LVII Olimpiada Matematyczna
|
|
- Sebastian Czarnecki
- 5 lat temu
- Przeglądów:
Transkrypt
1 Zadanie 1. LVII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 5 kwietnia 2006 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych a, b, c, d, e układ równań a 2 = b 3 +c 3 b 2 = c 3 +d 3 c 2 = d 3 +e 3 d 2 = e 3 +a 3 e 2 = a 3 +b 3 Przyjmijmy, że liczby a, b, c, d, e spełniają podany układ równań i że b jest największą z nich (nie tracimy ogólności, bo układ jest cykliczny). Wykażemy, że wówczas b = d. Przypuśćmy, przeciwnie, że b > d. Odejmując drugie równanie od równania pierwszego dostajemy a 2 b 2 = b 3 d 3 > 0, czyli (a b)(a+b) > 0. Liczba a nie jest większa od liczby b; w takim razie a b < 0 oraz a+b < 0. Ta ostatnia nierówność daje jednak wniosek, że a 3 + b 3 < 0, w sprzeczności z równaniem e 2 = a 3 +b 3. Zatem istotnie b = d, co oznacza, że także d ma maksymalną wartość wśród pięciu niewiadomych. Powtarzając to rozumowanie stwierdzamy kolejno, że d = a = c = e. Dany w zadaniu układ równań sprowadza się zatem do rozwiązania równania a 2 = 2a 3, skąd otrzymujemy a = 0 lub a = 1 2. Odpowiedź: Układ równań ma dwa rozwiązania (a,b,c,d,e): (0,0,0,0,0) oraz ( 1 2, 1 2, 1 2, 1 2, 1 2 ). Zadanie 2. Wyznaczyć wszystkie liczby całkowite dodatnie k, dla których liczba 3 k +5 k jest potęgą liczby całkowitej o wykładniku naturalnym większym od 1. Jeżeli k jest liczbą parzystą, to liczby 3 k i 5 k są kwadratami liczb nieparzystych, dającymi resztę 1 z dzielenia przez 4. Stąd wniosek, że liczba 3 k +5 k daje resztę 2 z dzielenia przez 4, a więc dzieli się przez 2 i nie dzieli się przez 2 2. Taka liczba nie może być potęgą liczby całkowitej o wykładniku większym od 1. Jeżeli k jest liczbą nieparzystą, to 3 k +5 k = (3+5)(3 k 1 3 k k k k 2 +5 k 1 ). 1
2 Drugi czynnik po prawej stronie powyższej zależności zawiera nieparzystą (równą k) liczbę nieparzystych składników. Stąd wynika, że liczba 3 k + 5 k dzieli się przez 8 i nie dzieli się przez 16. Jeśli więc liczba ta jest potęgą liczby całkowitej o wykładniku większym od 1, to musi być ona sześcianem liczby całkowitej. Jeżeli k = 1, to rozpatrywana liczba jest sześcianem liczby całkowitej: = 2 3. Przyjmijmy więc w dalszej części rozumowania, że k 3. Z zależności (mod 9), (±1) 3 ±1 (mod 9), (±2) 3 1 (mod 9), (±3) 3 0 (mod 9), (±4) 3 ±1 (mod 9) wynika, że sześciany liczb całkowitych dają z dzielenia przez 9 jedynie reszty 0, 1, 8. Dla k 3 mamy 9 3 k, więc 3 k +5 k 5 k (mod 9). Reszty z dzielenia przez 9 liczb 5, 5 2, 5 3, 5 4, 5 5, 5 6 są odpowiednio równe 5, 7, 8, 4, 2, 1. Wobec tego jeżeli 3 k + 5 k jest sześcianem liczby całkowitej przy k 3, to 3 k. Wcześniej wykazaliśmy, że k nie może być liczbą parzystą. Zatem liczba k jest postaci 6l +3, gdzie l jest liczbą całkowitą nieujemną. Z zależności (mod 7) oraz (mod 7) wynika, że 3 k +5 k = 3 6l l (mod 7). Jednakże z bezpośredniego sprawdzenia otrzymujemy, że sześcian liczby całkowitej daje z dzielenia przez 7 resztę 0, 1 lub 6: (mod 7), (±1) 3 ±1 (mod 7), (±2) 3 ±1 (mod 7), (±3) 3 1 (mod 7). Zatem rozpatrywana liczba dla k 3 nie może być sześcianem liczby całkowitej, co kończy rozwiązanie zadania. Odpowiedź: k = 1. Zadanie 3. Dany jest sześciokąt wypukły ABCDEF, w którym AC = DF, CE = F B oraz EA = BD. Dowieść, że proste łączące środki przeciwległych boków tego sześciokąta przecinają się w jednym punkcie. Oznaczmy przez P, Q, R odpowiednio środki przekątnych AD, BE, CF. Przyjmijmy najpierw, że dwa spośród punktów P, Q, R pokrywają się; niech na przykład P = Q (rys. 1). Wtedy czworokąt ABDE jest równoległobokiem. Ponadto trójkąt ACE jest przystający do trójkąta DF B, skąd wynika, że <)EAC = <)BDF. Równość ta wraz z uzyskaną zależnością BD EA dowodzi, że odcinki AC i DF są równoległe. Ponadto odcinki te są równej długości, a zatem czworokąt ACDF jest równoległobokiem. Punkt R pokrywa się więc z punktami P i Q, skąd wynika, że jest on środkiem symetrii sześciokąta ABCDEF. Pozostaje zauważyć, że wówczas proste łączące środki 2
