Metoda elementów skończonych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Metoda elementów skończonych"

Transkrypt

1 Metoda elementów skończonych

2 Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną z tych metod jest metoda elementów skończonych, w skrócie MES. Za datę powstania MES przyjmuje się rok 1956, kiedy to zespół M.J. Turnera przedstawił jej koncepcję. Wraz z pojawieniem się i rozwojem komputerów osobistych (PC) pojawiły się również programy MES na takie właśnie maszyny, a wśród nich na przykład Ansys czy Abaqus. Wszystkie programy MES zawierają trzy moduły: - preprocesor to moduł służący do przygotowania modelu obliczanej konstrukcji. Tu są definiowane warunki brzegowe i obciążenia, - solver - moduł w którym są wykonywane obliczenia, - postprocesor moduł służący do prezentacji wyników obliczeń czyli rozkłady przemieszczeń, naprężeń, częstości drgań własnych czy postacie drgań. Programy MES do zapisu konstrukcji i obliczeń stosują zapis macierzowy. Pozwala on na rozwiązywanie z dużą dokładnością i szybkością układów równań zawierających setki tysięcy niewiadomych. Analizowany rzeczywisty obiekt (część, zespół czy też jakaś większa konstrukcja) tworzy pewne kontinuum ograniczone przez jego geometrię. Analiza takiego kontinuum polega najczęściej na znalezieniu pola rozkładu pewnych poszukiwanych wielkości. Jeżeli analiza dotyczy wytrzymałości mechanicznej to poszukiwane będzie pole rozkładu naprężeń i przemieszczeń. Jeżeli będzie to na przykład analiza wytrzymałości termicznej poszukiwane będzie pole rozkładu temperatur w obiekcie. Niezależnie od analizowanej wielkości, pole jej rozkładu zależy od parametrów w nieskończonej liczbie punktów materialnych kontinuum. Rozwiązanie na drodze analitycznej można uzyskać rozwiązując układ równań różniczkowych stanowiących model matematyczny analizowanego problemu. Ponieważ dokładne rozwiązanie złożonych problemów na drodze analitycznej jest praktycznie niemożliwe, stworzono kilka metod przybliżonego rozwiązywania dających bardzo dobre wyniki. Jedną z nich jest metoda elementów skończonych (MES). Rys. 1.1 Idea dyskretyzacji ciągłego obiektu w MES. W metodzie elementów skończonych, analizowany rzeczywisty obiekt ciągły poddaje się dyskretyzacji, polegającej na jego podziale na wiele odpowiednio małych elementów o skończonych wymiarach (Rys. 1.1). Uzyskuje się zatem skończoną ilość tych elementów.

3 Wyróżnia się w nich punkty węzłowe oraz punkty wewnętrzne. Elementy są połączone ze sobą w węzłach. Przebieg parametrów wewnątrz elementu skończonego jest określony przez funkcje parametrów węzłowych tzw. funkcje kształtu. Ostatecznie uzyskuje się opis problemu w postaci układu równań algebraicznych, pozwalających na wyznaczenie parametrów węzłowych, a rozwiązanie otrzymuje się przy pomocy rachunku macierzowego. Na Rys. 1.2 pokazano przykład dyskretyzacji tarczy hamulca samochodu. Rys. 1.2 Przykład dyskretyzacji tarczy hamulca. Można zatem napisać: u = [ N] U (1.1) gdzie: u wektor wartości funkcji kształtu w punktach wewnętrznych, U - wektor wartości funkcji kształtu w punktach węzłowych, [N] macierz funkcji kształtu. [ N ] = [ N, N2,... N 1 n ] (1.2) W problemach dotyczących wytrzymałości materiałów wyrażenie (1.1) opisuje zależność między przemieszczeniami w węzłach i punktach wewnętrznych. W innych problemach będzie ona opisywać inne zależności. W równaniach opisujących ruch układu występują współrzędne węzłów i ich pochodne. Aby sformułować opis problemu należy podać: - właściwości materiału. Dla układów liniowych sprężystych jest to prawo Hooke a: σ = [D] ε (1.3)

4 - warunki geometryczne opisane macierzą odkształceń (macierzą powiązania) ε = [ B] U (1.4) Macierz [B] jest związana z funkcjami kształtu zależnością: [ B] = [ L] [ N] (1.5) L operator różniczkowy - warunki brzegowe opisane równaniami algebraicznymi: u l = 0 (1.6) l = 1,..m, - numery odebranych stopni swobody. - obciążenia skupione w węzłach. Obciążenia ciągłe zastępuje się obciążeniem skupionym kinematycznie równoważnym. Macierz sztywności elementów skończonych wyznacza się na podstawie twierdzenia o energii kinetycznej. W przypadku statycznym energia kinetyczna jest stała, jej przyrost wynosi zero. Energia potencjalna odkształcanego elementu skończonego jest zatem równa pracy sił zewnętrznych. V = L z (1.7) Energię sprężystą opisuje zależność: 1 T V = ε σ df 2 F (1.8) Jeżeli w analizowanej konstrukcji stosowane są elementy jednowymiarowe to w zależności (1.8) występuje całka pojedyncza zaś obszar całkowania charakteryzowany jest przez długość. Jeżeli zaś element skończony jest dwu- lub trzywymiarowy wtedy we wzorze występuje całka podwójna lub potrójna a obszar całkowania jest charakteryzowany przez powierzchnię lub objętość. W zależności (1.8) występują odkształcenia i naprężenia które są zapisane w formie wektorów czyli macierzy jednokolumnowych. Po wstawieniu (1.3) i (1.4) do równania (1.8) i przekształceniu otrzymuje się zależność: V 1 T T = U B D B df [ ] [ ] [ ] U 2 F (1.9)

