Elementy symetrii. obiekt geometryczny taki jak linia, płaszczyzna lub punkt, względem którego dokonuje się operacji symetrii.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Elementy symetrii. obiekt geometryczny taki jak linia, płaszczyzna lub punkt, względem którego dokonuje się operacji symetrii."

Transkrypt

1 ELEMENTY SYMETRII Element symetrii obiekt geometryczny taki jak linia, płaszczyzna lub punkt, względem którego dokonuje się operacji symetrii. ELEMENTY SYMETRII Elementy symetrii PŁASZZYZNA peracje symetrii odbicie w płaszczyźnie peracja symetrii przekształcenie ciała, po dokonaniu którego każdy punkt ciała pokrywa się z równoważnym punktem (w szczególności z samym sobą) przed wykonaniem transformacji. ŚRDEK SYMETRII (INWERSJI) Ś WŁAŚIWA Ś NIEWŁAŚIWA inwersja jeden lub kilka obrotów wokół tej osi jedna lub więcej następujących operacji złożonych: obrót, a po nim odbicie w płaszczyźnie prostopadłej do osi obrotu ELEMENTY SYMETRII oś symetrii n płaszczyzna symetrii σ ELEMENTY SYMETRII oś właściwa n n krotność osi; największa wartość n, dla której obrót o kąt π/n prowadzi do konfiguracji równoważnej oś dwukrotna drugiego rzędu oś czterokrotna 4 czwartego rzędu środek symetrii i oś niewłaściwa (inwersyjna) S n cis-(r, R)-di-sec-butylocyklobutan r-,c-,c-,c-4-(r, R, R, R)-tetra-secbutylocyklobutan oś uniwersalny element symetrii operacja identyczności (E lub I)

2 ELEMENTY SYMETRII środek symetrii i punkt, w którym znajduje się początek układu kartezjańskiego; zamiana współrzędnych (x,y,z) każdego atomu na współrzędne (-x,-y,-z) prowadzi do konfiguracji równoważnej atomów cząsteczki ELEMENTY SYMETRII płaszczyzna symetrii σ przechodzi przez ciało, atomy leżące na płaszczyźnie zajmują szczególne położenie operacja odbicia względem płaszczyzny nie zmienia ich położenia, każda cząsteczka płaska musi mieć jedną płaszczyznę wyznaczoną przez atomy tworzące cząsteczkę, liczba atomów danego rodzaju nie leżących na płaszczyźnie symetrii musi być parzysta, jeżeli w cząsteczce mającej płaszczyznę symetrii jest tylko jeden atom danego rodzaju, to musi on znajdować się na każdej płaszczyźnie symetrii cząsteczki trans-(r, S)-di-sec-butylocyklobutan jedyny atom cząsteczki, który nie zmieniłby swojego położenia w wyniku operacji symetrii tzn. inwersji Inne atomy muszą występujępować w cząsteczce parami; każdy z nich musi mieć swój odpowiednik, z którym zamienia się miejscem podczas inwersji cis-(r, S)-di-sec-butylocyklobutan ELEMENTY SYMETRII środek symetrii i n-krotne wykonywanie operacji inwersji i n n parzyste i n =E n nieparzyste i n =i cząsteczki mające środek symetrii: cząsteczki typu AB 6 o strukturze ośmiościanu, płaskie cząsteczki AB 4, płaskie cząsteczki AB typu trans, cząsteczki liniowe typu ABA, eten, benzen środek symetrii nie występuje w cząsteczkach, w których występuje więcej niż jeden rodzaj nieparzystych atomów ELEMENTY SYMETRII płaszczyzna symetrii σ n-krotne wykonywanie operacji inwersji σ n n parzyste σ n =E n nieparzyste σ n = σ cząsteczki mające płaszczyzny symetrii: cząsteczki liniowe o nieskończonej liczbie płaszczyzn symetrii cząsteczki typu N, o trzech płaszczyznach symetrii kompleksy o strukturze płaskiej, np. [Pt 4 ] - o pięciu płaszczyznach symetrii cząsteczki o strukturze czworościanu foremnego mają sześć płaszczyzn symetrii cząsteczki o strukturze ośmiościanu foremnego mają dziewięć płaszczyzn symetrii cząsteczki o wysokiej symetrii nie mające środka symetrii: 5 5- (płaski pięciobok) cząsteczki typu AB 4 o strukturze czworościanu

3 ELEMENTY SYMETRII oś niewłaściwa (inwersyjna) S n złożenie dwóch operacji symetrii: obrotu właściwego oraz następującego po nim odbicia w płaszczyźnie prostopadłej do osi obrotu; obrót niewłaściwy o kąt π/n oznacza się symbolem S n jeżeli cząsteczka ma oś n i prostopadłą do niej płaszczyznę symetrii, to ma także i oś inwersji S n cząsteczka może mieć oś S n wtedy, gdy nie ma, ani osi n, ani prostopadłej do niej płaszczyzny symetrii σ prosta jest osią trzeciego rzędu cząsteczki etanu ELEMENTY SYMETRII oś niewłaściwa (inwersyjna) S n element symetrii oś inwersyjna S n operacje S n, S n, S n,... dla n parzystego S n n wykonywane są operacje n, σ, n, σ,...n razy n parzyste, to wykonanie n razy odbicia daje jedność czyli operacje S n, S n, S n,... Sn n S n n = n n n n = E tym samym Sn n = E konformacja II = konformacja III oraz konformacja I = konformacja IV ALE konformacja II konformacja I oś właściwa 6 i płaszczyzna symetrii σ nie są elementami symetrii cząsteczki etanu ALE złożenie tych dwóch elementów symetrii jest elementem symetrii cząsteczki osią niewłaściwą S 6 ELEMENTY SYMETRII oś niewłaściwa (inwersyjna) S n Zbiór operacji S 6, S 6, S 6, S4 6, S5 6, S6 6 można, np. zapisać S 6, obrót o kąt π/ S 6 = 6 =, S 6 = S = i, A A obrót o kąt π/ B S 4 6 =, S 5 6, S 6 6 = E czyli S6,, i,, S5 6, E peracje,, E są generowane przez oś Z istnienia osi S 6 wynika istnienie osi obrót o kąt π/ A D = A z istnienia osi S n parzystego rzędu wynika istnienie osi n/

