest równa: A. 3

Bardziej szczegółowo

2 PLANIMETRIA 1 Α O. Rys.2.9

2 PLANIMETRIA 1 Α O. Rys.2.9 PLNIMETRI 1 Planimetria.1 Wzajemne położenie prostych i okręgów 1. Przez punkt P należący do okręgu o środku w poprowadzono styczną do tego okręgu i cięciwę P (Rys..9). Ile stopni ma kąt między styczną

Bardziej szczegółowo

MATURA probna listopad 2010

MATURA probna listopad 2010 MATURA probna listopad 00 ZADANIA ZAMKNIĘTE W zadaniach od. do 5. wybierz i zaznacz poprawną odpowiedź. Zadanie. ( pkt) - 4 $ 4 Liczba 0 jest równa 4-0, 5 A. B. C. D. 4 Zadanie. ( pkt) Liczba log 6 - log

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 016 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 19

Bardziej szczegółowo

Treści zadań Obozu Naukowego OMJ

Treści zadań Obozu Naukowego OMJ STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ JUNIORÓW Treści zadań Obozu Naukowego OMJ Poziom OM 2017 rok SZCZYRK 2017 Olimpiada Matematyczna Juniorów jest wspó³finansowana

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 04 POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla piszącego. Sprawdź, czy arkusz zawiera 6 stron.. W zadaniach od. do

Bardziej szczegółowo

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI MATERIAŁ ĆWICZENIOWY Z MATEMATYKI STYCZEŃ 0 POZIOM PODSTAWOWY Czas pracy 70 minut Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 0 stron.. W zadaniach od. do 0. są podane odpowiedzi: A, B, C, D,

Bardziej szczegółowo

KLASA IV ZESTAW 1. Zadanie 1 Na ile różnych sposobów można wydać resztę 7gr za pomocą monet 5gr, 2gr, 1gr?

KLASA IV ZESTAW 1. Zadanie 1 Na ile różnych sposobów można wydać resztę 7gr za pomocą monet 5gr, 2gr, 1gr? KLASA IV Na ile różnych sposobów można wydać resztę 7gr za pomocą monet 5gr, 2gr, 1gr? Anna, Beata i Cecylia rozmawiają między sobą. Anna: Jestem o 5 lat starsza od Beaty. Beata: Jestem młodsza od Cecylii

Bardziej szczegółowo

3 zawartości szklanki obliczył, że w pozostałej

3 zawartości szklanki obliczył, że w pozostałej Klasa I - zakres podstawowy Etap rejonowy 07.0.004 rok Zadanie 1 ( pkt ) Uzasadnij, że 7 50 : 81 37 jest liczbą większą od 8. Zadanie ( pkt ) Spośród 40 uczniów pewnej klasy 17 gra w szachy, 1 w brydża,

Bardziej szczegółowo

PRÓBNA MATURA Z MATEMATYKI Z NOWINAMI POZIOM PODSTAWOWY

PRÓBNA MATURA Z MATEMATYKI Z NOWINAMI POZIOM PODSTAWOWY UZUPEŁNIA ZDAJĄCY KOD PESEL PRÓBNA MATURA Z MATEMATYKI Z NOWINAMI POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT LICZBA PUNKTÓW DO UZYSKANIA: 50 Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

Ostrosłupy ( ) Zad. 4: Jedna z krawędzi ostrosłupa trójkątnego ma długość 2, a pozostałe 4. Znajdź objętość tego ostrosłupa. Odp.: V =

Ostrosłupy ( ) Zad. 4: Jedna z krawędzi ostrosłupa trójkątnego ma długość 2, a pozostałe 4. Znajdź objętość tego ostrosłupa. Odp.: V = Ostrosłupy Zad 1: W ostrosłupie prawidłowym trójkątnym kwadrat długości krawędzi podstawy, kwadrat długości wysokości ostrosłupa i kwadrat długości krawędzi bocznej są kolejnymi wyrazami ciągu arytmetycznego

Bardziej szczegółowo

Treści zadań Obozu Naukowego OMG

Treści zadań Obozu Naukowego OMG STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OM 2015 rok SZCZYRK 2015 Pierwsze zawody indywidualne Treści

Bardziej szczegółowo

MAŁOPOLSKI KONKURS MATEMATYCZNY dla gimnazjalistów Rok szkolny 2010 / 2011 ETAP SZKOLNY - 7 października 2010 roku

MAŁOPOLSKI KONKURS MATEMATYCZNY dla gimnazjalistów Rok szkolny 2010 / 2011 ETAP SZKOLNY - 7 października 2010 roku Kod ucznia... MAŁOPOLSKI KONKURS MATEMATYCZNY dla gimnazjalistów Rok szkolny 200 / 20 ETAP SZKOLNY - 7 października 200 roku. Przed Tobą zestaw 20 zadań konkursowych. 2. Na ich rozwiązanie masz 90 minut.