5 Macierzą sztywności oznacza się następujące wyrażenie: T [ K ] = [ B] [ D] [ B] df F (1.10) Pracę sił zewnętrznych opisuje zależność: L z 1 = P 2 T U (1.11) Jeżeli do równania (1.7) wstawi się (1.9) i (1.11) oraz zastosuje oznaczenie (1.10) to po przekształceniu otrzymuje się zależność: [ K ] U = P (1.12) Wyrażenia (1.12) jest podstawowym równaniem statyki w MES. Wyznaczane jest tu przemieszczenie więc metoda określana jest jako przemieszczeniowa. W metodzie stosuje się elementy skończone jedno-, dwu- i trójwymiarowe. Elementy jednowymiarowe wykorzystuje się do analizy obiektów których jeden wymiar jest znacznie większy od dwóch pozostałych, czyli do analizy belek i prętów. Wyróżnia się tu dwa rodzaje elementów: - prętowy przestrzenny element skończony to element posiadający dwa węzły i w każdym węźle trzy stopnie swobody - trzy przemieszczenia. Elementy te stosuje się między innymi do analiz konstrukcji kratownic, - belkowy przestrzenny element skończony to element posiadający dwa lub więcej węzłów (zależy to od stopnia funkcji kształtu) posiadający sześć stopni swobody w każdym węźle - trzy przemieszczenia i trzy obroty. Stosuje się je na przykład do analizy ram. Elementy dwuwymiarowe wykorzystuje się do analizy obiektów o dwóch wymiarach znacznie większych od trzeciego oraz analizy w płaskim stanie naprężenia. Wyróżnia się tu między innymi: - elementy dwuwymiarowe w płaskim stanie naprężenia to elementy posiadające trzy stopnie swobody w węźle dwa przemieszczenia i obrót w płaszczyźnie elementu, - przestrzenny element powłokowy który posiada sześć stopni swobody w każdym węźle trzy przemieszczenia i trzy obroty. Stosuje się je do analiz konstrukcji powłokowych, - elementy osiowo-symetryczne mają trzy stopnie swobody w węźle dwa przemieszczenia i obrót w płaszczyźnie elementu, przy czym płaszczyzna ta przechodzi przez oś symetrii obiektu.

6 Rys. 1.3 Przykłady powłokowych elementów skończonych o aproksymacji liniowej i kwadratowej. Przemieszczenia punktów wewnętrznych elementu mogą być opisane funkcjami liniowymi lub funkcjami wyższych rzędów. Stosując opis równaniami liniowymi uzyskuje się elementy posiadające liniowo zmienne wartości przemieszczeń oraz stałe wartości odkształceń i naprężeń w całym obszarze elementu. Dokładniejsze są elementy posiadające opis przemieszczeń funkcjami kwadratowymi. Posiadają one dodatkowy węzeł na każdej krawędzi w środku jej długości. Elementy te mają przemieszczenia zmienne kwadratowo oraz liniowo zmienne odkształcenia i naprężenia w obrębie elementu. Z uwagi na mniejszą dokładność elementów o aproksymacji liniowej zachodzi konieczność stosowania większej ich liczby. Na Rys. 1.3 pokazano przykłady elementów dwuwymiarowych. Elementy trójwymiarowe (bryłowe) stosuje się do analizy obiektów przestrzennych. Elementy te maję trzy stopnie swobody w każdym węźle - trzy przemieszczenia. Najczęściej stosuje się elementy sześcienne. Stosuje się tu takie same zasady aproksymacji przemieszczeń jak dla elementów dwuwymiarowych. Uzyskuje się więc elementy czworościenne cztero- lub dziesięciowęzłowe, oraz sześcienne ośmio-, szesnasto- lub dwudziestowęzłowe. Na Rys. 1.4 pokazano kilka przykładów elementów bryłowych. Rys. 1.4 Przykłady trójwymiarowych elementów skończonych o aproksymacji liniowej i kwadratowej.

7 Oprócz standartowych, wymienionych wyżej elementów, stosuje się również w systemach MES specjalnie opracowane elementy: - powłokowe wykorzystujące założenia teorii powłok, - cienkościenne opisujące stan naprężeń w elementach cienkościennych, - warstwowe opisujące materiały warstwowe na przykład laminaty wzmocnione włóknem szklanym czy węglowym. Dokładność obliczeń zależy od wielkości zastosowanego elementu skończonego (Rys. 1.5). Ogólnie im wielkość elementu skończonego mniejsza tym dokładność obliczeń większa. Niestety zmniejszanie wielkości elementu powoduje wzrost ich liczby w modelu. Skutkuje to wydłużeniem obliczeń z powodu wzrostu ilości równań do rozwiązania. W skrajnym przypadku proces obliczania może w ogóle nie wystartować na przykład z powodu zbyt małej mocy obliczeniowej komputera. Jedną z metod optymalizacji wielkości elementu skończonego w zagadnieniach statycznych jest wstępny podział konstrukcji na niezbyt wiele elementów, wykonanie obliczenia, zagęszczenie siatki dwukrotnie i ponowne wykonanie obliczenia. Jeżeli wyniki z kolejnych dwóch prób niewiele się różnią to przyjmuje się obliczenia za wystarczająco dokładne. Oczywiście w zależności od odpowiedzialności konstrukcji przyjmuje się różne dokładności kolejnych dwu obliczeń. Rys. 1.5 Zależność dokładności obliczeń od wielkości elementu skończonego.

8 Bibliografia Jerzy Osiński : Obliczenia wytrzymałościowe elementów maszyn z zastosowaniem metody elementów skończonych. Oficyna Wydawnicza Politechniki Warszawskiej 1997 Gustaw Rakowski Zbigniew Kacprzyk : Metoda elementów skończonych Oficyna Wydawnicza Politechniki Warszawskiej 2005

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów

Bardziej szczegółowo

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ.

