LVIII Olimpiada Matematyczna
|
|
- Lech Jabłoński
- 8 lat temu
- Przeglądów:
Transkrypt
1 LVIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 23 lutego 2007 r. (pierwszy dzień zawodów) Zadanie. Wielomian P (x) ma współczynniki całkowite. Udowodnić, że jeżeli wielomiany P (x) oraz P (P (P (x))) mają wspólny pierwiastek rzeczywisty, to mają także wspólny pierwiastek całkowity. Niech liczba rzeczywista a będzie wspólnym pierwiastkiem wielomianów P (x) i P (P (P (x))). Z równości P (a) = 0 oraz P (P (P (a))) = 0 otrzymujemy P (P (0)) = 0. Liczba całkowita m = P (0) spełnia zatem warunki P (m) = P (P (0)) = 0 oraz P (P (P (m))) = P (P (P (P (0)))) = P (P (0)) = 0, co oznacza, że m jest żądanym wspólnym pierwiastkiem całkowitym. Zadanie 2. Dany jest pięciokąt wypukły ABCDE, w którym BC = CD, DE = EA, <)BCD = <)DEA = 90. Udowodnić, że z odcinków o długościach AC, CE, EB można zbudować trójkąt. Wyznaczyć miary jego kątów, znając miarę α kąta ACE i miarę β kąta BEC. Niech P będzie obrazem punktu B przy obrocie o kąt 90 wokół punktu E (rys. ); wtedy oczywiście proste BE i EP są prostopadłe oraz BE=EP. Przy tym obrocie punkt A przechodzi na punkt D, a zatem trójkąty ABE oraz EDP są przystające. Stąd wynika, że AB = DP oraz <)EAB = <)EDP. P D E β α C A rys. B
2 W każdym pięciokącie suma kątów wewnętrznych wynosi 540, a więc <)EAB +<)ABC +<)CDE = 360. Wobec tego <)P DC = 360 <)EDC <)EDP = 360 <)EDC <)EAB = <)ABC. Stąd oraz z zależności AB = DP oraz BC = DC wynika, że trójkąty P DC i ABC są przystające. A skoro punkt D przy obrocie o kąt 90 wokół punktu C przechodzi na punkt B, więc punkt P przy tym obrocie musi przejść na punkt A. Stąd wynika, że proste AC i P C są prostopadłe oraz AC = P C. Trójkąt EP C jest zatem zbudowany z odcinków o długościach AC, CE, EB. Ponieważ proste BE i P E są prostopadłe, więc <)P EC = 90 β. Analogicznie uzyskujemy <)ECP = 90 α. Wobec tego miary kątów trójkąta zbudowanego z odcinków AC, CE, EB wynoszą: 90 β, α+β, 90 α. Zadanie 3. Z n 2 płytek w kształcie trójkąta równobocznego o boku ułożono trójkąt równoboczny o boku n. Każda płytka jest z jednej strony biała, a z drugiej czarna. Ruch polega na wykonaniu następujących czynności: Wybieramy płytkę P mającą wspólne boki z co najmniej dwiema płytkami, których widoczne strony mają kolor inny niż widoczna strona płytki P. Następnie odwracamy płytkę P na drugą stronę. Dla każdego n 2 rozstrzygnąć, czy istnieje początkowe ułożenie płytek, pozwalające wykonać nieskończony ciąg ruchów. Nazwijmy odcinkiem granicznym wspólny bok dwóch płytek, których widoczne strony mają różne kolory. Oczywiście liczba odcinków granicznych jest nieujemna i nie przekracza liczby m wszystkich odcinków będących wspólnym bokiem dwóch płytek. Zbadamy, jak zmienia się liczba odcinków granicznych w wyniku wykonania dozwolonego ruchu. Każda z n 2 płytek ma wspólne boki z co najwyżej trzema innymi płytkami. Odwrócenie płytki jest dopuszczalne, jeżeli co najmniej dwa z takich boków są odcinkami granicznymi. Przypuśćmy, że odwracamy płytkę P. Wówczas odcinki graniczne mogą pojawić się albo zniknąć jedynie na bokach płytki P. Ponadto bok płytki P jest po odwróceniu odcinkiem granicznym wtedy i tylko wtedy, gdy przed odwróceniem nie był on odcinkiem granicznym. Wynika stąd, że w wyniku wykonania dozwolonego ruchu liczba odcinków granicznych zmniejsza się. Udowodniliśmy w ten sposób, że z dowolnego początkowego ułożenia płytek można wykonać nie więcej niż m ruchów. Odpowiedź: Dla żadnego n 2 nie istnieje ułożenie pozwalające wykonać nieskończony ciąg ruchów. Zadania z poprzednich Olimpiad Matematycznych oraz bieżące informacje można znaleźć w Internecie pod adresem: 2