4 ELEMENTY SYMETRII oś niewłaściwa (inwersyjna) S n Zbiór operacji S 5, S 5, S 5, S4 5,... można, np. zapisać S 5 = 5, a następnie σ, S 5 = 5, S 5 = 5, a następnie σ, S 4 5 = 4 5, S 5 5 = σ S 6 5 = 5, S 7 5 = 5,a następnie σ, S 8 5 = 5, S 9 5 = 4 5, a następnie σ, S 0 5 = E S 5 = 5, a następnie σ, od operacji S n+ n ciąg operacji zaczyna powtarzać się Grupy punktowe zawierające cząsteczki chiralne Grupy punktowe n jeden element symetrii oś właściwa n grupa punktowa np. ( )- i (+)-kwas winowy, chiralne bifenyle,,-dipodstawione alleny,-dichloroallen element S n dla n nieparzystego generuje n operacji Grupy punktowe zawierające cząsteczki chiralne Grupy punktowe zawierające cząsteczki chiralne Zbiór niepowtarzających się operacji symetrii danej cząsteczki tworzy grupę; różne grupy odpowiadają różnym rzeczywistym cząsteczkom Grupy punktowe n grupa punktowa jeden element symetrii oś właściwa n Grupa punktowa charakteryzują się najniższym stopniem symetrii; jedyny element symetrii identyczność równoważna z osią symetrii. cząsteczki typu abcd, np. F ipr Me Me ipr tri-o-tymotyd cztery konformacje, z których dwie mają symetrię a dwie ; energia racemizacji ok. kcal/mol ipr Me X Y Pochodne cyklotriweratrylenu są stosunkowo optycznie trwałe (energia aktywacji dla racemizacji wynosi ok. 6.5 kcal/mol) Y X X = Y =, X Y trans,trans,trans-,7,-trimetylo-,5,9-dodekatrien otrzymano poprzez trimeryzację (typu głowa-do-głowy),-pentadienu. 4

5 Grupy punktowe zawierające cząsteczki chiralne Grupy punktowe zawierające cząsteczki chiralne Grupy punktowe n jeden element symetrii oś właściwa n Grupy punktowe D n n osi symetrii głównej osi właściwej n grupa punktowa D grupa 6 trishomokuban... cykloheksaamyloza, tzw. α-cyklodekstryna trans- transoid-trans-transoidtrans-perhydrotrifenylen pierwszy związek z grupy D otrzymany w optycznie czynnej formie dimer cyklotriweratrylenu Grupy punktowe zawierające cząsteczki chiralne Grupy punktowe D n grupa punktowa D n osi symetrii głównej osi właściwej n np. twistan, zmostkowane bifenyle, X Grupy punktowe inne niż n i D n posiadają płaszczyzny, środki symetrii czy osie. cząsteczki należące do nich są achiralne X X =, S, = 5

6 Grupa punktowa s (lub h ) elementy symetrii płaszczyzna symetrii σ operacje symetrii dla cząsteczek należących do tej grupy: E i σ przykłady cząsteczek należących do tej grupy: cząsteczki typu XY i R XY, aldehydy (R=) chloroeten = m-bromochlorobenzen Grupy punktowe S n elementy symetrii n-krotna inwersyjna oś symetrii S n Grupa punktowa S (lub i ) elementy symetrii oś inwersyjna S (i) operacje symetrii dla cząsteczek należących do tej grupy: E i i przykłady cząsteczek należących do tej grupy: mezo-,-dibromobutan w konformacji antiperiplanarnej dichloro[.]paracyklofan trans-diketopiperazyna (powstała z L- oraz D-Ala) N R S N Grupy punktowe S n elementy symetrii n-krotna inwersyjna oś symetrii S n Grupy punktowe S n elementy symetrii n-krotna inwersyjna oś symetrii S n Grupa S 4 n parzyste brak płaszczyzn symetrii niezbędna oś symetrii n/ towarzysząca osi S n operacje symetrii dla cząsteczek należących do tej grupy: E, S 6, i S 4 n = 4m+ gdzie m = 0,,,... występuje także środek inwersji n = 4m gdzie m = 0,,,... brak środka inwersji przykładem cząsteczki należącej do tej grupy jest np. związek typu spiro czy pochodna bifenylu L n nieparzyste S n towarzyszy zawsze oś n pozioma płaszczyzna σ h (grupy nazywają się nh ) N L L: S N Ph : N R Ph 6

7 płaszczyzny symetrii wertykalna σ v zawiera główną oś symetrii diagonalna σ d zawiera główną oś symetrii horyzontalna σ h prostopadła do głównej osi symetrii grupa punktowa v oś symetrii, w której przecinają się płaszczyzny symetrii, ale brak innych elementów symetrii Kombinacje tych płaszczyzn z osiami symetrii generują większość grup punktowych symetrii n lub D n przykłady cząsteczek należących do tej grupy (tzw. symetria stożkowa): chlorowodór tlenek węgla chloroetyn oś symetrii obrót o nieskończenie mały kąt grupy punktowe nv v jedna oś symetrii n n wertykalnych (pionowych) płaszczyzn symetrii σ v, które zawierają oś symetrii n oraz przecinają się na niej grupy punktowe nh oś symetrii n płaszczyzna symetrii σ h, która jest prostopadła do osi symetrii n v grupy punktowe h operacje symetrii E,, i, σ N F F F przykłady cząsteczek należących do tej grupy: trans-dibromoeten s-trans-,-butadien 4v 5v,4-dibromo-,5-dichlorobenzen ' dla planarnych pierscieni 7