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ. Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ. Jolanta Zimmerman 1. Wprowadzenie do metody elementów skończonych Działanie rzeczywistych

Bardziej szczegółowo

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy Wstęp Numeryczne Modeowanie Układów Ciągłych Podstawy Metody Eementów Skończonych Metoda Eementów Skończonych służy do rozwiązywania probemów początkowo-brzegowych, opisywanych równaniami różniczkowymi

Bardziej szczegółowo

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki

Bardziej szczegółowo

Element cięgnowy. Rysunek: Element LINK1. Jakub J. Słowiński (IMMT PWr) Wykład 4 09 i 16.03.2012 51 / 74

Element cięgnowy. Rysunek: Element LINK1. Jakub J. Słowiński (IMMT PWr) Wykład 4 09 i 16.03.2012 51 / 74 Elementy 1D Element cięgnowy Element LINK1 jest elementem 2D, dwuwęzłowym, posiadającym jedynie dwa stopnie swobody - translację w kierunku x oraz y. Można zadeklarować pole jego przekroju oraz odkształcenie

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: PODSTAWY MODELOWANIA PROCESÓW WYTWARZANIA Fundamentals of manufacturing processes modeling Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności APWiR Rodzaj

Bardziej szczegółowo

pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ

pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ Ćwiczenie audytoryjne pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ Autor: dr inż. Radosław Łyszkowski Warszawa, 2013r. Metoda elementów skończonych MES FEM - Finite Element Method przybliżona

Bardziej szczegółowo

Modelowanie układów prętowych

Modelowanie układów prętowych Modelowanie kładów prętowych Elementy prętowe -definicja Elementami prętowymi można modelować - elementy konstrkcji o stosnk wymiarów poprzecznych do podłżnego poniżej 0.1, - elementy, które są wąskie

Bardziej szczegółowo

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa Spis treści Rozdział I. Membrany izotropowe 1. Wyprowadzenie równania na ugięcie membrany... 13 2. Sformułowanie zagadnień brzegowych we współrzędnych kartezjańskich i biegunowych... 15 3. Wybrane zagadnienia

Bardziej szczegółowo

Wprowadzenie do Metody Elementu Skończonego

Wprowadzenie do Metody Elementu Skończonego Wprowadzenie do Metody Elementu Skończonego Krzysztof Balonek, Sławomir Gozdur Wydział Fizyki i Informatyki Stosowanej, AGH, Kraków, Poland email: kbalonek@g10.pl, slagozd@gmail.com Praca dostępna w internecie:

Bardziej szczegółowo

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU I. KARTA PRZEDMIOTU. Nazwa przedmiotu: KOMPUTEROWE WSPOMAGANIE PROJEKTOWANIA Z CAD 2. Kod przedmiotu: Ko 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechanika i budowa maszyn

Bardziej szczegółowo

DRGANIA ELEMENTÓW KONSTRUKCJI

DRGANIA ELEMENTÓW KONSTRUKCJI DRGANIA ELEMENTÓW KONSTRUKCJI (Wprowadzenie) Drgania elementów konstrukcji (prętów, wałów, belek) jak i całych konstrukcji należą do ważnych zagadnień dynamiki konstrukcji Przyczyna: nawet niewielkie drgania

Bardziej szczegółowo

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1 Przedmowa Okładka CZĘŚĆ PIERWSZA. SPIS PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1. STAN NAPRĘŻENIA 1.1. SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE 1.2. WEKTOR NAPRĘŻENIA 1.3. STAN NAPRĘŻENIA W PUNKCIE 1.4. RÓWNANIA

Bardziej szczegółowo

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie

Bardziej szczegółowo

FLAC Fast Lagrangian Analysis of Continua. Marek Cała Katedra Geomechaniki, Budownictwa i Geotechniki

FLAC Fast Lagrangian Analysis of Continua. Marek Cała Katedra Geomechaniki, Budownictwa i Geotechniki FLAC Fast Lagrangian Analysis of Continua Program FLAC jest oparty o metodę różnic skończonych. Metoda Różnic Skończonych (MRS) jest chyba najstarszą metodą numeryczną. W metodzie tej każda pochodna w

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 4

INSTRUKCJA DO ĆWICZENIA NR 4 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 4 PRZEDMIOT TEMAT Wybrane zagadnienia z optymalizacji elementów konstrukcji Zastosowanie optymalizacji

Bardziej szczegółowo

Modelowanie Wspomagające Projektowanie Maszyn

Modelowanie Wspomagające Projektowanie Maszyn Modelowanie Wspomagające Projektowanie Maszyn TEMATY ĆWICZEŃ: 1. Metoda elementów skończonych współczynnik kształtu płaskownika z karbem a. Współczynnik kształtu b. MES i. Preprocesor ii. Procesor iii.

Bardziej szczegółowo

Metoda Elementów Brzegowych LABORATORIUM

Metoda Elementów Brzegowych LABORATORIUM Akademia Techniczno-Humanistyczna W Bielsku-Białej Metoda Elementów Brzegowych LABORATORIUM INSTRUKCJE DO ĆWICZEŃ Ćwiczenie 1. Zapoznanie z obsługą systemu BEASY Celem ćwiczenia jest zapoznanie się z obsługą

Bardziej szczegółowo

ANALIZA STATYCZNA MES DLA USTROJÓW POWIERZNIOWYCH

ANALIZA STATYCZNA MES DLA USTROJÓW POWIERZNIOWYCH ANALIZA STATYCZNA MES DLA USTROJÓW POWIERZNIOWYCH Mechanika materiałów i konstrukcji budowlanych, studia II stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska

Bardziej szczegółowo

ROTOPOL Spring Meeting

ROTOPOL Spring Meeting ROTOPOL Spring Meeting Obliczenia wytrzymałościowe dużych zbiorników. Optymalizacja konstrukcji zbiorników. Studium przypadku. Strength analysis of big tanks. Optimization of design of tanks. Case study.