3 LVIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 24 lutego 2007 r. (drugi dzień zawodów) Zadanie 4. Udowodnić, że jeżeli a, b, c, d są liczbami całkowitymi dodatnimi oraz ad = b 2 +bc+c 2, to liczba jest złożona. a 2 +b 2 +c 2 +d 2 Z warunków zadania otrzymujemy równość 2ad=b 2 +c 2 +(b+c) 2, a więc (a+d) 2 (b+c) 2 = (a+d) 2 2ad+b 2 +c 2 = a 2 +b 2 +c 2 +d 2. Z drugiej strony, z rozkładu różnicy kwadratów na czynniki mamy (a+d) 2 (b+c) 2 = (a+d+b+c)(a+d b c). Łącząc powyższe zależności uzyskujemy a 2 +b 2 +c 2 +d 2 = (a+b+c+d)(a+d b c). Czynnik a+b+c+d jest liczbą całkowitą większą od. Gdyby był on równy a 2 +b 2 +c 2 +d 2, to na mocy nierówności k 2 >k (prawdziwej dla k>) otrzymalibyśmy równości a = b = c = d =, jednakże liczby te nie spełniają warunków zadania. Zatem a+b+c+d jest właściwym dzielnikiem liczby a 2 +b 2 +c 2 +d 2, skąd wynika teza zadania. Zadanie 5. Czworokąt wypukły ABCD, w którym AB CD, jest wpisany w okrąg. Czworokąty AKDL i CMBN są rombami o bokach długości a. Dowieść, że punkty K, L, M, N leżą na jednym okręgu. Ponieważ cięciwy AB i CD są różnej długości, więc proste AD i BC nie są równoległe. Oznaczmy punkt ich przecięcia przez P (rys. 2). Wykażemy, że punkty K, L, M i N leżą na okręgu o środku P. Prosta AD jest symetralną odcinka KL, a więc P K = P L. Analogicznie P M = P N. Wystarczy zatem wykazać, że P K = P N. Oznaczmy przez Q punkt przecięcia przekątnych rombu AKDL. Wówczas na mocy twierdzenia Pitogarasa otrzymujemy AP DP = (P Q+AQ)(P Q AQ) = P Q 2 AQ 2 = = P K 2 KQ 2 AQ 2 = P K 2 AK 2. 3
4 P K D Q C N L M A B Analogicznie dowodzimy, że rys. 2 BP CP = P N 2 BN 2. Punkty A, B, C, D leżą na jednym okręgu, więc AP DP = BP CP. W takim razie P K 2 AK 2 = P N 2 BN 2 ; a skoro AK = BN = a, więc w efekcie uzyskujemy równość P K = P N, która kończy rozwiązanie zadania. Zadanie 6. Liczby dodatnie a, b, c, d spełniają warunek a + b + c + d = 4. Wykazać, że 3 a 3 +b b 3 +c c 3 +d d 3 +a 3 2(a+b+c+d) Wykażemy, że dla dowolnych liczb dodatnich x, y zachodzi nierówność 3 x () 3 +y 3 x2 +y 2 2 x+y. Rzeczywiście, przekształcając równoważnie powyższą nierówność mamy (x 3 +y 3 )(x+y) 3 2(x 2 +y 2 ) 3, (x 3 +y 3 )(x 3 +3x 2 y +3xy 2 +y 3 ) 2x 6 +6x 4 y 2 +6x 2 y 4 +2y 6, 3x 5 y +2x 3 y 3 +3xy 5 x 6 +3x 4 y 2 +3x 2 y 4 +y 6, 0 (x 3 y 3 ) 2 3xy(x y)(x 3 y 3 ), 0 (x 3 y 3 )(x y) 3. 4
5 Ostatnia nierówność jest spełniona, gdyż liczby x y oraz x 3 y 3 mają jednakowy znak. Korzystając z zależności () widzimy, że zadanie będzie rozwiązane, jeżeli udowodnimy nierówność a 2 +b 2 a+b + b2 +c 2 b+c + c2 +d 2 c+d + d2 +a 2 2(a+b+c+d) 4. d+a Lewa strona powyższej nierówności jest równa 2(a+b+c+d) 2ab a+b 2bc b+c 2cd c+d 2da d+a. Aby dokończyć rozwiązanie, wystarczy zatem dowieść, że 2ab (2) a+b + 2bc b+c + 2cd c+d + 2da 4. d+a Jednakże na mocy łatwej do sprawdzenia nierówności x+y 4 x + mamy y 2ab a+b + 2cd c+d 8 8 a+b ab + c+d = cd a + b + c + = 2, d 2bc b+c + 2da d+a 8 8 b+c bc + d+a = da b + c + d + = 2. a To uzasadnia nierówność (2), do której wcześniej został sprowadzony dowód tezy zadania. Zadania z poprzednich Olimpiad Matematycznych oraz bieżące informacje można znaleźć w Internecie pod adresem: 5
LXI Olimpiada Matematyczna