8 grupy punktowe nh grupy punktowe D nd grupa punktowe D d wyższe grupy punktowe nh grupa punktowe h należą do nich cząsteczki występujące w określonych konformacjach grupa punktowe 6h wyższe grupy punktowe D nd cząsteczki występują w takich grupach raczej rzadko D 5d D 5h D 6h D 8h Fe Fe r U grupy punktowe D nd jedna oś symetrii n grupy punktowe D nh jedna oś symetrii n n prostopadłych do niej osi symetrii n prostopadłych do niej osi symetrii n płaszczyzn symetrii σ d (diagonalne, przekątne) które przecinają się na osi głównej symetrii n płaszczyznę symetrii σ h grupy punktowe D d operacje symetrii E,,, σ d, S 4, S 4 grupa punktowa D h operacje symetrii E,,, σ v, σ h, i D d przykłady cząsteczek należących do tej grupy: przykłady cząsteczek należących do tej grupy: alleny spirany eten,4-dichlorobenzen bifenyle naftalen, antracen 8

9 grupy punktowe D nh jedna oś symetrii n n prostopadłych do niej osi symetrii płaszczyznę symetrii σ h Grupy punktowe odpowiadające bryłom platońskim Aby zbudować wielościan foremny należy w jednym punkcie połączyć co najmniej trzy ściany. Dla trójkątów równobocznych: trzy trójkąty o wspólnym wierzchołku (czworościan) D h D 6h ściany: 4 trójkąty równoboczne wierzchołki: 4 krawędzie: 6 cztery trójkąty o wspólnym wierzchołku (ośmiościan) ściany: 8 trójkątów równobocznych wierzchołki: 6 krawędzie: pięć trójkąty o wspólnym wierzchołku (dwudziestościan) trifenylen koronen kekulen grupa punktowa D h oś symetrii, w której przecinają się płaszczyzny symetrii osi symetrii prostopadłych do osi głównej symetrii płaszczyzna symetrii prostopadła do osi głównej symetrii Grupy punktowe odpowiadające bryłom platońskim Dla kwadratów: trzy kwadraty o wspólnym wierzchołku sześcian ściany: kwdraty wierzchołki: 8 krawędzie: przykłady cząsteczek należących do tej grupy (tzw. symetria cylindryczna): wodór cząsteczkowy ditlenek węgla etyn Dla pięciokątów foremnych: trzy pięciokąty o wspólnym wierzchołku dwunastościan ( x08 = 4 < 60 ) 9

10 Grupy punktowe odpowiadające bryłom platońskim Tetraedr (czworościan) ma następujące elementy i operacje symetrii: Td trzy osie S 4, które pokrywają się z osiami x, y, z (generowane operacje S 4, S 4 =, S 4 ) trzy osie, które pokrywają się z osiami x, y, z (każda generuje operację ) cztery osie, z których każda przechodzi przez jeden wierzchołek i środek czworościanu (każda generuje operację i razem osiem) sześć płaszczyzn symetrii grupa punktowa T d R R R Przykłady cząsteczek: metan adamantan cząsteczka hipotetyczna R Grupy punktowe odpowiadające bryłom platońskim grupa punktowa I h Dodekaedr (dwunastościan) oraz zikosaedr (dwudziestościan) mają taka samą symetrię; Należą do grupy punktowej I h, która charakteryzuje się 0 operacjami (E, 5, 5, 0, 5, i, S 0, S 0, 0S 6, 5σ) A B, R = Grupy punktowe odpowiadające bryłom platońskim KREŚLANIE SYMETRII ZĄSTEZEK grupa punktowa h ZĄSTEZKA ETAP I ZĄSTEZKI LINIWE: v, D h ktaedr (ośmiościan) ma następujące elementy i operacje symetrii: trzy osie S 4, które przechodzą przez przeciwległe wierzchołki (każda generuje operacje S 4, S =, 4 S ) 4 trzy osie, które pokrywają się z osiami S 4 (każda generuje operację ) trzy osie 4, które pokrywają się z osiami S 4 i (każda generuje operacje 4, i, 4 ale tylko 4, 4 nie zostały jeszcze wymienione) sześć osi, które przechodzą przez środki przeciwległych krawędzi (każda generuje operację ) cztery osie S 6, które przechodzą przez środki przeciwległych ścian trójkątnych (każda generuje operacje S 6, S = 6, i,, S5 ) 6 cztery osie, które pokrywają się z osiami S 6 (każda generuje operacje,, generowane również przez S 6 ) środek inwersji (wymieniony w pcie 5) trzy płaszczyzny symetrii, które przechodzą przez cztery spośród sześciu wierzchołków ośmiościanu (operacje σ h ) sześć płaszczyzny symetrii, które przechodzą przez dwa wierzchołki i dzielą na połowy przeciwległe krawędzie nie zawierające tych wierzchołków(operacje σ d ) ETAP II ETAP III oś n nie będąca konsekwencją S n σ h nh ETAP IV BRAK n GRUPY KILKU SIA WYŻSZEG RZĘDU: T, T h, T d,, h, I, I h, BRAK SI BRTÓW, s, i Ś NIEWŁAŚIWA S 4, S 6,S 8... n parzyste ETAP V σ h D nh nσ v nv BRAKσ n n n nσ d D nd BRAKσ D n 0

Kombinacje elementów symetrii. Klasy symetrii.