Bardziej szczegółowo

1. Oblicz miarę kąta wpisanego i środkowego opartych na tym samym łuku równym 1/10 długości okręgu. 2. Wyznacz kąty x i y. Odpowiedź uzasadnij.

1. Oblicz miarę kąta wpisanego i środkowego opartych na tym samym łuku równym 1/10 długości okręgu. 2. Wyznacz kąty x i y. Odpowiedź uzasadnij. lb. Oblicz miarę kąta wpisanego i środkowego opartych na tym samym łuku równym /0 długości okręgu.. Wyznacz kąty i y. Odpowiedź uzasadnij. 3. Wyznacz miary kątów α i β. 4. Wyznacz miary kątów α i β. 5.

Bardziej szczegółowo

KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI

KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI KORESPONDENCYJNY KURS PRZYGOTOWAWCZY Z MATEMATYKI PRACA KONTROLNA nr 1 październik 1999 r 1. Stop składa się z 40% srebra próby 0,6, 30% srebra próby 0,7 oraz 1 kg srebra próby 0,8. Jaka jest waga i jaka

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRZED MATURĄ MAJ 2017 POZIOM PODSTAWOWY Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15 stron (zadania 1 33). 2. Rozwiązania zadań wpisuj

Bardziej szczegółowo

Przykłady zadań do standardów.

Przykłady zadań do standardów. Przykłady zadań do standardów 1 Wykorzystanie i tworzenie informacji 1 Oblicz wartośd wyrażenia: log 5 log8 log Odp: 1 1 3 5 8 Wyrażenie 5 1 0,5 : 3 zapisz w postaci p, gdzie p jest liczbą całkowitą Odp:

Bardziej szczegółowo

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna Arkusz A01 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba log 1 3 3 27 jest równa:

Bardziej szczegółowo

VIII Olimpiada Matematyczna Gimnazjalistów

VIII Olimpiada Matematyczna Gimnazjalistów VIII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (18 października 01 r.) Rozwiązania zadań testowych 1. Miary α, β, γ kątów pewnego trójkąta spełniają warunek

Bardziej szczegółowo

1 Odległość od punktu, odległość od prostej

1 Odległość od punktu, odległość od prostej 24 Figury geometryczne 2 Figury geometryczne 1 Odległość od punktu, odległość od prostej P 1. Odległość punktu K od prostej p jest równa 4 cm. Który z odcinków ma długość równą 4 cm? K p A B C D A. AK

Bardziej szczegółowo

Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap rejonowy rok Czas rozwiązywania zadań 150 minut

Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap rejonowy rok Czas rozwiązywania zadań 150 minut Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap rejonowy 0..005 rok Czas rozwiązywania zadań 50 minut Zadanie ( pkt) a b a Wiedząc, że dla b 0. Oblicz b a b Zadanie

Bardziej szczegółowo

Grudziądzki Konkurs Matematyczny 2009 Klasy drugie poziom rozszerzony

Grudziądzki Konkurs Matematyczny 2009 Klasy drugie poziom rozszerzony Grudziądzki Konkurs Matematyczny 009 Klasy drugie poziom rozszerzony _R Funkcja liniowa i funkcja kwadratowa str _R Ciągi str _R Wielomiany i funkcje wymierne str 5 _R4 Geometria analityczna str 6 _R5

Bardziej szczegółowo

na postać kanoniczną, podaj współrzędne wierzchołka paraboli i określ czy jej ramiona są skierowane w górę czy w dół.

na postać kanoniczną, podaj współrzędne wierzchołka paraboli i określ czy jej ramiona są skierowane w górę czy w dół. Zadania na poprawkę dla sa f x x 1x na postać kanoniczną, podaj współrzędne wierzchołka paraboli i określ czy jej ramiona są skierowane w górę czy w dół. 1. Zamień postać ogólną funkcji kwadratowej 5.

Bardziej szczegółowo

Sprawdzian całoroczny kl. II Gr. A x

Sprawdzian całoroczny kl. II Gr. A x . Oblicz: a) (,5) 8 c) ( ) : ( ). Oblicz: Sprawdzian całoroczny kl. II Gr. A [ ] d) 6 a) ( : ) 5 6 6 8 50. Usuń niewymierność z mianownika: a). Oblicz obwód koła o polu,π dm. 5. Podane wyrażenia przedstaw

Bardziej szczegółowo

Przykładowe rozwiązania

Przykładowe rozwiązania Przykładowe rozwiązania (E. Ludwikowska, M. Zygora, M. Walkowiak) Zadanie 1. Rozwiąż równanie: w przedziale. ( ) ( ) ( )( ) ( ) ( ) ( ) Uwzględniając, że x otrzymujemy lub lub lub. Zadanie. Dany jest czworokąt

Bardziej szczegółowo

Skrypt 24. Geometria analityczna: Opracowanie L5

Skrypt 24. Geometria analityczna: Opracowanie L5 Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 24 Geometria analityczna:

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 01 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od

Bardziej szczegółowo