1 Zadanie 1. LXI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 21 kwietnia 2010 r. (pierwszy dzień zawodów) Dana jest liczba całkowita n > 1 i zbiór S {0,1,2,...,n 1}
LX Olimpiada Matematyczna
LX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 13 lutego 2009 r. (pierwszy dzień zawodów) Zadanie 1. Liczby rzeczywiste a 1, a 2,..., a n (n 2) spełniają warunek a 1
IX Olimpiada Matematyczna Gimnazjalistów
IX Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (3 października 2013 r.) Rozwiązania zadań testowych 1. Liczba 3 9 3 27 jest a) niewymierna; b) równa 3 27;
XII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2016 r. 17 października 2016 r.)
XII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna ( września 06 r. 7 października 06 r.) Szkice rozwiązań zadań konkursowych. Liczby wymierne a, b, c spełniają równanie
LVIII Olimpiada Matematyczna
LVIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2007 r. (pierwszy dzień zawodów) Zadanie 1. W trójkącie ostrokątnym A punkt O jest środkiem okręgu opisanego,
LVII Olimpiada Matematyczna
Zadanie 1. LVII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 5 kwietnia 2006 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych a, b, c, d, e układ równań
Jarosław Wróblewski Matematyka Elementarna, zima 2014/15
Kolokwium nr 3: 27.01.2015 (wtorek), godz. 8:15-10:00 (materiał zad. 1-309) Kolokwium nr 4: 3.02.2015 (wtorek), godz. 8:15-10:00 (materiał zad. 1-309) Ćwiczenia 13,15,20,22.01.2015 (wtorki, czwartki) 266.
Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 11 Zadania planimetria
1 TEST WSTĘPNY 1. (1p) Wysokość rombu o boku długości 6 i kącie ostrym 60 o jest równa: A. 6 3 B. 6 C. 3 3 D. 3 2. (1p) W trójkącie równoramiennym długość ramienia wynosi 10 a podstawa 16. Wysokość opuszczona
LXII Olimpiada Matematyczna
1 Zadanie 1. LXII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 18 lutego 2011 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych układ równań { (x y)(x 3 +y
X Olimpiada Matematyczna Gimnazjalistów
www.omg.edu.pl X Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część korespondencyjna (10 listopada 01 r. 15 grudnia 01 r.) Szkice rozwiązań zadań konkursowych 1. nia rozmieniła banknot
LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów)
LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów) Zadanie 1. Dana jest liczba całkowita n 2. Wyznaczyć liczbę rozwiązań (x 1,x
XIV Olimpiada Matematyczna Juniorów
XIV Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część testowa (27 września 2018 r.) Rozwiązania zadań testowych 1. W sklepie U Bronka cena spodni była równa cenie sukienki. Cenę spodni najpierw
XI Olimpiada Matematyczna Gimnazjalistów
XI Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (24 września 2015 r.) Rozwiązania zadań testowych 1. Dane są takie dodatnie liczby a i b, że 30% liczby a
Treści zadań Obozu Naukowego OMG
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OM 2015 rok SZCZYRK 2015 Pierwsze zawody indywidualne Treści
VIII Olimpiada Matematyczna Gimnazjalistów
VIII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (18 października 01 r.) Rozwiązania zadań testowych 1. Miary α, β, γ kątów pewnego trójkąta spełniają warunek
LXV Olimpiada Matematyczna
LXV Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 8 kwietnia 2014 r. (pierwszy dzień zawodów) Zadanie 1. Dane są względnie pierwsze liczby całkowite k,n 1. Na tablicy
Planimetria VII. Wymagania egzaminacyjne:
Wymagania egzaminacyjne: a) korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu, b) wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych
Bukiety matematyczne dla gimnazjum
Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 5 IX rok 2003/2004 Bukiet 1 1. W trójkącie ABC prosta równoległa do boku AB przecina boki AC i BC odpowiednio w punktach D i E. Zauważ,
VII Olimpiada Matematyczna Gimnazjalistów
VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (29 września 2011 r.) Rozwiązania zadań testowych 1. Istnieje taki graniastosłup, którego liczba krawędzi
Treści zadań Obozu Naukowego OMG
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OMG 2015 rok SZCZYRK 2015 Treści zadań Pierwsze zawody indywidualne
LV Olimpiada Matematyczna
LV Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 15 kwietnia 004 r. (pierwszy dzień zawodów) Zadanie 1. Punkt D leży na boku AB trójkąta ABC. Okręgi styczne do prostych
Treści zadań Obozu Naukowego OMG
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OMG 2016 rok SZCZYRK 2016 Pierwsze zawody indywidualne Treści
LXIII Olimpiada Matematyczna
1 Zadanie 1. LXIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 17 lutego 2012 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych a, b, c, d układ równań a
Internetowe Ko³o M a t e m a t yc z n e
Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 1 szkice rozwiązań zadań 1 W wierszu zapisano kolejno 2010 liczb Pierwsza zapisana liczba jest równa 7 oraz
Treści zadań Obozu Naukowego OMJ
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ JUNIORÓW Treści zadań Obozu Naukowego OMJ Poziom OM 2017 rok SZCZYRK 2017 Olimpiada Matematyczna Juniorów jest wspó³finansowana
XIII Olimpiada Matematyczna Juniorów
XIII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część testowa (8 września 017 r.) Rozwiązania zadań testowych 1. W każdym z trzech lat 018, 019 i 00 pensja pana Antoniego będzie o 5% większa
Jarosław Wróblewski Matematyka Elementarna, zima 2011/12
168. Uporządkować podane liczby w kolejności niemalejącej. sin50, cos80, sin170, cos200, sin250, cos280. 169. Naszkicować wykres funkcji f zdefiniowanej wzorem a) f(x) = sin2x b) f(x) = cos3x c) f(x) =
Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów
Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Liga zadaniowa 0/03 Seria IV październik 0 rozwiązania zadań 6. Dla danej liczby naturalnej n rozważamy wszystkie sumy postaci a b a b 3 a 3 b 3 a b...n
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ JUNIORÓW SZCZYRK 2017
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ JUNIORÓW Obóz Naukowy OMJ Poziom OMJ 207 rok SZCZYRK 207 Olimpiada Matematyczna Juniorów jest wspó³finansowana ze œrodków
VII Olimpiada Matematyczna Gimnazjalistów
VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa, test próbny www.omg.edu.pl (wrzesień 2011 r.) Rozwiązania zadań testowych 1. Liczba krawędzi pewnego ostrosłupa jest o
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (c.d).
Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10
Zadanie PP-GP-1 Punkty A, B, C, D i E leżą na okręgu (zob. rysunek). Wiadomo, że DBE = 10, ACE = 60, ADB = 40 i BEC = 20. Oblicz miarę kąta CAD. B C A D E Typ szkoły: LO LP T Czy jesteś w klasie z rozszerzonym
METODY KONSTRUKCJI ZA POMOCĄ CYRKLA. WYKŁAD 1 Czas: 45
METODY KONSTRUKCJI ZA POMOCĄ CYRKLA WYKŁAD 1 Czas: 45 TWIERDZENIE PONCELETA-STEINERA W roku 1833, Szwajcarski matematyk Jakob Steiner udowodnił, że wszystkie klasyczne konstrukcje (za pomocą cyrkla i linijki)
Ćwiczenia z Geometrii I, czerwiec 2006 r.