Kombinacje elementów symetrii. Klasy symetrii. Uniwersytet Śląski Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. 0323591503, e-mail: izajen@wp.pl, opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1 Wszelkie prawa zastrzeżone. Rozpowszechnianie, wypożyczanie i powielanie niniejszych testów w jakiejkolwiek formie surowo zabronione. W przypadku złamania zakazu mają zastosowanie przepisy dotyczące naruszenia

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 DEFINICJE PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 Czworokąt to wielokąt o 4 bokach i 4 kątach. Przekątną czworokąta nazywamy odcinek łączący przeciwległe wierzchołki. Wysokością czworokąta nazywamy

Bardziej szczegółowo

Układ regularny. Układ regularny. Możliwe elementy symetrii: Możliwe elementy symetrii: 3 osie 3- krotne. m płaszczyzny przekątne.

Układ regularny. Układ regularny. Możliwe elementy symetrii: Możliwe elementy symetrii: 3 osie 3- krotne. m płaszczyzny przekątne. Układ regularny Możliwe elementy symetrii: 3 osie 3- krotne m płaszczyzny równoległe do ścian m płaszczyzny przekątne 4 osie 4- krotne 2 osie 2- krotne Układ regularny Możliwe elementy symetrii: 3 osie

Bardziej szczegółowo

ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH

ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH Opracowała: nauczyciel matematyki mgr Małgorzata Drejka Legionowo 007 SPIS TREŚCI ALGEBRA potęgi i pierwiastki

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy) Program nauczania: Matematyka z plusem, Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku: 72 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)

Bardziej szczegółowo

Ćwiczenia z Geometrii I, czerwiec 2006 r.

Ćwiczenia z Geometrii I, czerwiec 2006 r. Waldemar ompe echy przystawania trójkątów 1. unkt leży na przekątnej kwadratu (rys. 1). unkty i R są rzutami prostokątnymi punktu odpowiednio na proste i. Wykazać, że = R. R 2. any jest trójkąt ostrokątny,

Bardziej szczegółowo

Mini tablice matematyczne. Figury geometryczne

Mini tablice matematyczne. Figury geometryczne Mini tablice matematyczne Figury geometryczne Spis treści Własności kwadratu Ciekawostka:Kwadrat magiczny Prostokąt Własności prostokąta Trapez Własności trapezu Równoległobok Własności równoległoboku

Bardziej szczegółowo

GEOMETRIA WYKREŚLNA ZADANIA TESTOWE

GEOMETRIA WYKREŚLNA ZADANIA TESTOWE Bożena Kotarska-Lewandowska GEOMETRIA WYKREŚLNA ZADANIA TESTOWE Katedra Mechaniki Budowli i Mostów Wydział Inżynierii Lądowej i Środowiska Politechniki Gdańskiej Gdańsk 2011 SPIS TREŚCI Spis treści...

Bardziej szczegółowo

Tablice matematyczne dla gimnazjum

Tablice matematyczne dla gimnazjum 1 3. Wyrażenia algebraiczne Wyrażenie algebraiczne kilka zmiennych (liter) i/lub stałych (liczb )połączonych ze sobą znakami działań i nawiasami Może to być także pojedyncza liczba lub litera. Przyjmuje

Bardziej szczegółowo

ZAAWANSOWANYCH MATERIAŁÓW I TECHNOLOGII

ZAAWANSOWANYCH MATERIAŁÓW I TECHNOLOGII WOJSKOWA AKADEMIA TECHNICZNA Wydział Nowych Technologii i Chemii KATEDRA ZAAWANSOWANYCH MATERIAŁÓW I TECHNOLOGII Temat: Grafika inżynierska Podstawy Inżynierii Wytwarzania T 1: elementy przestrzeni rzuty

Bardziej szczegółowo

W ŚWIECIE WIELOKĄTÓW GWIAŹDZISTYCH

W ŚWIECIE WIELOKĄTÓW GWIAŹDZISTYCH ul. Konarskiego 2, 30-049 Kraków tel. 12 633 13 83 lub 12 633 02 47 W ŚWIECIE WIELOKĄTÓW GWIAŹDZISTYCH Arkadiusz Biel Kraków 2011 Wielokąty gwiaździste są ciekawym przypadkiem wielokątów, gdyż posiadają

Bardziej szczegółowo

Zadania, które zaproponowałem na różne konkursy Olimpiada Matematyczna. bc(b 3 + c 3 ) + c4 + a 4. ca(c 3 + a 3 ) 1. c + ca + cab 1 ( 1

Zadania, które zaproponowałem na różne konkursy Olimpiada Matematyczna. bc(b 3 + c 3 ) + c4 + a 4. ca(c 3 + a 3 ) 1. c + ca + cab 1 ( 1 Zadania, które zaproponowałem na różne konkursy Olimpiada Matematyczna. (57-II-3) Liczby dodatnie a, b, c spełniają warunek ab + bc + ca = abc. Dowieść, że a 4 + b 4 ab(a 3 + b 3 ) + b4 + c 4 bc(b 3 +

Bardziej szczegółowo

Cząsteczki wieloatomowe - hybrydyzacja. Czy w oparciu o koncepcję orbitali molekularnych można wytłumaczyć budowę cząsteczek?