3 przeciwległych boków sześciokąta ABCDEF przechodzą przez jego środek symetrii. E N D E D F R C F P =Q C Q P A rys. 1 B A M rys. 2 Przyjmijmy z kolei, że punkty P, Q i R są różne. Niech M i N będą odpowiednio środkami odcinków AB i DE (rys. 2). Z twierdzenia odwrotnego do twierdzenia Talesa wynika, że odcinki P N i AE są równoległe, a ponadto P N = 1 2AE. Analogicznie uzyskujemy związki QM = 1 2 AE, P M = 1 2 BD oraz QN = 1 2BD. Z zależności tych oraz z równości AE =BD wnioskujemy, że P N =QM =P M =QN, co oznacza, że czworokąt MP NQ jest rombem. Zatem prosta MN jest symetralną odcinka P Q. Analogicznie dowodzimy, że pozostałe dwie proste łączące środki przeciwległych boków danego sześciokąta są symetralnymi odcinków QR i RP. Stąd proste łączące środki przeciwległych boków sześciokąta ABCDEF mają punkt wspólny, będący środkiem okręgu opisanego na trójkącie P QR. Zadania z poprzednich Olimpiad Matematycznych oraz bieżące informacje można znaleźć w internecie pod adresem: B 3
4 LVII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 6 kwietnia 2006 r. (drugi dzień zawodów) Zadanie 4. Na trójce liczb wykonujemy następującą operację. Wybieramy dwie spośród tych liczb i zastępujemy je ich sumą oraz ich iloczynem, pozostała liczba nie ulega zmianie. Rozstrzygnąć, czy rozpoczynając od trójki (3, 4, 5) i wykonując tę operację możemy ponownie uzyskać trójkę liczb będących długościami boków trójkąta prostokątnego. Jeżeli w pierwszym kroku wybierzemy liczby 3 i 5, to otrzymamy trójkę (4, 8, 15), w której dokładnie jedna liczba jest nieparzysta. Wybierając z takiej trójki dwie liczby parzyste zamieniamy je na liczby parzyste, natomiast decydując się na jedną liczbę parzystą, a drugą nieparzystą dostajemy liczby różnych parzystości. Zatem z trójki, w której dokładnie jedna liczba jest nieparzysta, otrzymamy trójkę, która ma tę samą własność. Jeżeli jednak wśród liczb naturalnych a, b, c dokładnie jedna jest nieparzysta, to równość a 2 + b 2 = c 2 nie może zachodzić jedna ze stron tej równości jest nieparzysta, a druga parzysta. Nie otrzymamy więc trójki liczb będących długościami boków trójkąta prostokątnego. Z kolei wybierając w pierwszym kroku liczby 3 i 4 otrzymamy trójkę (5,7,12), a biorąc 4 i 5 uzyskamy trójkę (3,9,20). W obu tych trójkach jest dokładnie jedna liczba parzysta i jest ona największą liczbą w trójce. Jeżeli w takiej trójce wybierzemy dwie liczby nieparzyste, to otrzymamy trójkę, w której dokładnie jedna liczba jest nieparzysta. Z takiej trójki, jak już wiemy, nie otrzymamy trójki liczb będących długościami boków trójkąta prostokątnego. Jeżeli natomiast będziemy konsekwentnie wybierać liczby różnych parzystości, to w każdym kroku otrzymamy trójkę z dokładnie jedną liczbą parzystą, a z nierówności xy > x + y (prawdziwej dla liczb x,y > 2) wynika, że ta liczba parzysta będzie największą liczbą w trójce. Pozostaje zauważyć, że jeżeli liczby naturalne a, b są nieparzyste, a liczba c jest parzysta, to a 2 +b (mod 4), więc równość a 2 +b 2 = c 2 nie może być spełniona. Odpowiedź: Ponowne uzyskanie trójki liczb będących długościami boków trójkąta prostokątnego nie jest możliwe. 4