Bardziej szczegółowo

1. Pojazdy i maszyny robocze 2. Metody komputerowe w projektowaniu maszyn 3. Inżynieria produkcji Jednostka prowadząca

1. Pojazdy i maszyny robocze 2. Metody komputerowe w projektowaniu maszyn 3. Inżynieria produkcji Jednostka prowadząca Kod przedmiotu: PLPILA02-IPMIBM-I-2p7-2012-S Pozycja planu: B7 1. INFORMACJE O PRZEDMIOCIE A. Podstawowe dane 1 Nazwa przedmiotu Wytrzymałość materiałów I 2 Rodzaj przedmiotu Podstawowy/obowiązkowy 3 Kierunek

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE

Bardziej szczegółowo

Projektowanie elementów z tworzyw sztucznych

Projektowanie elementów z tworzyw sztucznych Projektowanie elementów z tworzyw sztucznych Wykorzystanie technik komputerowych w projektowaniu elementów z tworzyw sztucznych Tematyka wykładu Techniki komputerowe, Problemy występujące przy konstruowaniu

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D - 4. Zastosowanie teoretycznej analizy modalnej w dynamice maszyn

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D - 4. Zastosowanie teoretycznej analizy modalnej w dynamice maszyn POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN Ćwiczenie D - 4 Temat: Zastosowanie teoretycznej analizy modalnej w dynamice maszyn Opracowanie: mgr inż. Sebastian Bojanowski Zatwierdził:

Bardziej szczegółowo

Stateczność ramy - wersja komputerowa

Stateczność ramy - wersja komputerowa Stateczność ramy - wersja komputerowa Cel ćwiczenia : - Obliczenie wartości obciążenia krytycznego i narysowanie postaci wyboczenia. utraty stateczności - Obliczenie przemieszczenia i sił przekrojowych

Bardziej szczegółowo

Modelowanie w MES. Kolejność postępowania w prostej analizie MES w SWS

Modelowanie w MES. Kolejność postępowania w prostej analizie MES w SWS MES 5 Modelowanie w MES Część I Kolejność postępowania w prostej analizie MES w SWS Kroki analizy Zakładamy, że model już jest uproszczony, zdefiniowany został materiał, obciążenie i umocowanie (krok 0).

Bardziej szczegółowo

TARCZOWE I PŁYTOWE ELEMENTY SKOŃCZONE

TARCZOWE I PŁYTOWE ELEMENTY SKOŃCZONE PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika

Bardziej szczegółowo

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL We wstępnej analizie przyjęto następujące założenia: Dwuwymiarowość

Bardziej szczegółowo

Projektowanie systemów EM. Metoda elementów skończonych

Projektowanie systemów EM. Metoda elementów skończonych Projektowanie systemów EM Metoda elementów skończonych Wstęp Podstawy obliczeń MES Etapy definicji modelu numerycznego Rodzaje problemów moduły obliczeniowe Wybrane wyniki obliczeń 2 dr inż. Michał Michna

Bardziej szczegółowo

PRACA DYPLOMOWA INŻYNIERSKA

PRACA DYPLOMOWA INŻYNIERSKA PRACA DYPLOMOWA INŻYNIERSKA Katedra Wytrzymałości Materiałów i Metod Mechaniki. Zastosowanie metody elementów skończonych do oceny stanu wytężenia obudowy silnika pompy próżniowej Student: Tomasz Sczesny

Bardziej szczegółowo

Joanna Dulińska Radosław Szczerba Wpływ parametrów fizykomechanicznych betonu i elastomeru na charakterystyki dynamiczne wieloprzęsłowego mostu żelbetowego z łożyskami elastomerowymi Impact of mechanical

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: MODELOWANIE I SYMULACJA PROCESÓW WYTWARZANIA Modeling and Simulation of Manufacturing Processes Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy specjalności PSM Rodzaj zajęć: wykład,

Bardziej szczegółowo

Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka

Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka Poznań, 16.05.2012r. Raport z promocji projektu Nowa generacja energooszczędnych

Bardziej szczegółowo

KARTA PRZEDMIOTU 1/5. Wydział Mechaniczny PWR

KARTA PRZEDMIOTU 1/5. Wydział Mechaniczny PWR Wydział Mechaniczny PWR KARTA PRZEDMIOTU Nazwa w języku polskim: Mechanika analityczna Nazwa w języku angielskim: Analytical Mechanics Kierunek studiów (jeśli dotyczy): Mechanika i Budowa Maszyn Specjalność

Bardziej szczegółowo

ĆWICZENIE Nr 1. Laboratorium CAD/MES. Przedmiot: Modelowanie właściwości materiałów. Opracował: dr inż. Hubert Dębski

ĆWICZENIE Nr 1. Laboratorium CAD/MES. Przedmiot: Modelowanie właściwości materiałów. Opracował: dr inż. Hubert Dębski POLITECHNIKA LUBELSKA WYDZIAŁ MECHANICZNY KATEDRA PODSTAW KON- STRUKCJI MASZYN Przedmiot: Modelowanie właściwości materiałów Laboratorium CAD/MES ĆWICZENIE Nr 1 Opracował: dr inż. Hubert Dębski I. Temat

Bardziej szczegółowo

Rys. 1. Obudowa zmechanizowana Glinik 15/32 Poz [1]: 1 stropnica, 2 stojaki, 3 spągnica

Rys. 1. Obudowa zmechanizowana Glinik 15/32 Poz [1]: 1 stropnica, 2 stojaki, 3 spągnica Górnictwo i Geoinżynieria Rok 30 Zeszyt 1 2006 Sławomir Badura*, Dariusz Bańdo*, Katarzyna Migacz** ANALIZA WYTRZYMAŁOŚCIOWA MES SPĄGNICY OBUDOWY ZMECHANIZOWANEJ GLINIK 15/32 POZ 1. Wstęp Obudowy podporowo-osłonowe

Bardziej szczegółowo

Wprowadzenie do MES. Krzysztof Banaś. 24 października 2012

Wprowadzenie do MES. Krzysztof Banaś. 24 października 2012 Wprowadzenie do MES Krzysztof Banaś 24 października 202 MES (Metoda Elementów Skończonych 2 ) jest jednym z podstawowych narzędzi komputerowego wspomagania badań naukowych i analiz inżynierskich, o bardzo