Waldemar ompe echy przystawania trójkątów 1. unkt leży na przekątnej kwadratu (rys. 1). unkty i R są rzutami prostokątnymi punktu odpowiednio na proste i. Wykazać, że = R. R 2. any jest trójkąt ostrokątny,
KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie
KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie
Obozowa liga zadaniowa (seria I wskazówki)
Obozowa liga zadaniowa (seria I wskazówki) 1. Rozstrzygnij, która liczba jest większa: 9 czy 3 1? 9 < 30 8 10 < 9 10 3 0 < 3 1.. Rozstrzygnij, która liczba jest większa: 81 czy 3 49? 81 > 80 56 10 > 43
XV Olimpiada Matematyczna Juniorów
XV Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część testowa (26 września 209 r.) Rozwiązania zadań testowych. odatnia liczba a jest mniejsza od. Wynika z tego, że a) a 2 > a; b) a > a; c)
Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów
Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów stycznych, c) rozpoznaje trójkąty podobne i wykorzystuje
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (c.d).
2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia.
1. Wykaż, że liczba 2 2 jest odwrotnością liczby 1 2. 2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia. 3. Wykaż, że dla każdej liczby całkowitej
XIV Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2018 r. 15 października 2018 r.)
XIV Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna ( września 0 r. października 0 r.) Szkice rozwiązań zadań konkursowych. Liczbę naturalną n pomnożono przez, otrzymując
V Międzyszkolny Konkurs Matematyczny
V Międzyszkolny Konkurs Matematyczny im. Stefana Banacha dla uczniów szkół średnich Zespół Szkół Nr 1 im. Adama Mickiewicza w Lublińcu 42-700 Lubliniec, ul. Sobieskiego 22 18. kwiecień 2011 rok 1. W trapezie
LIX Olimpiada Matematyczna
LIX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia pierwszego (10 września 2007 r. 10 grudnia 2007 r.) Zadanie 1. Rozwiązać w liczbach rzeczywistych x, y, z układ równań x 5 = 5y
Zadania, które zaproponowałem na różne konkursy Olimpiada Matematyczna. bc(b 3 + c 3 ) + c4 + a 4. ca(c 3 + a 3 ) 1. c + ca + cab 1 ( 1
Zadania, które zaproponowałem na różne konkursy Olimpiada Matematyczna. (57-II-3) Liczby dodatnie a, b, c spełniają warunek ab + bc + ca = abc. Dowieść, że a 4 + b 4 ab(a 3 + b 3 ) + b4 + c 4 bc(b 3 +
Rozwiązania zadań otwartych i schematy oceniania Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych
Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zadań zamkniętych 5 6 7 8 9 0 5 6 7 8 9 0 A D B B C D C C D D A B D B B A C B C A Zadanie. (0-) Rozwiąż nierówność
XIII Olimpiada Matematyczna Juniorów
XIII Olimpiada atematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2017 r. 16 października 2017 r.) 1. iczby a, b, c spełniają zależności Wykaż, że a 2 +b 2 = c 2. Szkice
Przykładowy zestaw zadań nr 2 z matematyki Odpowiedzi i schemat punktowania poziom rozszerzony
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi... Wprowadzenie oznaczeń: x, x, y poszukiwane liczby i zapisanie równania:
Internetowe Ko³o M a t e m a t yc z n e
Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 2 szkice rozwiązań zadań 1. Dana jest taka liczba rzeczywista, której rozwinięcie dziesiętne jest nieskończone
Wielkopolskie Mecze Matematyczne
Wielkopolskie Mecze Matematyczne edycja druga 3 kwietnia 2015r. W okresie renesansu we Włoszech matematycy stworzyli ciekawą formę rywalizacji intelektualnej. Wymieniali się zadaniami, a po kilku tygodniach
LXVIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 24 lutego 2017 r. (pierwszy dzień zawodów)
LXVIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 4 lutego 017 r. (pierwszy dzień zawodów) 1. Wykazać, że dla każdej liczby pierwszej p > istnieje dokładnie jedna taka
LXI Olimpiada Matematyczna
1 Zadanie 1. LXI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 19 lutego 2010 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych x, y, z układ równań x 2 (y
LXIX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2018 r. (pierwszy dzień zawodów)
LXIX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2018 r. (pierwszy dzień zawodów) 1. Dany jest trójkąt ostrokątny ABC, w którym AB < AC. Dwusieczna kąta
Elżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki
Elżbieta Świda Elżbieta Kurczab Marcin Kurczab Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki Zadanie Trójkąt ABC jest trójkątem prostokątnym. Z punktu M, należącego
Zadania otwarte krótkiej odpowiedzi na dowodzenie
Zadania otwarte krótkiej odpowiedzi na dowodzenie Zadanie 1. Na bokach trójkąta równobocznego ABC tak wybrano punkty E, F oraz D, że AE = BF = CD = 1 AB (rysunek obok). a) Udowodnij, że trójkąt EFD jest
X Olimpiada Matematyczna Gimnazjalistów
X Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (27 listopada 2014 r.) Rozwiązania zadań testowych 1. Istnieje ostrosłup, który ma dokładnie 15 14 a) wierzchołków;
Kolorowanie płaszczyzny, prostych i okręgów
Kolorowanie płaszczyzny, prostych i okręgów Jadwiga Czyżewska Pisane pod kierunkiem W.Guzickiego W 2013 roku na II etapie VIII edycji Olimpiady Matematycznej Gimnazjalistów pojawiło się zadanie o następującej
11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).
