Karta pracy M+ do multipodręcznika dla klasy 8 szkoły podstawowej
|
|
- Tadeusz Kruk
- 6 lat temu
- Przeglądów:
Transkrypt
1 Karta pracy M+ do multipodręcznika dla klasy 8 szkoły podstawowej Geometria w starożytnym świecie Część A. Sprawdź, czy rozumiesz film. 1. Skreśl w tekście niewłaściwe słowa i sformułowania. Bryły platońskie Od wielu tysięcy lat ludzie interesują się regularnymi kształtami. Neolityczni myśliwi zamieszkujący Szkocję/Szwecję, jak wynika z badań archeologicznych, rzeźbili/odlewali regularne kamienne/żelazne obiekty już 4000/8000 lat temu. Niektóre z tych obiektów mają cztery strony położone symetrycznie względem siebie, inne mają ich sześć i przypominają sześcian/sześciokąt. Zainteresowanie regularnością nie zależy ani od czasu, ani od miejsca, w którym ludzie wytwarzali przedmioty codziennego użytku i wznosili budowle. Starożytni Babilończycy/Egipcjanie budowali piramidy, a Grecy projektowali stragany/świątynie, korzystając z precyzyjnych zasad proporcji. Grecy/Babilończycy dokonali czegoś więcej niż inne starożytne społeczności zafascynowane kształtnymi figurami: swoją fascynację przekształcili w dziedzinę wiedzy, którą nazwali geometrią/kształtologią. Starożytnym matematykom i filozofom greckim zawdzięczamy odkrycie regularnych brył z czasem nazwanych platońskimi. Są to: czworościan foremny, sześcian, ośmiościan foremny, dwunastościan foremny, dwudziestościan foremny. Dzisiaj te bryły spotykamy zazwyczaj w postaci kości do gry. Każda ściana kości będącej bryłą platońską ma kształt wielokąta nieforemnego/foremnego i wszystkie ściany łączą się ze sobą pod tym samym kątem/kątem prostym. Te własności gwarantują, że prawdopodobieństwo zatrzymania się kości na każdej ze ścian jest takie samo. Istnieje tylko pięć brył mających tę własność. Najczęściej używana kość do gry ma kształt sześcianu/czworościanu foremnego.
2 2. Wykorzystując wiadomości z filmu, ustal, które z poniższych zdań są prawdziwe, a które ywe. Zaznacz odpowiednie pola. Dwudziestościan ma dwanaście ścian. Słowo geometria oznacza pomiar świata. Grecy odkryli sześć idealnych kształtów, które nazwano bryłami platońskimi. Słowo platońskie, którym określa się bryły idealne, pochodzi od imienia greckiego filozofa Plotyna. Niektórzy starożytni uważali, że świat zbudowany jest z kilku podstawowych żywiołów: powietrza, ognia, wody i ziemi. Przekonanie, że świat jest złożony z pięciu geometrycznych form, jest obecnie szeroko rozpowszechnione. 3. Dopasuj pytania do kadrów. Wpisz w okienkach właściwe numery. Odpowiedz na wszystkie pytania. 1. Ile stron ma ten kamienny eksponat? 2. Ile ścian ma piąta kostka od lewej? 3. Z jakich figur skonstruowana jest szklana kopuła nad symetrycznym dziedzińcem British Museum w Londynie? 2 4. I le wynosi suma liczb na niewidocznych ścianach tej kostki? 5. J ak się nazywa bryła platońska o najmniejszej liczbie wierzchołków? 6. Z jakiego kraju pochodzi ta rzeźba?....