Bardziej szczegółowo

ANALIZA WYTRZYMAŁOŚCI WYSIĘGNIKA ŻURAWIA TD50H

ANALIZA WYTRZYMAŁOŚCI WYSIĘGNIKA ŻURAWIA TD50H Szybkobieżne Pojazdy Gąsienicowe (16) nr 2, 2002 Alicja ZIELIŃSKA ANALIZA WYTRZYMAŁOŚCI WYSIĘGNIKA ŻURAWIA TD50H Streszczenie: W artykule przedstawiono wyniki obliczeń sprawdzających poprawność zastosowanych

Bardziej szczegółowo

Analiza płyt i powłok MES Zagadnienie wyboczenia

Analiza płyt i powłok MES Zagadnienie wyboczenia Analiza płyt i powłok MES Zagadnienie wyboczenia Wykład 3 dla kierunku Budownictwo, specjalności DUA+TOB/BM+BŚ+BO Jerzy Pamin i Marek Słoński nstytut Technologii nformatycznych w nżynierii Lądowej Politechnika

Bardziej szczegółowo

SKRĘCANIE WAŁÓW OKRĄGŁYCH

SKRĘCANIE WAŁÓW OKRĄGŁYCH KRĘCANIE AŁÓ OKRĄGŁYCH kręcanie występuje wówczas gdy para sił tworząca moment leży w płaszczyźnie prostopadłej do osi elementu konstrukcyjnego zwanego wałem Rysunek pokazuje wał obciążony dwiema parami

Bardziej szczegółowo

Symulacja komputerowa redukcji naprężeń w układzie mechanicznym SPIS TREŚCI. 2.2. Prawo Hooke a...5. 2.4. Podstawowe równania ruchu..

Symulacja komputerowa redukcji naprężeń w układzie mechanicznym SPIS TREŚCI. 2.2. Prawo Hooke a...5. 2.4. Podstawowe równania ruchu.. SPIS TREŚCI 1. Wstęp.....2 2. Równania naprężeń i odkształceń..4 2.1. Analiza stanu naprężeń i odkształceń. 4 2.2. Prawo Hooke a...5 2.3. Uogólnione prawo Hooke a dla trójosiowego stanu naprężeń....5 2.4.

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: Kierunkowy ogólny Rodzaj zajęć: Wykład, ćwiczenia MECHANIKA Mechanics Forma studiów: studia stacjonarne Poziom kwalifikacji: I stopnia Liczba godzin/tydzień:

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: MODELOWANIE PROCESÓW ENERGETYCZNYCH Kierunek: ENERGETYKA Rodzaj przedmiotu: specjalności obieralny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 1 DZIAŁ PROGRAMOWY V. PODSTAWY STATYKI I WYTRZYMAŁOŚCI MATERIAŁÓW

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

KARTA KURSU. Mathematics

KARTA KURSU. Mathematics KARTA KURSU Nazwa Nazwa w j. ang. Matematyka Mathematics Kod Punktacja ECTS* 4 Koordynator Dr Maria Robaszewska Zespół dydaktyczny dr Maria Robaszewska Opis kursu (cele kształcenia) Celem kursu jest zapoznanie

Bardziej szczegółowo

Wewnętrzny stan bryły

Wewnętrzny stan bryły Stany graniczne Wewnętrzny stan bryły Bryła (konstrukcja) jest w równowadze, jeżeli oddziaływania zewnętrzne i reakcje się równoważą. P α q P P Jednak drugim warunkiem równowagi jest przeniesienie przez

Bardziej szczegółowo

PYTANIA SZCZEGÓŁOWE DLA PROFILI DYPLOMOWANIA EGZAMIN MAGISTERSKI

PYTANIA SZCZEGÓŁOWE DLA PROFILI DYPLOMOWANIA EGZAMIN MAGISTERSKI PYTANIA SZCZEGÓŁOWE DLA PROFILI DYPLOMOWANIA Materiały budowlane z technologią betonu EGZAMIN MAGISTERSKI Fizyka budowli Budownictwo ogólne 1. Materiały pokryć dachowych. 2. Wymagania techniczne i rozwiązania

Bardziej szczegółowo

3. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE

3. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE Część. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE.. METODA PRZEMIESZCZEŃ - ZASADY OGÓLNE Istotę metody przemieszczeń, najwygodniej jest przedstawić przez porównanie jej do metody sił, którą wcześniej już poznaliśmy

Bardziej szczegółowo

Trzy lekcje metody elementów skończonych

Trzy lekcje metody elementów skończonych Wiesław Śródka Trzy lekcje metody elementów skończonych Materiały pomocnicze do przedmiotu wytrzymałość materiałów Oficyna Wydawnicza Politechniki Wrocławskiej Wrocław 2004 Recenzent Marek WITKOWSKI Opracowanie

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

11. 11. OPTYMALIZACJA KONSTRUKCJI

11. 11. OPTYMALIZACJA KONSTRUKCJI 11. OPTYMALIZACJA KONSTRUKCJI 1 11. 11. OPTYMALIZACJA KONSTRUKCJI 11.1. Wprowadzenie 1. Optymalizacja potocznie i matematycznie 2. Przykład 3. Kryterium optymalizacji 4. Ograniczenia w zadaniach optymalizacji

Bardziej szczegółowo

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03 METODY OBLICZENIOWE Projekt nr 3.4 Dariusz Ostrowski, Wojciech Muła 2FD/L03 Zadanie Nasze zadanie składało się z dwóch części: 1. Sformułowanie, przy użyciu metody Lagrange a II rodzaju, równania różniczkowego

Bardziej szczegółowo

POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN

POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN POLITECHNIKA SZCZECIŃSKA KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Ćwiczenie nr Instrukcja do ćwiczeń laboratoryjnych Numeryczne metody analizy konstrukcji Analiza statyczna obciążonej kratownicy