5 Zadanie 5. Dany jest czworościan ABCD, w którym AB = CD. Sfera wpisana w ten czworościan jest styczna do ścian ABC i ABD odpowiednio w punktach K i L. Dowieść, że jeżeli punkty K i L są środkami ciężkości ścian ABC i ABD, to czworościan ABCD jest foremny. Oznaczmy przez s sferę wpisaną w czworościan ABCD. Rozpoczniemy od wykazania, że trójkąty ABC i ABD są przystające. Niech E będzie środkiem krawędzi AB. Ponieważ K i L są punktami styczności sfery s do czworościanu ABCD, to AK = AL i BK = BL, skąd wynika, że trójkąty AKB i ALB są przystające. Ich środkowe KE i LE mają jednakową długość, skąd CE = 3 KE = 3 LE = DE. Ale <)CEB = <)KEB = <)LEB = <)DEB, więc trójkąty BEC i BED są przystające. Analogicznie dowodzimy, że trójkąty AEC i AED są przystające. Zatem trójkąty ABC i ABD są przystające. Niech M i N będą punktami styczności sfery s odpowiednio ze ścianami BCD i CDA. Otrzymujemy następujące pary trójkątów przystających: BKC i BMC; BLD i BMD; AKC i ANC; ALD i AND; CMD i CND. Oznaczmy: α = <)AKC, β = BKC. Wtedy <)ALD = α oraz <)BLD = β, gdyż trójkąty ABC i ABD są przystające. Zatem <)ANC = <)AKC = α, <)AND = <)ALD = α, <)BMC = <)BKC = β, <)BMD = <)BLD = β. Stąd otrzymujemy <)DNC = 360 <)ANC <)AND = 360 2α, jak również <)DMC = 360 <)BMC <)BMD = 360 2β. Ale <)DMC = <)DNC, skąd α = β. Zatem <)AKE = <)BKE, więc KE jest jednocześnie dwusieczną i środkową w trójkącie AKB. Stąd AK = BK, a więc AC = BC. Ostatecznie otrzymujemy więc AC = BC = AD = BD. Przez każdą krawędź czworościanu ABCD poprowadźmy płaszczyznę równoległą do przeciwległej krawędzi czworościanu. Płaszczyzny te wyznaczają równoległościan. W każdej z jego ścian jedna przekątna jest krawędzią czworościanu ABCD, a druga przekątna jest równa i równoległa do przeciwległej krawędzi tego czworościanu. Ponieważ przeciwległe krawędzie czworościnu ABCD są równe, więc wszystkie ściany otrzymanego równoległościnu są prostokątami. A zatem równoległościan ten jest prostopadłościanem. Wynika stąd w szczególności, że prosta łącząca środki krawędzi AD i BC jest prostopadła do tych krawędzi. Rozpatrzmy przekształcenie będące obrotem o kąt 180 wokół prostej łączącej środki krawędzi AD i BC. W wyniku tego przekształcenia czworościan ABCD przechodzi na siebie, więc sfera s też musi przejść na siebie. Ponadto ściany ABC i ABD przechodzą odpowiednio na ściany DCB i DCA, a zatem środki ciężkości ścian DCB i DCA pokrywają się z punktami M i N. 5
6 Analogicznie jak wyżej wykazujemy, że AB =BD=DC =CA, skąd wnioskujemy, że wszystkie krawędzie czworościanu ABCD są równej długości. To oznacza, że czworościan ABCD jest foremny. Zadanie 6. Wyznaczyć wszystkie pary liczb całkowitych a, b, dla których istnieje taki wielomian P (x) o współczynnikach całkowitych, że iloczyn (x 2 +ax+b) P (x) jest wielomianem postaci x n +c n 1 x n c 1 x+c 0, gdzie każda z liczb c 0,c 1,...,c n 1 jest równa 1 lub 1. Jeżeli trójmian x 2 + ax + b jest dzielnikiem pewnego wielomianu Q(x) o współczynnikach całkowitych, to oczywiście wyraz wolny b jest dzielnikiem wyrazu wolnego wielomianu Q(x). Wobec tego (w rozważanej sytuacji) b=±1. Żaden wielomian Q(x) postaci x n ±x n 1 ±x n 2 ±...±x±1 nie ma pierwiastków rzeczywistych o wartości bezwzględnej większej lub równej 2. Przypuśćmy bowiem, że liczba r o module r 2 spełnia zależność Q(r) = 0. Wtedy r n = r n = r n 1 ±r n 2 ±...±r ±1 r n 1 + r n r +1 = r n 1 r 1 < r n r 1, skąd wynika, że r < 2. Sprzeczność. Z drugiej strony, każdy pierwiastek trójmianu T (x) = x 2 +ax+b jest też pierwiastkiem wielomianu T (x) P (x). Stąd wynika, że trójmian T (x) nie ma pierwiastków w zbiorze (, 2 2,+ ). Zatem T ( 2) > 0 oraz T (2) > 0, czyli 4 2a+b > 0 oraz 4+2a+b > 0. Jeśli b = 1, to mamy 5 > 2a i 5 > 2a, skąd wynika, że a jest jedną z liczb 2, 1, 0, 1, 2. Jeżeli natomiast b = 1, to 3 > 2a i 3 > 2a i do rozpatrzenia pozostają przypadki, gdy a jest jedną z liczb 1, 0, 1. Bezpośrednie sprawdzenie dowodzi, że wszystkie uzyskane pary (a, b) spełniają warunki zadania: (x 2 2x+1) (x+1) = x 3 x 2 x+1, (x 2 +2x+1) (x 1) = x 3 +x 2 x 1, (x 2 x+1) 1 = x 2 x+1, (x 2 x 1) 1 = x 2 x 1, (x 2 +1) (x+1) = x 3 +x 2 +x+1, (x 2 1) (x+1) = x 3 +x 2 x 1, (x 2 +x+1) 1 = x 2 +x+1, (x 2 +x 1) 1 = x 2 +x 1. Odpowiedź: Warunki zadania spełnia następujących osiem par (a, b): ( 2,1), ( 1, 1), ( 1,1), (0, 1), (0,1), (1, 1), (1,1), (2,1). Zadania z poprzednich Olimpiad Matematycznych oraz bieżące informacje można znaleźć w internecie pod adresem: 6