Cząsteczki wieloatomowe - hybrydyzacja. Czy w oparciu o koncepcję orbitali molekularnych można wytłumaczyć budowę cząsteczek? ząsteczki wieloatomowe - hybrydyzacja zy w oparciu o koncepcję orbitali molekularnych można wytłumaczyć budowę cząsteczek? Koncepcja OA OA O zdelokalizowane OA hyb OA O zlokalizowane OA hyb OA hyb OA orbitale

Bardziej szczegółowo

KGGiBM GRAFIKA INŻYNIERSKA Rok III, sem. VI, sem IV SN WILiŚ Rok akademicki 2011/2012

KGGiBM GRAFIKA INŻYNIERSKA Rok III, sem. VI, sem IV SN WILiŚ Rok akademicki 2011/2012 Rysowanie precyzyjne 7 W ćwiczeniu tym pokazane zostaną wybrane techniki bardzo dokładnego rysowania obiektów w programie AutoCAD 2012, między innymi wykorzystanie punktów charakterystycznych. Narysować

Bardziej szczegółowo

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY Rozwiązania zadań Arkusz maturalny z matematyki nr POZIOM PODSTAWOWY Zadanie (pkt) Sposób I Skoro liczba jest środkiem przedziału, więc odległość punktu x od zapisujemy przy pomocy wartości bezwzględnej.

Bardziej szczegółowo

Zadania na dowodzenie Opracowała: Ewa Ślubowska

Zadania na dowodzenie Opracowała: Ewa Ślubowska Egzamin Gimnazjalny Zadania na dowodzenie Opracowała: Ewa Ślubowska W nauczaniu matematyki ważne jest rozwijanie różnych aktywności umysłu. Ma temu służyć min. rozwiązywanie jednego zadania czy dowodzenie

Bardziej szczegółowo

Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii

Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Obliczenia geometryczne z zastosowaniem własności funkcji trygonometrycznych w wielokątach wypukłych Wielokąt - figura płaską będąca sumą

Bardziej szczegółowo

Test, dzień pierwszy, grupa młodsza

Test, dzień pierwszy, grupa młodsza Test, dzień pierwszy, grupa młodsza 1. Na połowinkach 60 procent wszystkich uczniów to dziewczyny. Impreza jest kiepska, bo tylko 40 procent wszystkich uczniów chce się tańczyć. Sytuacja poprawia sie odrobinę,

Bardziej szczegółowo

Rysowanie precyzyjne. Polecenie:

Rysowanie precyzyjne. Polecenie: 7 Rysowanie precyzyjne W ćwiczeniu tym pokazane zostaną różne techniki bardzo dokładnego rysowania obiektów w programie AutoCAD 2010, między innymi wykorzystanie punktów charakterystycznych. Z uwagi na

Bardziej szczegółowo

2.Piszemy równanie prostej przechodzącej przez dwa punkty P i S

2.Piszemy równanie prostej przechodzącej przez dwa punkty P i S Zadanie 1. Napisz równanie prostej przechodzącej przez punkt odcinka o koocach M N. Rozwiązanie - 1 sposób 1.Znajdujemy współrzędne punktu S będącego środkiem odcinka MN: oraz środek 2.Piszemy równanie

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem pojęcie potęgi o wykładniku naturalnym wzór na mnożenie i dzielenie potęg o tych samych podstawach wzór na potęgowanie

Bardziej szczegółowo

Arkusz 1. I Ty możesz zostać Pitagorasem. Próbny arkusz egzaminacyjny z matematyki dla gimnazjalistów. Styczeń 2014

Arkusz 1. I Ty możesz zostać Pitagorasem. Próbny arkusz egzaminacyjny z matematyki dla gimnazjalistów. Styczeń 2014 I Ty możesz zostać itagorasem róbny arkusz egzaminacyjny z matematyki dla gimnazjalistów Arkusz 1 Styczeń 2014 Liczba punktów 29, czas pracy 90min mgr Iwona Tlałka I Ty możesz zostać itagorasem próbny

Bardziej szczegółowo

Plan wynikowy klasa 3

Plan wynikowy klasa 3 Plan wynikowy klasa 3 Przedmiot: matematyka Klasa 3 liceum (technikum) Rok szkolny:........................ Nauczyciel:........................ zakres podstawowy: 28 tyg. 3 h = 84 h (78 h + 6 h do dyspozycji

Bardziej szczegółowo

Tworzenie siatek brył bez kleju w programie GeoGebra

Tworzenie siatek brył bez kleju w programie GeoGebra Tworzenie siatek brył bez kleju w programie GeoGebra Bryłki bez kleju znam od dawna i jestem nimi oczarowana. Moi uczniowie i koleżanki też je znają. Nie jeden raz pytałam Wacka Zawadowskiego kto tworzy

Bardziej szczegółowo

VII Olimpiada Matematyczna Gimnazjalistów

VII Olimpiada Matematyczna Gimnazjalistów VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa, test próbny www.omg.edu.pl (wrzesień 2011 r.) Rozwiązania zadań testowych 1. Liczba krawędzi pewnego ostrosłupa jest o

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2015 WPISUJE ZDAJĄCY KOD PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY PRZYKŁADOWY

Bardziej szczegółowo

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y Przykład 1 Dane są trzy siły: P 1 = 3i + 4j, P 2 = 2i 5j, P 3 = 7i + 3j (składowe sił wyrażone są w niutonach), przecinające się w punkcie A (1, 2). Wyznaczyć wektor wypadkowej i jej wartość oraz kąt α

Bardziej szczegółowo

DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) (1+2+3+4) Uczeń: (1+2+3) Uczeń: określone warunki

DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) (1+2+3+4) Uczeń: (1+2+3) Uczeń: określone warunki MATEMATYKA KLASA I I PÓŁROCZE -wyróżnia liczby naturalne, całkowite, wymierne -zna kolejność wykonywania działań -rozumie poszerzenie osi liczbowej na liczby ujemne -porównuje liczby wymierne -zaznacza

Bardziej szczegółowo

Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 2013

Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 2013 Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 013 3.4.1 Inwersja względem okręgu. Inwersja względem okręgu jest przekształceniem płaszczyzny

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

ORIGAMI Z opornym papierem zmierz się i TY!