Bardziej szczegółowo

MECHANIKA BUDOWLI I. Prowadzący : dr inż. Hanna Weber pok. 225, email: weber@zut.edu.pl strona: www.weber.zut.edu.pl

MECHANIKA BUDOWLI I. Prowadzący : dr inż. Hanna Weber pok. 225, email: weber@zut.edu.pl strona: www.weber.zut.edu.pl MECHANIKA BUDOWLI I Prowadzący : pok. 5, email: weber@zut.edu.pl strona: www.weber.zut.edu.pl Literatura: Dyląg Z., Mechanika Budowli, PWN, Warszawa, 989 Paluch M., Mechanika Budowli: teoria i przykłady,

Bardziej szczegółowo

ALGORYTM OBLICZENIOWY DRGAŃ SWOBODNYCH Ł OPATKI WIRNIKOWEJ

ALGORYTM OBLICZENIOWY DRGAŃ SWOBODNYCH Ł OPATKI WIRNIKOWEJ ZESZYTY NAUKOWE AKADEMII MARYNARKI WOJENNEJ ROK XLIX NR (73) Lesł aw Kyzioł Leszek Kubitz Akademia Marynarki Wojennej ALGORYTM OBLICZENIOWY DRGAŃ SWOBODNYCH Ł OPATKI WIRNIKOWEJ STRESZCZENIE Przedstawiono

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: KOMPUTEROWE WSPOMAGANIE PRAC INŻYNIERSKICH Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności: Komputerowe projektowanie maszyn i urządzeń Rodzaj zajęć:

Bardziej szczegółowo

WERYFIKACJA SZTYWNOŚCI KONSTRUKCJI PLATFORMY MONTAŻOWEJ WOZU BOJOWEGO

WERYFIKACJA SZTYWNOŚCI KONSTRUKCJI PLATFORMY MONTAŻOWEJ WOZU BOJOWEGO Szybkobieżne Pojazdy Gąsienicowe (19) nr 1, 2004 Alicja ZIELIŃSKA WERYFIKACJA SZTYWNOŚCI KONSTRUKCJI PLATFORMY MONTAŻOWEJ WOZU BOJOWEGO Streszczenie: W artykule przedstawiono weryfikację sztywności konstrukcji

Bardziej szczegółowo

17. 17. Modele materiałów

17. 17. Modele materiałów 7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie

Bardziej szczegółowo

ĆWICZENIE Nr 2 i 3. Laboratorium CAD/MES. Przedmiot: Modelowanie właściwości materiałów. Opracował: dr inż. Hubert Dębski

ĆWICZENIE Nr 2 i 3. Laboratorium CAD/MES. Przedmiot: Modelowanie właściwości materiałów. Opracował: dr inż. Hubert Dębski POLITECHNIKA LUBELSKA WYDZIAŁ MECHANICZNY KATEDRA PODSTAW KON- STRUKCJI MASZYN Przedmiot: Modelowanie właściwości materiałów Laboratorium CAD/MES ĆWICZENIE Nr 2 i 3 Opracował: dr inż. Hubert Dębski I.

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

PORÓWNANIE WYNIKÓW OBLICZEŃ WYTRZYMAŁOŚCI KONSTRUKCJI Z BADANIAMI STANOWISKOWYMI

PORÓWNANIE WYNIKÓW OBLICZEŃ WYTRZYMAŁOŚCI KONSTRUKCJI Z BADANIAMI STANOWISKOWYMI Szybkobieżne Pojazdy Gąsienicowe (30) nr 2, 2012 Alicja ZIELIŃSKA PORÓWNANIE WYNIKÓW OBLICZEŃ WYTRZYMAŁOŚCI KONSTRUKCJI Z BADANIAMI STANOWISKOWYMI Streszczenie: W artykule opisano proces weryfikacji wyników

Bardziej szczegółowo

Modelowanie biomechaniczne. Dr inż. Sylwia Sobieszczyk Politechnika Gdańska Wydział Mechaniczny KMiWM 2005/2006

Modelowanie biomechaniczne. Dr inż. Sylwia Sobieszczyk Politechnika Gdańska Wydział Mechaniczny KMiWM 2005/2006 Modelowanie biomechaniczne Dr inż. Sylwia Sobieszczyk Politechnika Gdańska Wydział Mechaniczny KMiWM 2005/2006 Zakres: Definicja modelowania Modele kinematyczne ruch postępowy, obrotowy, przemieszczenie,

Bardziej szczegółowo

3. Rozciąganie osiowe

3. Rozciąganie osiowe 3. 3. Rozciąganie osiowe 3. Podstawowe definicje Przyjmijmy, że materiał z którego wykonany został pręt jest jednorodny oraz izotropowy. Izotropowy oznacza, że próbka wycięta z większej bryły materiału

Bardziej szczegółowo

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y Przykład 1 Dane są trzy siły: P 1 = 3i + 4j, P 2 = 2i 5j, P 3 = 7i + 3j (składowe sił wyrażone są w niutonach), przecinające się w punkcie A (1, 2). Wyznaczyć wektor wypadkowej i jej wartość oraz kąt α

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

Determination of stresses and strains using the FEM in the chassis car during the impact.

Determination of stresses and strains using the FEM in the chassis car during the impact. Wyznaczanie naprężeń i odkształceń za pomocą MES w podłużnicy samochodowej podczas zderzenia. Determination of stresses and strains using the FEM in the chassis car during the impact. dr Grzegorz Służałek

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃCZONYCH.

METODA ELEMENTÓW SKOŃCZONYCH. METODA ELEMENTÓW SKOŃCZONYCH. W programie COMSOL multiphisics 3.4 Wykonali: Łatas Szymon Łakomy Piotr Wydzał, Kierunek, Specjalizacja, Semestr, Rok BMiZ, MiBM, TPM, VII, 2011 / 2012 Prowadzący: Dr hab.inż.