1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego
LXV Olimpiada Matematyczna
Zadanie 1. LXV Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia pierwszego I i II seria (1 września 2013 r. 4 listopada 2013 r.) Wykazać, że jeśli liczby całkowite a, b, c spełniają
rys. 4 BK KC AM MB CL LA = 1.
Joanna Zakrzewska Wspólny punkt Na najnowszym, trzecim już, plakacie Stowarzyszenia na rzecz Edukacji Matematycznej (zob. www.sem.edu.pl) widnieje dwanaście konfiguracji geometrycznych. Ich wspólną cechą
Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.
C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty
Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów
Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Liga zadaniowa 202/203 Seria VI (grudzień 202) rozwiązania zadań 26. Udowodnij, że istnieje 0 00 kolejnych liczb całkowitych dodatnich nie większych
Internetowe Ko³o M a t e m a t yc z n e
Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 3 szkice rozwiązań zadań 1. Plansza do gry składa się z 15 ustawionych w rzędzie kwadratów. Pierwszy z graczy
Cztery punkty na okręgu
Tomasz Szymczyk V LO w ielsku-iałej ztery punkty na okręgu Przydatne fakty: (1) kąty wpisane w okrąg oparte na łukach przystających są równe, (2) czworokąt jest wpisany w okrąg wtedy i tylko wtedy, gdy
Geometria. Zadanie 1. Liczba przekątnych pięciokąta foremnego jest równa A. 4 B. 5 C. 6 D. 7
Geometria Zadanie 1. Liczba przekątnych pięciokąta foremnego jest równa A. 4 B. 5 C. 6 D. 7 W tym przypadku możemy wykonać szkic pięciokąta i policzyć przekątne: Zadanie. Promień okręgu opisanego na kwadracie
XI Olimpiada Matematyczna Gimnazjalistów
www.omg.edu.pl I Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część korespondencyjna (1 września 2015 r. 12 października 2015 r.) Szkice rozwiązań zadań konkursowych 1. Wykaż, że istnieje
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY+ 19 MARCA 2011 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT.) Wskaż nierówność, która
XII Olimpiada Matematyczna Juniorów
XII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część testowa (29 września 2016 r.) Rozwiązania zadań testowych 1. odatnia liczba a powiększona o 50% jest równa dodatniej liczbie b pomniejszonej
Metoda siatek zadania
Metoda siatek zadania 1. (Leningrad 1984) Wykazać, że jeżeli suma kątów płaskich przy wierzchołku S ostrosłupa SA 1 A 2... A n (n 3) jest większa niż 180, to każda z krawędzi bocznych jest mniejsza od
LVIII Olimpiada Matematyczna
Zadanie 1. LVIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia pierwszego (11 września 2006 r. 4 grudnia 2006 r.) Rozwiązać w liczbach rzeczywistych x, y, z układ równań x 2 +2yz
G i m n a z j a l i s t ó w
Ko³o Matematyczne G i m n a z j a l i s t ó w Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 10 szkice rozwiazań zadań 1. Rozwiąż układ równań: (x+y)(x+y +z) = 72 (y +z)(x+y +z) = 120 (z +x)(x+y
LVII Olimpiada Matematyczna
LVII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia pierwszego (12 września 2005 r 5 grudnia 2005 r) Zadanie 1 Wyznaczyć wszystkie nieujemne liczby całkowite n, dla których liczba
O D P O W I E D Z I D O Z A D A Ń T E S T O W Y C H