LXI Olimpiada Matematyczna
1 Zadanie 1. LXI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 21 kwietnia 2010 r. (pierwszy dzień zawodów) Dana jest liczba całkowita n > 1 i zbiór S {0,1,2,...,n 1}
LVIII Olimpiada Matematyczna
LVIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 23 lutego 2007 r. (pierwszy dzień zawodów) Zadanie. Wielomian P (x) ma współczynniki całkowite. Udowodnić, że jeżeli
VIII Olimpiada Matematyczna Gimnazjalistów
VIII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (18 października 01 r.) Rozwiązania zadań testowych 1. Miary α, β, γ kątów pewnego trójkąta spełniają warunek
LXIII Olimpiada Matematyczna
1 Zadanie 1. LXIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 17 lutego 2012 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych a, b, c, d układ równań a
VII Olimpiada Matematyczna Gimnazjalistów
VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa, test próbny www.omg.edu.pl (wrzesień 2011 r.) Rozwiązania zadań testowych 1. Liczba krawędzi pewnego ostrosłupa jest o
LX Olimpiada Matematyczna
LX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 13 lutego 2009 r. (pierwszy dzień zawodów) Zadanie 1. Liczby rzeczywiste a 1, a 2,..., a n (n 2) spełniają warunek a 1
IX Olimpiada Matematyczna Gimnazjalistów
IX Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (3 października 2013 r.) Rozwiązania zadań testowych 1. Liczba 3 9 3 27 jest a) niewymierna; b) równa 3 27;
LVIII Olimpiada Matematyczna
LVIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2007 r. (pierwszy dzień zawodów) Zadanie 1. W trójkącie ostrokątnym A punkt O jest środkiem okręgu opisanego,
XIV Olimpiada Matematyczna Juniorów
XIV Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część testowa (27 września 2018 r.) Rozwiązania zadań testowych 1. W sklepie U Bronka cena spodni była równa cenie sukienki. Cenę spodni najpierw
XIII Olimpiada Matematyczna Juniorów
XIII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część testowa (8 września 017 r.) Rozwiązania zadań testowych 1. W każdym z trzech lat 018, 019 i 00 pensja pana Antoniego będzie o 5% większa
XI Olimpiada Matematyczna Gimnazjalistów
XI Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (24 września 2015 r.) Rozwiązania zadań testowych 1. Dane są takie dodatnie liczby a i b, że 30% liczby a
Treści zadań Obozu Naukowego OMG
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OM 2015 rok SZCZYRK 2015 Pierwsze zawody indywidualne Treści
LXII Olimpiada Matematyczna
1 Zadanie 1. LXII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 18 lutego 2011 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych układ równań { (x y)(x 3 +y
V Międzyszkolny Konkurs Matematyczny
V Międzyszkolny Konkurs Matematyczny im. Stefana Banacha dla uczniów szkół średnich Zespół Szkół Nr 1 im. Adama Mickiewicza w Lublińcu 42-700 Lubliniec, ul. Sobieskiego 22 18. kwiecień 2011 rok 1. W trapezie
Internetowe Ko³o M a t e m a t yc z n e
Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 1 szkice rozwiązań zadań 1 W wierszu zapisano kolejno 2010 liczb Pierwsza zapisana liczba jest równa 7 oraz
Internetowe Ko³o M a t e m a t yc z n e
Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 2 szkice rozwiązań zadań 1. Dana jest taka liczba rzeczywista, której rozwinięcie dziesiętne jest nieskończone
Treści zadań Obozu Naukowego OMJ
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ JUNIORÓW Treści zadań Obozu Naukowego OMJ Poziom OM 2017 rok SZCZYRK 2017 Olimpiada Matematyczna Juniorów jest wspó³finansowana
XII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2016 r. 17 października 2016 r.)