ORIGAMI Z opornym papierem zmierz się i TY! Najłatwiej przemawia do nas to co możemy zobaczyć, dotknąć, spróbować samodzielnie wykonać. Każdy sukces cieszy bardziej jak można się nim pochwalić. ORIGAMI Z opornym papierem zmierz się i TY! 1 Co to

Bardziej szczegółowo

Maria Romanowska UDOWODNIJ, ŻE... Rozwiązania zadań. Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym

Maria Romanowska UDOWODNIJ, ŻE... Rozwiązania zadań. Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Maria Romanowska UDOWODNIJ, ŻE Rozwiązania zadań Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Miejski Ośrodek Doskonalenia Nauczycieli w Opolu Publiczne Liceum

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI poziom rozszerzony

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI poziom rozszerzony Próbny egzamin maturalny z matematyki. Poziom rozszerzony 1 PRÓNY EGZMIN MTURLNY Z MTEMTYKI poziom rozszerzony ZNI ZMKNIĘTE W każdym z zadań 1.. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0

Bardziej szczegółowo

PAPIEROWE ZABAWY GEOMETRYCZNE

PAPIEROWE ZABAWY GEOMETRYCZNE ZUZANNA CYUNEL MAREK ŁOBAZIEWICZ z klasy 4a PAPIEROWE ZABAWY GEOMETRYCZNE ODWZOROWANIE FIGUR GEOMETRYCZNYCH BEZ UŻYCIA PRZYRZĄDÓW praca wykonana pod kierunkiem mgr Piotra Dylewskiego Szkoła Podstawowa

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 2015 WPISUJE ZDAJĄCY KOD PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY PRZYKŁADOWY

Bardziej szczegółowo

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący Liczby i wyrażenia zna pojęcie liczby naturalnej, całkowitej, wymiernej zna pojęcie liczby niewymiernej, rzeczywistej zna sposób zaokrąglania liczb umie zapisać i odczytać liczby naturalne dodatnie w systemie

Bardziej szczegółowo

MATURA 2012. Przygotowanie do matury z matematyki

MATURA 2012. Przygotowanie do matury z matematyki MATURA 01 Przygotowanie do matury z matematyki Część IX: Stereometria ROZWIĄZANIA Powtórka jest organizowana przez redaktorów portalu MatmaNa.pl we współpracy z dziennikarzami Gazety Lubuskiej. Witaj,

Bardziej szczegółowo

Spektroskopia Ramana drgania i widmo rozpraszania

Spektroskopia Ramana drgania i widmo rozpraszania Spektroskopia Ramana drgania i widmo rozpraszania drian Kamiński, Instytut Fizyki UM I. Czym jest spektroskopia ramanowska Spektroskopia Ramana jest istotną metodą badania widm rotacyjnych i oscylacyjnych

Bardziej szczegółowo

dla punktów o obu współrzędnych wymiernych współrzędnych całkowitych zna definicję funkcji, rozróżnia argument i wartość funkcji

dla punktów o obu współrzędnych wymiernych współrzędnych całkowitych zna definicję funkcji, rozróżnia argument i wartość funkcji MATEMATYKA - klasa 2 gimnazjum kryteria ocen według treści nauczani (Przyjmuje się, że jednym z warunków koniecznych uzyskania danej oceny jest spełnienie wymagań na wszystkie oceny niższe) Dział programu

Bardziej szczegółowo

Odległośc w układzie współrzędnych. Środek odcinka.

Odległośc w układzie współrzędnych. Środek odcinka. GEOMETRIA ANALITYCZNA ZADANIA. Odległośc w układzie współrzędnych. Środek odcinka. Zad. 1 Wyznacz odległość między punktami A i B (długość odcinka AB) jeżeli: d = Zad. 2 a) A=(5,-3) B=(-2,3) b) A=(-2,2)

Bardziej szczegółowo

DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE

DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Kryteria oceniania z zakresu klasy trzeciej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum DZIAŁ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE HASŁO PROGRAMOWE WIADOMOŚCI I UMIEJĘTNOŚCI PODSTAWOWE

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA W PRZESTRZENI

GEOMETRIA ANALITYCZNA W PRZESTRZENI GEOMETRIA ANALITYCZNA W PRZESTRZENI Położenie punktu w przestrzeni określamy za pomocą trzech liczb (x, y, z). Liczby te odpowiadają rzutom na osie układu współrzędnych: każdy rzut wzdłuż płaszczyzny równoległej

Bardziej szczegółowo

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 1) Liczby - zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane, - zapisuje ułamek zwykły w postaci ułamka

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje

Bardziej szczegółowo

PRACA KONTROLNA nr 1 - poziom podstawowy

PRACA KONTROLNA nr 1 - poziom podstawowy XLIII KORESPONDENCYJNY KURS wrzesień 2013 r. Z MATEMATYKI PRACA KONTROLNA nr 1 - poziom podstawowy 1. Wzrost kursu Euro w stosunku do złotego spowodował podwyżkę ceny nowego modelu Volvo o 5%. Ponieważ

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI SIERPIEŃ 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

X Olimpiada Matematyczna Gimnazjalistów

X Olimpiada Matematyczna Gimnazjalistów www.omg.edu.pl X Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część korespondencyjna (10 listopada 01 r. 15 grudnia 01 r.) Szkice rozwiązań zadań konkursowych 1. nia rozmieniła banknot

Bardziej szczegółowo

KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny

KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Kryteria oceniania z matematyki KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Arytmetyka: Ocenę dopuszczającą otrzymuje uczeń, który potrafi : - określić pojęcie liczby naturalnej, całkowitej,

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum Semestr I Stopień Rozdział 1. Liczby Zamienia liczby dziesiętne na ułamki

Bardziej szczegółowo

Test kwalifikacyjny na I Warsztaty Matematyczne

Test kwalifikacyjny na I Warsztaty Matematyczne Test kwalifikacyjny na I Warsztaty Matematyczne Na pytania odpowiada się tak lub nie poprzez wpisanie odpowiednio T bądź N w pole obok pytania. W danym trzypytaniowym zestawie możliwa jest dowolna kombinacja

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC 2013. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY CZERWIEC 2013. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 00 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

Kolejne zadanie polega na narysowaniu linii k leżącej na płaszczyźnie danej za pomocą prostej i punktu α(l,c).