O D P O W I E D Z I D O Z A D A Ń T E S T O W Y C H 1. Niech A = {(x, y) R R : 3 x +4 x = 5 y } będzie zbiorem rozwiązań równania 3 x +4 x = 5 y w liczbach rzeczywistych. Wówczas zbiór A i zbiór N N mają
Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych
Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Próbny egzamin maturalny z matematyki listopad 009 Klucz odpowiedzi do
Inwersja w przestrzeni i rzut stereograficzny zadania
Inwersja w przestrzeni i rzut stereograficzny zadania Rozważmy sferę S o środku O i promieniu R. Inwersją względem sfery S nazywamy przekształcenie, które przekształca punkt A na punkt A leżący na półprostej
Przykładowe rozwiązania
Przykładowe rozwiązania (E. Ludwikowska, M. Zygora, M. Walkowiak) Zadanie 1. Rozwiąż równanie: w przedziale. ( ) ( ) ( )( ) ( ) ( ) ( ) Uwzględniając, że x otrzymujemy lub lub lub. Zadanie. Dany jest czworokąt
EGZAMIN MATURALNY W ROKU SZKOLNYM 2014/2015
EGZAMIN MATURALNY W ROKU SZKOLNYM 0/0 FORMUŁA OD 0 ( NOWA MATURA ) MATEMATYKA POZIOM PODSTAWOWY ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ MMA-P CZERWIEC 0 Egzamin maturalny z matematyki nowa formuła Klucz
Internetowe Kółko Matematyczne 2003/2004
Internetowe Kółko Matematyczne 003/004 http://www.mat.uni.torun.pl/~kolka/ Zadania dla szkoły średniej Zestaw I (5 IX) Zadanie 1. Które liczby całkowite można przedstawić w postaci różnicy kwadratów dwóch
Praca klasowa nr 2 - figury geometryczne (klasa 6)
Praca klasowa nr 2 - figury geometryczne (klasa 6) MARIUSZ WRÓBLEWSKI IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Dany jest równoległobok ABCD. Narysuj za pomocą linijki i ekierki odcinek BF prostopadły do odcinka
ZADANIE 2 Czy istnieje taki wielokat, który ma 2 razy więcej przekatnych niż boków?
PLANIMETRIA 2 ZADANIE 1 W rombie jedna z przekatnych jest dłuższa od drugiej o 3 cm. Dla jakich długości przekatnych pole rombu jest większe od 5cm 2? 1 ZADANIE 2 Czy istnieje taki wielokat, który ma 2
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory
Zadania na dowodzenie Opracowała: Ewa Ślubowska
Egzamin Gimnazjalny Zadania na dowodzenie Opracowała: Ewa Ślubowska W nauczaniu matematyki ważne jest rozwijanie różnych aktywności umysłu. Ma temu służyć min. rozwiązywanie jednego zadania czy dowodzenie
Bukiety matematyczne dla gimnazjum
Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 1 X 2002 Bukiet I Dany jest prostokąt o bokach wymiernych a, b, którego obwód O i pole P są całkowite. 1. Sprawdź, że zachodzi równość
V Konkurs Matematyczny Politechniki Białostockiej
V Konkurs Matematyczny Politechniki Białostockiej Rozwiązania - klasy drugie 1. Znaleźć wszystkie pary liczb całkowitych (x, y) spełniające nierówności x + 1 + y 4 x + y 4 5 x 4 + y 1 > 4. Ważne jest zauważenie,
LXX Olimpiada Matematyczna
LXX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 09 r. (pierwszy dzień zawodów). Punkty X i Y leżą odpowiednio wewnątrz boków i trójkąta ostrokątnego, przy
XXV Rozkosze Łamania Głowy konkurs matematyczny dla klas I i III szkół ponadgimnazjalnych. zestaw A klasa I
XXV Rozkosze Łamania Głowy konkurs matematyczny dla klas I i III szkół ponadgimnazjalnych zestaw A klasa I 1. Zbiór wszystkich środków okręgów (leżących na jednej płaszczyźnie) przechodzących przez: a)
Zbiór zadań z geometrii przestrzennej. Michał Kieza