3 Część B. Rozwiąż poniższe zadania. Zadanie 1. Rysunki przedstawiają figury widziane z trzech kierunków wzajemnie do siebie prostopadłych (kolejno: z lewej strony, z przodu i z góry). Wyobraź sobie każdą z figur i narysuj ją. a) b) c) d) Zadanie 2. Spróbuj zaznaczyć środki ścian wielościanów platońskich i połączyć te środki najkrótszymi odcinkami. Krawędzie których figur przestrzennych otrzymamy? Zadanie 3. Czworościan foremny można wypełnić jednakowymi kulkami, układając je warstwami. a) Policz, ile kulek mieści się w każdej warstwie. b) Policz różnicę między liczbą kulek w kolejnych warstwach. c) Napisz, jaką można zauważyć ciekawą prawidłowość związaną z liczbą kulek w dowolnych dwóch sąsiednich warstwach. 3
4 Zadanie 4. W roku 1886 niemiecki matematyk Wiktor Schlegel wprowadził taki sposób rysowania wielościanów, który ukazywał najważniejsze własności tych brył. Rysował je tak, jakby były rozwałkowane na płaszczyźnie. a) Dopasuj nazwę bryły platońskiej do odpowiedniego diagramu Schlegela b) Narysuj figurę przestrzenną odpowiadającą następującemu diagramowi. c) Policz, wykorzystując diagramy Schlegela, ile wierzchołków, ścian i krawędzi mają bryły platońskie. Następnie wykonaj obliczenie zgodnie z wyrażeniem sformułowanym przez Leonarda Eulera. Odkryj własność wielościanów zwykłych, czyli takich, które po mocnym nadmuchaniu zamieniają się w piłeczkę. Nazwa bryły Liczba wierzchołków (W) Liczba ścian (Ś) Liczba krawędzi (K) W + Ś K czworościan sześcian ośmiościan dwunastościan dwudziestościan 4
5 Część C. Zagadka. Liczby na kostkach do gry rozmieszcza się w taki sposób, że suma liczb na każdej parze przeciwległych ścian jest taka sama dla danego rodzaju kostki. Na ścianach z jakimi liczbami stoją kostki przedstawione na fotografiach? Czy zawsze można to stwierdzić?
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH
STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste
SCENARIUSZ ZAJĘĆ KOŁA NAUKOWEGO z MATEMATYKI prowadzonego w ramach projektu Uczeń OnLine
SCENARIUSZ ZAJĘĆ KOŁA NAUKOWEGO z MATEMATYKI prowadzonego w ramach projektu Uczeń OnLine 1. Autor: Anna Wołoszyn 2. Grupa docelowa: Klasa 2 Gimnazjum 3. Liczba godzin: 2 4. Temat zajęć: Geometria brył
Tytuł. Autor. Dział. Innowacyjne cele edukacyjne. Czas. Przebieg. Etap 1 - Wprowadzenie z rysem historycznym i dyskusją
Tytuł Kto nie zna geometrii, niech tu nie wchodzi czyli geometria brył platońskich Autor Dariusz Kulma Dział Bryły Innowacyjne cele edukacyjne Uczeń zapoznaje się z kolejnymi wielościanami foremnymi. Czas
XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY
pitagoras.d2.pl XII. GEOMETRIA PRZESTRZENNA GRANIASTOSŁUPY Graniastosłup to wielościan posiadający dwie identyczne i równoległe podstawy oraz ściany boczne będące równoległobokami. Jeśli podstawy graniastosłupa
MAZOWIECKI PROGRAM STYPENDIALNY DLA UCZNIÓW SZCZEGÓLNIE UZDOLNIONYCH NAJLEPSZA INWESTYCJA W CZŁOWIEKA 2016/2017
MAZOWIECKI PROGRAM STYPENDIALNY DLA UCZNIÓW SZCZEGÓLNIE UZDOLNIONYCH NAJLEPSZA INWESTYCJA W CZŁOWIEKA 2016/2017 Nr z wniosku ID: 3313 Tytuł projektu edukacyjnego: Jakie bryły przestrzenne spotykamy na
Wielościany gwiaździste
ul. Konarskiego 2, 30-049 Kraków tel. 12 633 13 83 lub 12 633 02 47 Wielościany gwiaździste Arkadiusz Biel Julia Strumińska Historia odkrywania wielościanów. Wielościany foremne były znane już w antyku;
GEOMETRIA PRZESTRZENNA (STEREOMETRIA)
GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy
Stereometria bryły. Wielościany. Wielościany foremne
Stereometria bryły Stereometria - geometria przestrzeni trójwymiarowej. Przedmiotem jej badań są własności brył oraz przekształcenia izometryczne i afiniczne przestrzeni. Przyjęte oznaczenia: - Pole powierzchni
Z przestrzeni na płaszczyznę
Z przestrzeni na płaszczyznę Wstęp W naszej pracy zajęłyśmy się nietypowymi parkietażami. Zwykle parkietaże związane są z wielokątami i innymi figurami płaskimi. Postanowiłyśmy zbadać jakie parkietaże
Graniastosłupy mają dwie podstawy, a ich ściany boczne mają kształt prostokątów.