Bardziej szczegółowo

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1) ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest

Bardziej szczegółowo

1. STRUKTURA MECHANIZMÓW 1.1. POJĘCIA PODSTAWOWE

1. STRUKTURA MECHANIZMÓW 1.1. POJĘCIA PODSTAWOWE 1. STRUKTURA MECHANIZMÓW 1.1. POJĘCIA PODSTAWOWE 1.1.1. Człon mechanizmu Człon mechanizmu to element konstrukcyjny o dowolnym kształcie, ruchomy bądź nieruchomy, zwany wtedy podstawą, niepodzielny w aspekcie

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia Wytrzymałość materiałów Informacje ogólne 2 Nazwa jednostki prowadzącej moduł Państwowa Szkoła Wyższa im. Papieża Jana Pawła II,Katedra Nauk Technicznych,

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA W GLIWICACH Wydział Mechaniczny Technologiczny PRACA DYPLOMOWA MAGISTERSKA

POLITECHNIKA ŚLĄSKA W GLIWICACH Wydział Mechaniczny Technologiczny PRACA DYPLOMOWA MAGISTERSKA POLITECHNIKA ŚLĄSKA W GLIWICACH Wydział Mechaniczny Technologiczny PRACA DYPLOMOWA MAGISTERSKA Wykorzystanie pakietu MARC/MENTAT do modelowania naprężeń cieplnych Spis treści Pole temperatury Przykład

Bardziej szczegółowo

MODEL 3D MCAD LEKKIEGO SAMOLOTU SPORTOWEGO, JAKO ŹRÓDŁO GEOMETRII DLA ANALIZY WYTRZYMAŁOŚCIOWEJ MES OBIEKTU

MODEL 3D MCAD LEKKIEGO SAMOLOTU SPORTOWEGO, JAKO ŹRÓDŁO GEOMETRII DLA ANALIZY WYTRZYMAŁOŚCIOWEJ MES OBIEKTU IX Konferencja naukowo-techniczna Programy MES w komputerowym wspomaganiu analizy, projektowania i wytwarzania MODEL 3D MCAD LEKKIEGO SAMOLOTU SPORTOWEGO, JAKO ŹRÓDŁO GEOMETRII DLA ANALIZY WYTRZYMAŁOŚCIOWEJ

Bardziej szczegółowo

Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania

Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania Przykład. Wyznaczyć linię ugięcia osi belki z uwzględnieniem wpływu ściskania. Przedstawić wykresy sił przekrojowych, wyznaczyć reakcje podpór oraz ekstremalne naprężenia normalne w belce. Obliczenia wykonać

Bardziej szczegółowo

ANALIZA NUMERYCZNA MES WYBRANYCH ROZWIĄZAŃ KONSTRUKCYJNYCH ŚCIAN BOCZNYCH KABIN DŹWIGÓW OSOBOWYCH

ANALIZA NUMERYCZNA MES WYBRANYCH ROZWIĄZAŃ KONSTRUKCYJNYCH ŚCIAN BOCZNYCH KABIN DŹWIGÓW OSOBOWYCH Jerzy Józwik, Maciej Włodarczyk 1), Daniel Adamowicz 2) ANALIZA NUMERYCZNA MES WYBRANYCH ROZWIĄZAŃ KONSTRUKCYJNYCH ŚCIAN BOCZNYCH KABIN DŹWIGÓW OSOBOWYCH Streszczenie: W pracy przedstawiono analizę numeryczną

Bardziej szczegółowo

Laboratorium Wytrzymałości Materiałów

Laboratorium Wytrzymałości Materiałów Katedra Wytrzymałości Materiałów Instytut Mechaniki Budowli Wydział Inżynierii Lądowej Politechnika Krakowska Laboratorium Wytrzymałości Materiałów Praca zbiorowa pod redakcją S. Piechnika Skrypt dla studentów

Bardziej szczegółowo

Zakład Konstrukcji Żelbetowych SŁAWOMIR GUT. Nr albumu: 79983 Kierunek studiów: Budownictwo Studia I stopnia stacjonarne

Zakład Konstrukcji Żelbetowych SŁAWOMIR GUT. Nr albumu: 79983 Kierunek studiów: Budownictwo Studia I stopnia stacjonarne Zakład Konstrukcji Żelbetowych SŁAWOMIR GUT Nr albumu: 79983 Kierunek studiów: Budownictwo Studia I stopnia stacjonarne PROJEKT WYBRANYCH ELEMENTÓW KONSTRUKCJI ŻELBETOWEJ BUDYNKU BIUROWEGO DESIGN FOR SELECTED

Bardziej szczegółowo

Kod modułu: B.5 WYTRZYMAŁOŚĆ MATERIAŁÓW Nazwa przedmiotu:

Kod modułu: B.5 WYTRZYMAŁOŚĆ MATERIAŁÓW Nazwa przedmiotu: Wypełnia Zespół Kierunku Nazwa modułu (bloku przedmiotów): Kod modułu: B.5 WYTRZYMAŁOŚĆ MATERIAŁÓW Nazwa przedmiotu: Kod przedmiotu: WYTRZYMAŁOŚĆ MATERIAŁÓW II Nazwa jednostki prowadzącej przedmiot / moduł:

Bardziej szczegółowo

Optymalizacja konstrukcji

Optymalizacja konstrukcji Optymalizacja konstrukcji Kształtowanie konstrukcyjne: nadanie właściwych cech konstrukcyjnych przeszłej maszynie określenie z jakiego punktu widzenia (wg jakiego kryterium oceny) będą oceniane alternatywne

Bardziej szczegółowo

MECHANIKA BUDOWLI I. Prowadzący : dr inż. Hanna Weber. pok. 227, email: weber@zut.edu.pl

MECHANIKA BUDOWLI I. Prowadzący : dr inż. Hanna Weber. pok. 227, email: weber@zut.edu.pl MECHANIKA BUDOWLI I Prowadzący : dr inż. Hanna Weber pok. 227, email: weber@zut.edu.pl Literatura: Dyląg Z., Mechanika Budowli, PWN, Warszawa, 1989 Paluch M., Mechanika Budowli: teoria i przykłady, PWN,