XII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna ( września 06 r. 7 października 06 r.) Szkice rozwiązań zadań konkursowych. Liczby wymierne a, b, c spełniają równanie
LV Olimpiada Matematyczna
LV Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 15 kwietnia 004 r. (pierwszy dzień zawodów) Zadanie 1. Punkt D leży na boku AB trójkąta ABC. Okręgi styczne do prostych
Zadania, które zaproponowałem na różne konkursy Olimpiada Matematyczna. bc(b 3 + c 3 ) + c4 + a 4. ca(c 3 + a 3 ) 1. c + ca + cab 1 ( 1
Zadania, które zaproponowałem na różne konkursy Olimpiada Matematyczna. (57-II-3) Liczby dodatnie a, b, c spełniają warunek ab + bc + ca = abc. Dowieść, że a 4 + b 4 ab(a 3 + b 3 ) + b4 + c 4 bc(b 3 +
LXI Olimpiada Matematyczna
1 Zadanie 1. LXI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 19 lutego 2010 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych x, y, z układ równań x 2 (y
VII Olimpiada Matematyczna Gimnazjalistów
VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (29 września 2011 r.) Rozwiązania zadań testowych 1. Istnieje taki graniastosłup, którego liczba krawędzi
Jarosław Wróblewski Matematyka Elementarna, zima 2011/12
168. Uporządkować podane liczby w kolejności niemalejącej. sin50, cos80, sin170, cos200, sin250, cos280. 169. Naszkicować wykres funkcji f zdefiniowanej wzorem a) f(x) = sin2x b) f(x) = cos3x c) f(x) =
XIII Olimpiada Matematyczna Juniorów
XIII Olimpiada atematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2017 r. 16 października 2017 r.) 1. iczby a, b, c spełniają zależności Wykaż, że a 2 +b 2 = c 2. Szkice
LVII Olimpiada Matematyczna
LVII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia pierwszego (12 września 2005 r 5 grudnia 2005 r) Zadanie 1 Wyznaczyć wszystkie nieujemne liczby całkowite n, dla których liczba
Bukiety matematyczne dla gimnazjum
Bukiety matematyczne dla gimnazjum http://www.mat.uni.torun.pl/~kolka/ 5 IX rok 2003/2004 Bukiet 1 1. W trójkącie ABC prosta równoległa do boku AB przecina boki AC i BC odpowiednio w punktach D i E. Zauważ,
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (c.d).
LXV Olimpiada Matematyczna
LXV Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 8 kwietnia 2014 r. (pierwszy dzień zawodów) Zadanie 1. Dane są względnie pierwsze liczby całkowite k,n 1. Na tablicy
2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia.
1. Wykaż, że liczba 2 2 jest odwrotnością liczby 1 2. 2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia. 3. Wykaż, że dla każdej liczby całkowitej
Treści zadań Obozu Naukowego OMG
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OMG 2015 rok SZCZYRK 2015 Treści zadań Pierwsze zawody indywidualne
Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów
Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Liga zadaniowa 202/203 Seria VI (grudzień 202) rozwiązania zadań 26. Udowodnij, że istnieje 0 00 kolejnych liczb całkowitych dodatnich nie większych
Zbiór zadań z geometrii przestrzennej. Michał Kieza
Zbiór zadań z geometrii przestrzennej Michał Kieza Zbiór zadań z geometrii przestrzennej Michał Kieza Wydawca: Netina Sp. z o.o. ISN 978-83-7521-522-9 c 2015, Wszelkie Prawa Zastrzeżone Zabrania się modyfikowania
Ćwiczenia z Geometrii I, czerwiec 2006 r.
Waldemar ompe echy przystawania trójkątów 1. unkt leży na przekątnej kwadratu (rys. 1). unkty i R są rzutami prostokątnymi punktu odpowiednio na proste i. Wykazać, że = R. R 2. any jest trójkąt ostrokątny,
X Olimpiada Matematyczna Gimnazjalistów
www.omg.edu.pl X Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część korespondencyjna (10 listopada 01 r. 15 grudnia 01 r.) Szkice rozwiązań zadań konkursowych 1. nia rozmieniła banknot
XIV Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna (1 września 2018 r. 15 października 2018 r.)
XIV Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część korespondencyjna ( września 0 r. października 0 r.) Szkice rozwiązań zadań konkursowych. Liczbę naturalną n pomnożono przez, otrzymując
X Olimpiada Matematyczna Gimnazjalistów
X Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa www.omg.edu.pl (27 listopada 2014 r.) Rozwiązania zadań testowych 1. Istnieje ostrosłup, który ma dokładnie 15 14 a) wierzchołków;
LVIII Olimpiada Matematyczna
Zadanie 1. LVIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia pierwszego (11 września 2006 r. 4 grudnia 2006 r.) Rozwiązać w liczbach rzeczywistych x, y, z układ równań x 2 +2yz
LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów)
LI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 3 kwietnia 2000 r. (pierwszy dzień zawodów) Zadanie 1. Dana jest liczba całkowita n 2. Wyznaczyć liczbę rozwiązań (x 1,x
LXIX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2018 r. (pierwszy dzień zawodów)
LXIX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2018 r. (pierwszy dzień zawodów) 1. Dany jest trójkąt ostrokątny ABC, w którym AB < AC. Dwusieczna kąta