Zbiór zadań z geometrii przestrzennej Michał Kieza Zbiór zadań z geometrii przestrzennej Michał Kieza Wydawca: Netina Sp. z o.o. ISN 978-83-7521-522-9 c 2015, Wszelkie Prawa Zastrzeżone Zabrania się modyfikowania
Geometria analityczna
Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem
LIV Olimpiada Matematyczna
Zadanie LIV Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia pierwszego września 2002 r 0 grudnia 2002 r Znaleźć wszystkie pary liczb całkowitych dodatnich x, y spełniających równanie
Jarosław Wróblewski Matematyka dla Myślących, 2009/10. Test (nr 3) do samodzielnego treningu
Test (nr 3) do samodzielnego treningu W każdym z 30 zadań udziel czterech niezależnych odpowiedzi TAK/NIE. Za każde zadanie, w którym podasz 4 poprawne odpowiedzi, dostaniesz 1 punkt. Za pozostałe zadania
Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów
Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Liga zadaniowa 2012/2013 Seria X (kwiecień 2013) rozwiązania zadań 46. Na szachownicy 75 75 umieszczono 120 kwadratów 3 3 tak, że każdy pokrywa 9 pól.
III Wielkopolska Liga Matematyczna
ODDZIAŁ POZNAŃSKI POLSKIEGO TOWARZYSTWA MATEMATYCZNEGO III Wielkopolska Liga Matematyczna Poznań 2012r. Organizacja konkursu Trzecia edycja Wielkopolskiej Ligi Matematycznej odbyła się w roku szkolnym
Zadanie 2. ( 4p ) Czworokąt ABCD ma kąty proste przy wierzchołkach B i D. Ponadto AB = BC i BH = 1.
Zadanie 1. ( p ) Dodatnia liczba naturalna n ma tylko dwa dzielniki naturalne, podczas gdy liczba n + 1 ma trzy dzielniki naturalne. Liczba naturalna n + ma. dzielniki naturalne. Liczna n jest równa..
Własności punktów w czworokątach
Własności punktów w czworokątach Autor: Michał Woźny Gimnazjum nr 2 im. A. Mickiewicza w Krakowie Opiekun pracy: dr Jacek Dymel Spis treści 1. Wstęp str. 3 2. Badanie punktów będących środkami boków w
GEOMETRIA ANALITYCZNA. Poziom podstawowy
GEOMETRIA ANALITYCZNA Poziom podstawowy Zadanie (4 pkt.) Dana jest prosta k opisana równaniem ogólnym x + y 6. a) napisz równanie prostej k w postaci kierunkowej. b) podaj współczynnik kierunkowy prostej
Czworościany ortocentryczne zadania
Czworościany ortocentryczne zadania 1. Wykazać, że nastepujące warunki są równoważne: a) istnieje przecięcie wysokości czworościanu, b) przeciwległe krawędzie są prostopadłe, c) sumy kwadratów długości
Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii. Trójkąty. Trójkąt dowolny. Wielokąty trygonometria 1.
Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Wielokąt wypukły miara każdego kąt wewnętrznego jest mniejsza od 180 o. Liczba przekątnych: n*(n-2) Suma kątów wewnętrznych wielokąta
NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2019 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 20 sierpnia
Bolesław Mokrski Józef Siwy Tomasz Szymczyk. Matematyczny sezam. 15 lat Śląskiego Konkursu Matematycznego
Bolesław Mokrski Józef Siwy Tomasz Szymczyk Matematyczny sezam 15 lat Śląskiego Konkursu Matematycznego Wydawnictwo Szkolne OMEGA Kraków 018 Matematyczny sezam wydanie drugie uzupełnione 15 lat Śląskiego
Klasa III technikum Egzamin poprawkowy z matematyki sierpień I. CIĄGI LICZBOWE 1. Pojęcie ciągu liczbowego. b) a n =
/9 Narysuj wykres ciągu (a n ) o wyrazie ogólnym: I. CIĄGI LICZBOWE. Pojęcie ciągu liczbowego. a) a n =5n dla n