Bardziej szczegółowo

PROJEKT METODA ELEMENTÓW SKOŃCZONYCH

PROJEKT METODA ELEMENTÓW SKOŃCZONYCH PROJEKT METODA ELEMENTÓW SKOŃCZONYCH z wykorzystaniem programu COMSOL Multiphysics 3.4 Prowadzący: Dr hab. prof. Tomasz Stręk Wykonali: Nieścioruk Maciej Piszczygłowa Mateusz MiBM IME rok IV sem.7 Spis

Bardziej szczegółowo

Mechanika i Budowa Maszyn. Przykład obliczeniowy geometrii mas i analiza wytrzymałości

Mechanika i Budowa Maszyn. Przykład obliczeniowy geometrii mas i analiza wytrzymałości Mechanika i Budowa Maszyn Materiały pomocnicze do laboratorium Przykład obliczeniowy geometrii mas i analiza wytrzymałości Środek ciężkości Moment bezwładności Wskaźnik wytrzymałości na zginanie Naprężenia

Bardziej szczegółowo

Spis treści. I. Skuteczne. Od autora... Obliczenia inżynierskie i naukowe... Ostrzeżenia...XVII

Spis treści. I. Skuteczne. Od autora... Obliczenia inżynierskie i naukowe... Ostrzeżenia...XVII Spis treści Od autora..................................................... Obliczenia inżynierskie i naukowe.................................. X XII Ostrzeżenia...................................................XVII

Bardziej szczegółowo

Nieskończona jednowymiarowa studnia potencjału

Nieskończona jednowymiarowa studnia potencjału Nieskończona jednowymiarowa studnia potencjału Zagadnienie dane jest następująco: znaleźć funkcje własne i wartości własne operatora energii dla cząstki umieszczonej w nieskończonej studni potencjału,

Bardziej szczegółowo

PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION

PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION Mirosław GUZIK Grzegorz KOSZŁKA PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION W artykule przedstawiono niektóre

Bardziej szczegółowo

Twierdzenia o wzajemności

Twierdzenia o wzajemności Twierdzenia o wzajemności Praca - definicja Praca iloczyn skalarny wektora siły i wektora drogi jaką pokonuje punkt materialny pod wpływem działania tej siły. L S r r F( s) o ds r F( s) cos ( α ) ds F

Bardziej szczegółowo

Wstęp do analizy matematycznej

Wstęp do analizy matematycznej Wstęp do analizy matematycznej Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań w

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

SYSTEMY MES W MECHANICE

SYSTEMY MES W MECHANICE SPECJALNOŚĆ SYSTEMY MES W MECHANICE Drugi stopień na kierunku MECHANIKA I BUDOWA MASZYN Instytut Mechaniki Stosowanej PP http://www.am.put.poznan.pl Przedmioty specjalistyczne będą prowadzone przez pracowników:

Bardziej szczegółowo

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje

Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Mathcad c.d. - Macierze, wykresy 3D, rozwiązywanie równań, pochodne i całki, animacje Opracował: Zbigniew Rudnicki Powtórka z poprzedniego wykładu 2 1 Dokument, regiony, klawisze: Dokument Mathcada realizuje

Bardziej szczegółowo

Ć w i c z e n i e K 3

Ć w i c z e n i e K 3 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

Numeryczna analiza przestrzennych zagadnień kontaktowych za pomocą niestandardowych elementów skończonych

Numeryczna analiza przestrzennych zagadnień kontaktowych za pomocą niestandardowych elementów skończonych ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY WYDZIAŁ INFORMATYKI mgr inż. Bartłomiej Żyliński Numeryczna analiza przestrzennych zagadnień kontaktowych za pomocą niestandardowych elementów skończonych rozprawa

Bardziej szczegółowo

ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady

ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady ANALIZA STATYCZNA UP ZA POMOCĄ MES Przykłady PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki 2013/2014 Instytut

Bardziej szczegółowo

ZASADY OBLICZANIA NOŚNOŚCI RAM STALOWYCH W ZALEŻNOŚCI OD SCENARIUSZA POŻARU

ZASADY OBLICZANIA NOŚNOŚCI RAM STALOWYCH W ZALEŻNOŚCI OD SCENARIUSZA POŻARU PRACE INSTYTUTU TECHNIKI BUDOWLANEJ - KWARTALNIK nr 4 (132) 2004 BUILDING RESEARCH INSTITUTE - QUARTERLY No 4 (132) 2004 Zofia Laskowska* ZASADY OBLICZANIA NOŚNOŚCI RAM STALOWYCH W ZALEŻNOŚCI OD SCENARIUSZA

Bardziej szczegółowo

Metoda elementów skończonych. dr inż. Michał Michna

Metoda elementów skończonych. dr inż. Michał Michna Metoda elementów skończonych dr inż. Michał Michna Wstęp Programy stosowane w KEiME Vector Fields - Opera 3D Cedrat (INPG)- Flux2D, Flux3D Ansoft Maxwell SV 2D ENSEEIHT Tuluza - EFCad Ansys dr inż. Michał

Bardziej szczegółowo

R2D2-Rama 2D - moduł obliczeniowy

R2D2-Rama 2D - moduł obliczeniowy R2D2-Rama 2D - moduł obliczeniowy Program R2D2-Rama 2D przeznaczony jest dla konstruktorów budowlanych. Służy do przeprowadzania obliczeń statycznych i wymiarowania płaskich układów prętowych. Dzięki wygodnemu

Bardziej szczegółowo

Hale o konstrukcji słupowo-ryglowej

Hale o konstrukcji słupowo-ryglowej Hale o konstrukcji słupowo-ryglowej SCHEMATY KONSTRUKCYJNE Elementy konstrukcji hal z transportem podpartym: - prefabrykowane, żelbetowe płyty dachowe zmonolityzowane w sztywne tarcze lub przekrycie lekkie

Bardziej szczegółowo