LXV Olimpiada Matematyczna
Zadanie 1. LXV Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia pierwszego I i II seria (1 września 2013 r. 4 listopada 2013 r.) Wykazać, że jeśli liczby całkowite a, b, c spełniają
Matematyka rozszerzona matura 2017
Matematyka rozszerzona matura 017 Zadanie 1 Liczba ( 3 + 3) jest równa A. B. 4 C. 3 D. 3 ( 3 + 3) = 3 ( 3)( + 3) + + 3 = A. 3 4 3 + + 3 = 4 1 = 4 = Zadanie. Nieskończony ciąg liczbowy jest określony wzorem
Treści zadań Obozu Naukowego OMG
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Treści zadań Obozu Naukowego OMG Poziom OMG 2016 rok SZCZYRK 2016 Pierwsze zawody indywidualne Treści
Czworościany ortocentryczne zadania
Czworościany ortocentryczne zadania 1. Wykazać, że nastepujące warunki są równoważne: a) istnieje przecięcie wysokości czworościanu, b) przeciwległe krawędzie są prostopadłe, c) sumy kwadratów długości
XI Olimpiada Matematyczna Gimnazjalistów
www.omg.edu.pl I Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część korespondencyjna (1 września 2015 r. 12 października 2015 r.) Szkice rozwiązań zadań konkursowych 1. Wykaż, że istnieje
METODY KONSTRUKCJI ZA POMOCĄ CYRKLA. WYKŁAD 1 Czas: 45
METODY KONSTRUKCJI ZA POMOCĄ CYRKLA WYKŁAD 1 Czas: 45 TWIERDZENIE PONCELETA-STEINERA W roku 1833, Szwajcarski matematyk Jakob Steiner udowodnił, że wszystkie klasyczne konstrukcje (za pomocą cyrkla i linijki)
Test kwalifikacyjny na I Warsztaty Matematyczne
Test kwalifikacyjny na I Warsztaty Matematyczne Na pytania odpowiada się tak lub nie poprzez wpisanie odpowiednio T bądź N w pole obok pytania. W danym trzypytaniowym zestawie możliwa jest dowolna kombinacja
Zadania otwarte krótkiej odpowiedzi na dowodzenie
Zadania otwarte krótkiej odpowiedzi na dowodzenie Zadanie 1. Na bokach trójkąta równobocznego ABC tak wybrano punkty E, F oraz D, że AE = BF = CD = 1 AB (rysunek obok). a) Udowodnij, że trójkąt EFD jest
Jarosław Wróblewski Matematyka Elementarna, zima 2014/15
Kolokwium nr 3: 27.01.2015 (wtorek), godz. 8:15-10:00 (materiał zad. 1-309) Kolokwium nr 4: 3.02.2015 (wtorek), godz. 8:15-10:00 (materiał zad. 1-309) Ćwiczenia 13,15,20,22.01.2015 (wtorki, czwartki) 266.
Zadania na dowodzenie Opracowała: Ewa Ślubowska
Egzamin Gimnazjalny Zadania na dowodzenie Opracowała: Ewa Ślubowska W nauczaniu matematyki ważne jest rozwijanie różnych aktywności umysłu. Ma temu służyć min. rozwiązywanie jednego zadania czy dowodzenie
XXV Rozkosze Łamania Głowy konkurs matematyczny dla klas I i III szkół ponadgimnazjalnych. zestaw A klasa I
XXV Rozkosze Łamania Głowy konkurs matematyczny dla klas I i III szkół ponadgimnazjalnych zestaw A klasa I 1. Zbiór wszystkich środków okręgów (leżących na jednej płaszczyźnie) przechodzących przez: a)
Inwersja w przestrzeni i rzut stereograficzny zadania
Inwersja w przestrzeni i rzut stereograficzny zadania Rozważmy sferę S o środku O i promieniu R. Inwersją względem sfery S nazywamy przekształcenie, które przekształca punkt A na punkt A leżący na półprostej
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI
ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zad. 1 (2 pkt) Rozwiąż równanie Zad.2 (2 pkt) 2 3x 1 = 1 2x 2 Rozwiąż układ równań x +3y =5 2x y = 3 Zad.3 (2 pkt) 2 Rozwiąż nierówność x + 6x 7 0 Zad.4 (2 pkt) 3 2
Internetowe Kółko Matematyczne 2003/2004
Internetowe Kółko Matematyczne 003/004 http://www.mat.uni.torun.pl/~kolka/ Zadania dla szkoły średniej Zestaw I (5 IX) Zadanie 1. Które liczby całkowite można przedstawić w postaci różnicy kwadratów dwóch
GEOMETRIA ELEMENTARNA
Bardo, 7 11 XII A. D. 2016 I Uniwersytecki Obóz Olimpiady Matematycznej GEOMETRIA ELEMENTARNA materiały przygotował Antoni Kamiński na podstawie zbiorów zadań: Przygotowanie do olimpiad matematycznych
XII Olimpiada Matematyczna Juniorów
XII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część testowa (29 września 2016 r.) Rozwiązania zadań testowych 1. odatnia liczba a powiększona o 50% jest równa dodatniej liczbie b pomniejszonej
XV Olimpiada Matematyczna Juniorów
XV Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część testowa (26 września 209 r.) Rozwiązania zadań testowych. odatnia liczba a jest mniejsza od. Wynika z tego, że a) a 2 > a; b) a > a; c)
Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 11 Zadania planimetria
1 TEST WSTĘPNY 1. (1p) Wysokość rombu o boku długości 6 i kącie ostrym 60 o jest równa: A. 6 3 B. 6 C. 3 3 D. 3 2. (1p) W trójkącie równoramiennym długość ramienia wynosi 10 a podstawa 16. Wysokość opuszczona
LIX Olimpiada Matematyczna
LIX Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia pierwszego (10 września 2007 r. 10 grudnia 2007 r.) Zadanie 1. Rozwiązać w liczbach rzeczywistych x, y, z układ równań x 5 = 5y
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie
9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (c.d).