GRANIASTOSŁUPY I OSTROSŁUPY Bryły czyli figury przestrzenne dzielimy na: graniastosłupy ostrosłupy bryły obrotowe Graniastosłupy i ostrosłupy nazywamy wielościanami Graniastosłupy mają dwie podstawy, a
Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019
Wymagania edukacyjne z matematyki dla klasy III a,b liceum (poziom podstawowy) rok szkolny 2018/2019 Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające,
Grafika inżynierska geometria wykreślna. 4. Wielościany. Budowa. Przekroje.
Grafika inżynierska geometria wykreślna 4. Wielościany. Budowa. Przekroje. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Gospodarka przestrzenna, semestr
Plan wynikowy klasa 3. Zakres podstawowy
Plan wynikowy klasa 3 Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania wykraczające. RACHUNE PRAWDOPODOBIEŃSTWA
BRYŁY PLATOŃSKIE W CZTERECH WYMIARACH
BRYŁY PLATOŃSKIE W CZTERECH WYMIARACH Adam Doliwa doliwa@matman.uwm.edu.pl Instytut Matematyczny Polskiej Akademii Nauk (Warszawa) Uniwersytet Warmińsko-Mazurski (Olsztyn) SPOTKANIA Z MATEMATYK A Olsztyn,
Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej.
Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Szczegółowe wymagania edukacyjne z matematyki w klasie trzeciej Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające;
Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy
Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Plan wynikowy Zakres podstawowy Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające; W wymagania
Czy pamiętasz? Zadanie 1. Rozpoznaj wśród poniższych brył ostrosłupy i graniastosłupy.
1. Bryły Tradycyjna futbolówka jest zszyta z 3232 kawałków. Gdybyśmy ją rozcięli, ujrzelibyśmy siatkę dwudziestościanu ściętego. Kulisty kształt piłka otrzymuje dzięki wypełnieniu sprężonym powietrzem.
DELTOŚCIANY RÓŻNE KONSTRUKCJE
MINILAND, S.A. 2004 2 4 6 7 9 14 16 17 22 23 23 WIELOKĄTY MOZAIKI WIELOŚCIANY WIELOŚCIANY FOREMNE BRYŁY PLATOŃSKIE WIELOŚCIANY PÓŁFOREMNE GRANIASTOSŁUPY ANTYGRANIASTOSŁUPY OSTOSŁUPY WIELOŚCIANY GWIAŹDZISTE
2. Permutacje definicja permutacji definicja liczba permutacji zbioru n-elementowego
Wymagania dla kl. 3 Zakres podstawowy Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za pomocą drzewa
Spis treści. Wyrażenia wymierne. Prawdopodobieństwo. Stereometria
Spis treści Wyrażenia wymierne Przekształcanie wielomianów... 8 Równania wymierne... 12 Hiperbola. Przesuwanie hiperboli... 19 Powtórzenie... 26 Praca badawcza Hiperbola, elipsa, parabola... 28 Prawdopodobieństwo
Młodzieżowe Uniwersytety Matematyczne. dr Michał Lorens
Młodzieżowe Uniwersytety Matematyczne Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego ODLEGŁOŚĆ NA POWIERZCHNI WIELOŚCIANU dr Michał Lorens 28.04.2012 Projekt
Wymagania edukacyjne dla klasy VI z matematyki. Opracowane na podstawie programu nauczania Matematyka z plusem LICZBY NATURALNE I UŁAMKI
Wymagania edukacyjne dla klasy VI z matematyki. Opracowane na podstawie programu nauczania Matematyka z plusem LICZBY NATURALNE I UŁAMKI Ocena dopuszczająca: - nazwy działań - algorytm mnożenia i dzielenia
Prawdy i nieprawdy. Liczba graczy od 2 do 6 osób. Rekwizyty talia 50 kart (plus 4 do wariantu 2) Zasady gry. klasa II GRANIASTOSŁUPY
Prawdy i nieprawdy klasa II GRANIASTOSŁUPY Liczba graczy od 2 do 6 osób Rekwizyty talia 50 kart (plus 4 do wariantu 2) Zasady gry Wariant 1. Gracze układają karty w stos zdaniami do góry. W trakcie rozgrywki
Geometria. Rodzaje i własności figur geometrycznych:
Geometria Jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych i zależności między nimi. Figury geometryczne na płaszczyźnie noszą nazwę figur płaskich, w przestrzeni
Geometria wykreślna. 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław. Politechnika Gdańska, Wydział Architektury
Geometria wykreślna 3. Równoległość. Prostopadłość. Transformacja celowa. dr inż. arch. Anna Wancław Politechnika Gdańska, Wydział Architektury Studia inżynierskie, kierunek Architektura, semestr I 1 3.
PRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3
PRZEDMIOTOWE ZASADY OCENIANIA I WYMAGANIA EDUKACYJNE Z MATEMATYKI Klasa 3 I. FUNKCJE grupuje elementy w zbiory ze względu na wspólne cechy wymienia elementy zbioru rozpoznaje funkcje wśród przyporządkowań
Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)
Program nauczania: Matematyka z plusem, Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku: 72 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)
Siatki i sklejanie wielościanów Praca konkursowa Matematyka dla Młodych
Siatki i sklejanie wielościanów Praca konkursowa Matematyka dla Młodych Miłosz Tresenberg Zespół Szkół w Kleszczewie ul. Poznańska 2, 3-005 Kleszczewo klasa 3GB Spis treści Rozdział 1. Wstęp... 3 Rozdział
KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII
KRYTERIA OCEN Z MATEMATYKI DLA KLASY VII Na ocenę dopuszczającą uczeń powinien : Na ocenę dostateczną uczeń powinien: Na ocenę dobrą uczeń powinie: Na ocenę bardzo dobrą uczeń powinien: Na ocenę celującą
Agnieszka Kamińska, Dorota Ponczek. Matematyka na czasie Gimnazjum, klasa 3 Rozkład materiału i plan wynikowy
Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Gimnazjum, klasa Rozkład materiału i plan wynikowy I. FUNKCJE 1 1. Pojęcie funkcji zbiór i jego elementy pojęcie przyporządkowania pojęcie funkcji
PROSZĘ SOBIE WYOBRAZIĆ, ŻE...
44 NAUCZANIE MATEMATYKI PROSZĘ SOBIE WYOBRAZIĆ, ŻE... Jerzy Janowicz Wyobraźnia geometryczna jest jednym z elementarnych procesów psychicznych, niezbędnych do prawidłowego funkcjonowania w społeczeństwie.
Temat lekcji Zakres treści Osiągnięcia uczeń: I. FUNKCJE 14
I. FUNKCJE 1 Podstawowe Ponadpodstawowe grupuje dane elementy w zbiory ze względu na wspólne cechy wymienia elementy zbioru rozpoznaje funkcje wśród przyporządkowa opisanych słownie lub za pomocą grafu
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM.
ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE IV TECHNIKUM. I. Podstawowe pojęcia statystyki. 1. Sposoby prezentowania danych, interpretacja wykresów. 2. Mediana i dominanta. 3. Średnia arytmetyczna
GEOPLAN Z SIATKĄ TRÓJKĄTNĄ
TEMAT NUMERU 9 GEOPLAN Z SIATKĄ TRÓJKĄTNĄ Marzenna Grochowalska W Matematyce w Szkole wiele miejsca poświęcono geoplanom z siatką kwadratową oraz ich zaletom 1. Równie ciekawą pomocą dydaktyczną jest geoplan
Wymagania na poszczególne oceny szkolne z. matematyki. dla uczniów klasy IIIa i IIIb. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016
Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy IIIa i IIIb Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ 1. FUNKCJE (11h) Uczeń: poda definicję funkcji (2)
ZESPÓŁ SZKÓŁ W OBRZYCKU
Matematyka na czasie Program nauczania matematyki w gimnazjum ZGODNY Z PODSTAWĄ PROGRAMOWĄ I z dn. 23 grudnia 2008 r. Autorzy: Agnieszka Kamińska, Dorota Ponczek ZESPÓŁ SZKÓŁ W OBRZYCKU Wymagania edukacyjne
I semestr WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI. Wymagania na ocenę dopuszczającą. Dział programu: Liczby naturalne
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI Wymagania na ocenę dopuszczającą I semestr Dział programu: Liczby naturalne Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje
Liczby geometryczne. Radosław Żak Katolickie Gimnazjum im. Świętej Rodziny z Nazaretu. Kraków Opieka: dr Jacek Dymel
Liczby geometryczne Radosław Żak Katolickie Gimnazjum im. Świętej Rodziny z Nazaretu Kraków 2016 Opieka: dr Jacek Dymel 1 Spis treści: 1.Wstęp... 3 2.Liczby wielokątne... 4 3.Trzeci wymiar...8 4.Czwarty
PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY)
PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY) Kategorie celów nauczania: A zapamiętanie wiadomości, B rozumienie wiadomości, C stosowanie wiadomości
Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wg programu nauczania Matematyka Prosto do matury
STEREOMETRIA Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wskazać płaszczyzny równoległe i prostopadłe do danej płaszczyzny wskazać proste równoległe i prostopadłe do danej płaszczyzny
Przedmiotowe Zasady Oceniania
Strona tytułowa Przedmiotowe Zasady Oceniania Matematyka Liceum podstawa Krzysztof Pietrasik Podręcznik: 1. Matematyka III 2. M. Dobrowolska, M. Karpiński, J. Lech 3. GWO Forma 1. Formy sprawdzania wiedzy
Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)
1 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy) Program nauczania: Matematyka z plusem, numer dopuszczenia DKW-4015-37/01. Liczba godzin nauki w tygodniu:
Wielokąty foremne. (Konstrukcje platońskie)
Wielokąty foremne (Konstrukcje platońskie) 1 Definicja 1. Wielokąt wypukły nazywa się foremny, jeżeli ma wszystkie kąty równe i wszystkie boki równe. Przykładami wielokątów foremnych są trójkąt równoboczny,
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 15 lutego 2019 Czas 90 minut
kod ucznia Zadanie 1-10 11 12 13 14 15 suma punkty Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 15 lutego 2019 Czas 90 minut 1. Otrzymujesz do rozwiązania 10 zadań zamkniętych
Krzyżówka oraz hasła do krzyżówki. Kalina R., Przewodnik po matematyce dla klas VII-VIII, część IV, SENS, Poznań 1997, s.20-22.