Kolejne zadanie polega na narysowaniu linii k leżącej na płaszczyźnie danej za pomocą prostej i punktu α(l,c). Konstrukcje podstawowe 1. Konstrukcja elementu przynależnego (KEP) 1.1. przynależność punktu do prostej (typowe zadania to wykreślenie punktu leżącego na prostej A m oraz wykreślenia prostej przechodzącej

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM

WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM WYMAGANIA EDUKACYJNE - MATEMATYKA KLASA I GIMNAZJUM na rok szkolny 2014/2015 Wymagania edukacyjne na poszczególne oceny: (na każdą wyższą ocenę obowiązują również wiadomości na oceny niższe oraz wiadomości

Bardziej szczegółowo

Zbiór zadań z geometrii przestrzennej. Michał Kieza

Zbiór zadań z geometrii przestrzennej. Michał Kieza Zbiór zadań z geometrii przestrzennej Michał Kieza Zbiór zadań z geometrii przestrzennej Michał Kieza Wydawca: Netina Sp. z o.o. ISN 978-83-7521-522-9 c 2015, Wszelkie Prawa Zastrzeżone Zabrania się modyfikowania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU MATEMATYKA GIMNAZJUM

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU MATEMATYKA GIMNAZJUM WYMAGANIA EDUKACYJNE Z PRZEDMIOTU MATEMATYKA GIMNAZJUM KLASA I Na ocenę dopuszczającą: DZIAŁ 1. LICZBY I DZIAŁANIA Uczeń: zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w ciągu roku szkolnego

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM NA OCENĘ DOPUSZCZJĄCĄ UCZEN: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

Dopuszczający. Opracowanie: mgr Michał Wolak 2

Dopuszczający. Opracowanie: mgr Michał Wolak 2 Dopuszczający zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne proste przypadki umie zaznaczać liczbę wymierną na

Bardziej szczegółowo

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI Materiał ćwiczeniowy zawiera informacje prawnie chronione do momentu rozpoczęcia diagnozy. Materiał ćwiczeniowy chroniony jest prawem autorskim. Materiału nie należy powielać ani udostępniać w żadnej innej

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM OCENA DOPUSZCZAJĄCA pojęcie liczby naturalnej, całkowitej, wymiernej, pojęcia: rozwinięcie dziesiętne skończone, nieskończone, okres, algorytm zaokrąglania

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016 Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy Ia i Ib Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ I: LICZBY zaznacza na osi liczbowej punkty odpowiadające

Bardziej szczegółowo

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 014 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum

Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum DZIAŁ 1. LICZBY I DZIAŁANIA HASŁO PROGRAMOWE WIADOMOŚCI I UMIEJĘTNOŚCI PODSTAWOWE WIADOMOŚCI

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ Z PODZIAŁEM NA POZIOMY W ODNIESIENIU DO DZIAŁÓW NAUCZANIA

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE PIERWSZEJ Z PODZIAŁEM NA POZIOMY W ODNIESIENIU DO DZIAŁÓW NAUCZANIA Poziomy wymagań edukacyjnych : KONIECZNY (K) - OCENA DOPUSZCZAJĄCA, PODSTAWOWY( P) - OCENA DOSTATECZNA, ROZSZERZAJĄCY(R) - OCENA DOBRA, DOPEŁNIAJĄCY (D) - OCENA BARDZO DOBRA WYKRACZAJACY(W) OCENA CELUJĄCA.

Bardziej szczegółowo

Symetria w obliczeniach molekularnych

Symetria w obliczeniach molekularnych Zak lad Metod Obliczeniowych Chemii UJ 15 marca 2005 1 2 Możliwości przyspieszenia obliczeń 3 GAMESS 2004 4 Zastosowania symetrii Zmniejszenie zapotrzebowania na zasoby (procesor, pami eć, dysk) Utrzymanie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne na poszczególne oceny dla klasy I gimnazjum

Szczegółowe wymagania edukacyjne na poszczególne oceny dla klasy I gimnazjum Szczegółowe wymagania edukacyjne na poszczególne oceny dla klasy I gimnazjum POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny ocena dopuszczająca DZIAŁ 1. LICZBY I DZIAŁANIA pojęcie liczby naturalnej, całkowitej,

Bardziej szczegółowo

GIMNAZJUM NR 5 W CHORZOWIE AUTOR: MGR CZESŁAW KOLASIŃSKI- NAUCZYCIEL MATEMATYKI INNOWACJA METODYCZNA. Z CABRI ŁATWIEJ Program DKW 4014 139/99.

GIMNAZJUM NR 5 W CHORZOWIE AUTOR: MGR CZESŁAW KOLASIŃSKI- NAUCZYCIEL MATEMATYKI INNOWACJA METODYCZNA. Z CABRI ŁATWIEJ Program DKW 4014 139/99. GIMNAZJUM NR 5 W CHORZOWIE AUTOR: MGR CZESŁAW KOLASIŃSKI- NAUCZYCIEL MATEMATYKI INNOWACJA METODYCZNA Z CABRI ŁATWIEJ Program DKW 4014 139/99. DYREKTOR SZKOŁY: MGR INŻ. BOGUMIŁA HAMRÓZ CHORZÓW 009 I. Określenie