Ćwiczenia z geometrii I
Ćwiczenia z geometrii I Dominik Burek 1 stycznia 2013 Zadanie 1. W trójkącie ABC punkt I jest środkiem okręgu wpisanego. Punkt P leży wewnątrz trójkąta oraz: Pokazać, że AP AI. P BA + P CA = P BC + P CB.
Przykładowe rozwiązania
Przykładowe rozwiązania (E. Ludwikowska, M. Zygora, M. Walkowiak) Zadanie 1. Rozwiąż równanie: w przedziale. ( ) ( ) ( )( ) ( ) ( ) ( ) Uwzględniając, że x otrzymujemy lub lub lub. Zadanie. Dany jest czworokąt
KONKURS ZOSTAŃ PITAGORASEM MUM. Podstawowe własności figur geometrycznych na płaszczyźnie
KONKURS ZOSTAŃ PITAGORASEM MUM ETAP I TEST II Podstawowe własności figur geometrycznych na płaszczyźnie 1. A. Stosunek pola koła wpisanego w kwadrat o boku długości 6 do pola koła opisanego na tym kwadracie
Indukcja matematyczna
Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.
V Konkurs Matematyczny Politechniki Białostockiej
V Konkurs Matematyczny Politechniki Białostockiej Rozwiązania - klasy drugie 1. Znaleźć wszystkie pary liczb całkowitych (x, y) spełniające nierówności x + 1 + y 4 x + y 4 5 x 4 + y 1 > 4. Ważne jest zauważenie,
LXIII Olimpiada Matematyczna
1 LXIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 18 kwietnia 2012 r. (pierwszy dzień zawodów) Zadanie 1. Rozstrzygnąć, czy istnieje taka dodatnia liczba wymierna
Elżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki
Elżbieta Świda Elżbieta Kurczab Marcin Kurczab Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki Zadanie Trójkąt ABC jest trójkątem prostokątnym. Z punktu M, należącego
Metoda siatek zadania
Metoda siatek zadania 1. (Leningrad 1984) Wykazać, że jeżeli suma kątów płaskich przy wierzchołku S ostrosłupa SA 1 A 2... A n (n 3) jest większa niż 180, to każda z krawędzi bocznych jest mniejsza od
Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów
Planimetria Uczeń: a) stosuje zależności między kątem środkowym i kątem wpisanym, b) korzysta z własności stycznej do okręgu i własności okręgów stycznych, c) rozpoznaje trójkąty podobne i wykorzystuje
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.
Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory
Rozwiązania zadań otwartych i schematy oceniania Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych
Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych Klucz odpowiedzi do zadań zamkniętych 5 6 7 8 9 0 5 6 7 8 9 0 A D B B C D C C D D A B D B B A C B C A Zadanie. (0-) Rozwiąż nierówność
G i m n a z j a l i s t ó w
Ko³o Matematyczne G i m n a z j a l i s t ó w Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 10 szkice rozwiazań zadań 1. Rozwiąż układ równań: (x+y)(x+y +z) = 72 (y +z)(x+y +z) = 120 (z +x)(x+y
Zadanie 9. ( 5 pkt. ) Niech r i R oznaczają odpowiednio długości promieni okręgów wpisanego i opisanego na ośmiokącie foremnym.
Międzyszkolne Zawody Matematyczne Klasa I z rozszerzonym programem nauczania matematyki Etap rejonowy 3..005 Czas rozwiązywania zadań - 50 minut. Zadanie. ( pkt. ) Ustal zbiór tych liczb naturalnych dodatnich,
Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów
Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Liga zadaniowa 0/03 Seria IV październik 0 rozwiązania zadań 6. Dla danej liczby naturalnej n rozważamy wszystkie sumy postaci a b a b 3 a 3 b 3 a b...n
LXIII Olimpiada Matematyczna
Zadanie 1. LXIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia pierwszego (1 września 2011 r. 6 grudnia 2011 r.) Rozwiązać w liczbach rzeczywistych układ równań (x+y) 3 = 8z (y
Przykładowy zestaw zadań nr 2 z matematyki Odpowiedzi i schemat punktowania poziom rozszerzony
ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi... Wprowadzenie oznaczeń: x, x, y poszukiwane liczby i zapisanie równania:
Obozowa liga zadaniowa (seria I wskazówki)
Obozowa liga zadaniowa (seria I wskazówki) 1. Rozstrzygnij, która liczba jest większa: 9 czy 3 1? 9 < 30 8 10 < 9 10 3 0 < 3 1.. Rozstrzygnij, która liczba jest większa: 81 czy 3 49? 81 > 80 56 10 > 43
Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym
Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel
Równania prostych i krzywych; współrzędne punktu
Równania prostych i krzywych; współrzędne punktu Zad 1: Na paraboli o równaniu y = 1 x znajdź punkt P leŝący najbliŝej prostej o równaniu x + y = 0 Napisz równanie stycznej do tej paraboli, poprowadzonej