Bardziej szczegółowo

a) Wykaż, że przekształcenie P jest izometrią b) W prostokątnym układzie współrzędnych narysuj trójkąt o wierzchołkach A ( 1;2)

a) Wykaż, że przekształcenie P jest izometrią b) W prostokątnym układzie współrzędnych narysuj trójkąt o wierzchołkach A ( 1;2) ZESTAW I R Zad (3 pkt) Suma pierwiastków trójmianu a, c R R trójmianu jest równa 8 y ax bx c jest równa log c log a, gdzie Uzasadnij, że odcięta wierzchołka paraboli będącej wykresem tego a c Zad (7 pkt)

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 200 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 Ocenę dopuszczającą otrzymuje uczeń, który: (Liczby i działania) zna pojęcie liczby naturalnej, całkowitej, wymiernej

Bardziej szczegółowo

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA I LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

ZADANIA PRZYGOTOWAWCZE

ZADANIA PRZYGOTOWAWCZE Kraj bez matematyki nie wytrzyma współzawodnictwa z tymi krajami, które matematykę uprawiają Hugo Steinhause X I Dąbrowski Konkurs Matematyczny Dla uczniów klas pierwszych szkół ponad gimnazjalnych Konkurs

Bardziej szczegółowo

Daniel Woźniak, XX Liceum Ogólnokształcące w Krakowie. Opiekun: Iwona Sitnik-Szumiec

Daniel Woźniak, XX Liceum Ogólnokształcące w Krakowie. Opiekun: Iwona Sitnik-Szumiec Daniel Woźniak, XX Liceum Ogólnokształcące w Krakowie Opiekun: Iwona Sitnik-Szumiec Praca moja poświęcona jest metodom wykorzystywania środka ciężkości, określaniu jego dokładnego położenia jak również

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM OCENA DOPUSZCZAJĄCA I DZIAŁ; LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby

Bardziej szczegółowo

I. LICZBY I DZIAŁANIA

I. LICZBY I DZIAŁANIA WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA PIERWSZA GIMNAZJUM I. LICZBY I DZIAŁANIA 1. Zna pojęcie liczby naturalnej, całkowitej, wymiernej. 2. Rozumie rozszerzenie osi liczbowej na liczby ujemne. 3. Umie

Bardziej szczegółowo

Wymagania eduka cyjne z matematyki

Wymagania eduka cyjne z matematyki Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

Matura próbna 2014 z matematyki-poziom podstawowy

Matura próbna 2014 z matematyki-poziom podstawowy Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B

Bardziej szczegółowo

Wymagania przedmiotowe z matematyki w klasie I gimnazjum opracowane dla programu Matematyka z plusem GWO DZIAŁ 1. LICZBY I DZIAŁANIA

Wymagania przedmiotowe z matematyki w klasie I gimnazjum opracowane dla programu Matematyka z plusem GWO DZIAŁ 1. LICZBY I DZIAŁANIA Wymagania przedmiotowe z matematyki w klasie I gimnazjum opracowane dla programu Matematyka z plusem GWO POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna

Bardziej szczegółowo

Metoda siatek zadania

Metoda siatek zadania Metoda siatek zadania 1. (Leningrad 1984) Wykazać, że jeżeli suma kątów płaskich przy wierzchołku S ostrosłupa SA 1 A 2... A n (n 3) jest większa niż 180, to każda z krawędzi bocznych jest mniejsza od

Bardziej szczegółowo

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM OPRACOWANO NA PODSTAWIE PLANU REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI Matematyka 1 Podręcznik do gimnazjum Nowa wersja, praca zbiorowa

Bardziej szczegółowo

Bożena Poręba WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA 3

Bożena Poręba WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA 3 Bożena Poręba WYMAGANIA PROGRAMOWE Z MATEMATYKI KLASA 3 WYMAGANIA KONIECZNE OCENA DOPUSZCZAJĄCA: Uczeń: - zna pojęcie notacji wykładniczej - zna sposób zaokrąglania liczb - rozumie potrzebę zaokrąglania

Bardziej szczegółowo

Teoria liczb. x 3 + 3y 3 + 9z 3 9xyz = 0. x 2 + 3y 2 = 1998x.

Teoria liczb. x 3 + 3y 3 + 9z 3 9xyz = 0. x 2 + 3y 2 = 1998x. Teoria liczb grupa starsza poniedziałek, 27 września 2004 Równania teorioliczbowe.. Rozwiazać w liczbach całkowitych x, y, z. x 3 + 3y 3 + 9z 3 9xyz = 0. 2. Rozwiazać w liczbach całkowitych dodatnich x,

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym. Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

Nauczyciele realizujący: mgr Grzegorz Ichniowski, mgr Beata Owsiak, Grażyna Zgoda

Nauczyciele realizujący: mgr Grzegorz Ichniowski, mgr Beata Owsiak, Grażyna Zgoda PLAN REALIZACJI MATERIAŁU NAUCZANIA Z MATEMATYKI W KLASIE TRZECIEJ GIMNAZJUM WRAZ Z OKREŚLENIEM WYMAGAŃ EDUKACYJNYCH W ROKU SZKOLNYM 2011/2012 OBOWIĄZUJĄCY ZESTAW PODRĘCZNIKÓW WYDANYCH PRZEZ GWO Matematyka

Bardziej szczegółowo

Przykładowe plany zajęć lekcyjnych Design the Future Poland

Przykładowe plany zajęć lekcyjnych Design the Future Poland Przykładowe plany zajęć lekcyjnych Design the Future Poland 1 Spis treści Plik projektu... 3 Brelok Krok po kroku... 5 Tron dla komórki krok po kroku... 15 Plik projektu... 15 Tron na komórkę... 17 Figury

Bardziej szczegółowo

KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE- MATEMATYKA klasa 1g

KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE- MATEMATYKA klasa 1g KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE- MATEMATYKA klasa 1g POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna (3) R - rozszerzający ocena

Bardziej szczegółowo