V Konkurs Matematyczny Politechniki Białostockiej
V Konkurs Matematyczny Politechniki iałostockiej Rozwiązania - klasy pierwsze 27 kwietnia 2013 r. 1. ane są cztery liczby dodatnie a b c d. Wykazać że przynajmniej jedna z liczb a + b + c d b + c + d a
Najmocniejsze twierdzenie stereometrii zadania
Najmocniejsze twierdzenie stereometrii zadania 1. (RUS 2003) Sfera wpisana w czworościan ABCD jest styczna do ściany ABC w punkcie P, a sfera dopisana do czworościanu ABCD jest styczna do ściany ABC w
Metoda objętości zadania
Metoda objętości zadania Płaszczyzny i dzielą graniastosłup trójkątny na cztery bryły Znaleźć stosunki objętości tych brył 2 any jest równoległościan o objętości V Wyznaczyć objętość części wspólnej czworościanów
1. ODPOWIEDZI DO ZADAŃ TESTOWYCH
R O Z W I A Z A N I A 1. ODPOWIEDZI DO ZADAŃ TESTOWYCH 1. Dla dowolnych zbiorów A, B, C zachodzi równość (A B) (B C) (C A) = (A B C) (A B C), A (B C) = (A B) (A C), A (B C) = (A B) (A C). 2. Wyrażenie
LIV Olimpiada Matematyczna
Zadanie LIV Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia pierwszego września 2002 r 0 grudnia 2002 r Znaleźć wszystkie pary liczb całkowitych dodatnich x, y spełniających równanie
LVI Olimpiada Matematyczna
Zadanie 1. LVI Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia pierwszego (11 września 2004 r. 10 grudnia 2004 r.) Rozwiązać w liczbach rzeczywistych x, y, z układ równań x 2 = yz
PYTANIA TEORETYCZNE Z MATEMATYKI
Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste
Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów
Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Liga zadaniowa 2012/2013 Seria X (kwiecień 2013) rozwiązania zadań 46. Na szachownicy 75 75 umieszczono 120 kwadratów 3 3 tak, że każdy pokrywa 9 pól.
MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1
Wszelkie prawa zastrzeżone. Rozpowszechnianie, wypożyczanie i powielanie niniejszych testów w jakiejkolwiek formie surowo zabronione. W przypadku złamania zakazu mają zastosowanie przepisy dotyczące naruszenia
O D P O W I E D Z I D O Z A D A Ń T E S T O W Y C H
O D P O W I E D Z I D O Z A D A Ń T E S T O W Y C H 1. Niech A = {(x, y) R R : 3 x +4 x = 5 y } będzie zbiorem rozwiązań równania 3 x +4 x = 5 y w liczbach rzeczywistych. Wówczas zbiór A i zbiór N N mają
Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria
Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć
Internetowe Kółko Matematyczne 2003/2004
Internetowe Kółko Matematyczne 2003/2004 http://www.mat.uni.torun.pl/~kolka/ Zadania dla gimnazjum Zestaw I (12 IX) Zadanie 1. Znajdź cyfry A, B, C, spełniające równość: a) AB A = BCB, b) AB A = CCB. Zadanie
Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.
C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty
Zadania do samodzielnego rozwiązania
Zadania do samodzielnego rozwiązania I. Podzielność liczb całkowitych 1. Pewna liczba sześciocyfrowa a kończy się cyfrą 5. Jeśli tę cyfrę przestawimy na miejsce pierwsze ze strony lewej, to otrzymamy nową
LXII Olimpiada Matematyczna
LXII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia pierwszego (1 września 2010 r. 6 grudnia 2010 r.) Zadanie 1. Wyznaczyć wszystkie takie pary (a, b) liczb wymiernych dodatnich,
Regionalne Koło Matematyczne
Regionalne Koło Matematyczne Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki http://www.mat.umk.pl/rkm/ Lista rozwiązań zadań nr 2 (14-19.10.2009) nalogie i różnice miedzy trójkątem
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ JUNIORÓW SZCZYRK 2017
STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ JUNIORÓW Obóz Naukowy OMJ Poziom OMJ 207 rok SZCZYRK 207 Olimpiada Matematyczna Juniorów jest wspó³finansowana ze œrodków
11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).
1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego
rys. 4 BK KC AM MB CL LA = 1.
Joanna Zakrzewska Wspólny punkt Na najnowszym, trzecim już, plakacie Stowarzyszenia na rzecz Edukacji Matematycznej (zob. www.sem.edu.pl) widnieje dwanaście konfiguracji geometrycznych. Ich wspólną cechą
XXXVIII Regionalny Konkurs Rozkosze łamania Głowy
XXXVIII Regionalny Konkurs Rozkosze łamania Głowy klasy I i II szkół ponadgimnazjalnych 1. Liczba 2015 2017 + 2 2015 2016 + 2015 2015 jest podzielna przez: A. 2017 B. 2016 C. 2015 2. Układ równań 8 >