Omnibus matematyczny 1. Cele lekcji a) Wiadomości Uczeń: zna pojęcia matematyczne z zakresu szkoły podstawowej i gimnazjum. b) Umiejętności Uczeń: potrafi podać odpowiednie pojęcie matematyczne na podstawie
Wymagania edukacyjne z matematyki dla klasy III gimnazjum
Wymagania edukacyjne z matematyki dla klasy III gimnazjum Poziomy wymagań edukacyjnych: K konieczny dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je zatem opanować każdy
MATEMATYKA - WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY
MATEMATYKA - WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KLASA III GIMNAZJUM Wymagania konieczne (K) dotyczą zagadnień elementarnych, podstawowych; powinien je opanować każdy uczeń. Wymagania podstawowe
Zagadnienia na powtórzenie
Zagadnienia na powtórzenie TERESA ZIEGLER IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Zaznacz takie dokończenie zdania, aby otrzymać zdanie prawdziwe. Sześcian przecięto płaszczyzną zawierającą dwie równoległe
MATEMATYKA DLA CIEKAWSKICH. Dowodzenie twierdzeń przy pomocy kartki. Część I
MATEMATYKA DLA CIEKAWSKICH Dowodzenie twierdzeń przy pomocy kartki. Część I Z trójkątem, jako figurą geometryczną, uczeń spotyka się już na etapie nauczania początkowego. W czasie dalszego procesu kształcenia
PDM 3 zakres podstawowy i rozszerzony PSO
PDM 3 zakres podstawowy i rozszerzony PSO STEREOMETRIA wskazać płaszczyzny równoległe i prostopadłe do danej płaszczyzny wskazać proste równoległe i prostopadłe do danej płaszczyzny odróżnić proste równoległe
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 15 lutego 2019 Czas 90 minut Rozwiązania i punktacja
Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 15 lutego 2019 Czas 90 minut Rozwiązania i punktacja ZADANIA ZAMKNIĘTE W zadaniach od 1. do 10. wybierz i zaznacz na karcie odpowiedzi
Egzamin ósmoklasisty Matematyka
Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. WYPEŁNIA ZESPÓŁ NADZORUJĄCY KOD UCZNIA PESEL miejsce na naklejkę Egzamin ósmoklasisty Matematyka DATA: 16 kwietnia 2019 r. GODZINA
KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO:
KRZYŻÓWKA.Wyznaczają ją dwa punkty.. Jego pole to π r² 3. Jego pole to a a 4.Figura przestrzenna, której podstawą jest dowolny wielokąt, a ściany boczne są trójkątami o wspólnym wierzchołku. 5.Prosta mająca
Wymagania edukacyjne z matematyki dla klasy VII
Wymagania edukacyjne z matematyki dla klasy VII Szkoły Podstawowej nr 100 w Krakowie Na podstawie programu Matematyka z plusem Na ocenę dopuszczającą Uczeń: rozumie rozszerzenie osi liczbowej na liczby
KRYTERIUM OCENY Z MATEMATYKI DLA KLASY 6
KRYTERIUM OCENY Z MATEMATYKI DLA KLASY 6 DOPUSZCZAJĄC Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje proste zadania dotyczące obliczania wydatków. Dodaje, odejmuje,
WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą
1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2016/2017 Ćwiczenia nr 9 Karta pracy: podzielność przez 9 Niektóre są dobre, z drobnymi usterkami. Największy błąd: nie ma sformułowanej
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH
WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu
Wymagania kl. 3. Zakres podstawowy i rozszerzony
Wymagania kl. 3 Zakres podstawowy i rozszerzony Temat lekcji Zakres treści Osiągnięcia ucznia 1. RACHUNEK PRAWDOPODOBIEŃSTWA 1. Reguła mnożenia reguła mnożenia ilustracja zbioru wyników doświadczenia za
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 10 MARCA 2018 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 4 7 8 25 0, 5
Metoda objętości zadania
Metoda objętości zadania Płaszczyzny i dzielą graniastosłup trójkątny na cztery bryły Znaleźć stosunki objętości tych brył 2 any jest równoległościan o objętości V Wyznaczyć objętość części wspólnej czworościanów
Symetria w fizyce materii
Symetria w fizyce materii - Przekształcenia symetrii w dwóch i trzech wymiarach - Wprowadzenie w teorię grup; grupy symetrii - Wprowadzenie w teorię reprezentacji grup - Teoria grup a mechanika kwantowa
MATEMATYKA DYSKRETNA - KOLOKWIUM 2
1 MATEMATYKA DYSKRETNA - KOLOKWIUM 2 GRUPA A RACHUNKI+KRÓTKIE WYJAŚNIENIA! NA TEJ KARTCE! KAŻDA DODATKOWA KARTKA TO MINUS 1 PUNKT! Imię i nazwisko...... Nr indeksu... 1. (3p.) Znajdź drzewo o kodzie Prufera
ZAKRES PODSTAWOWY CZĘŚĆ II. Wyrażenia wymierne
CZĘŚĆ II ZAKRES PODSTAWOWY Wyrażenia wymierne Temat: Wielomiany-przypomnienie i poszerzenie wiadomości. (2 godz.) znać i rozumieć pojęcie jednomianu (2) znać i rozumieć pojęcie wielomianu stopnia n (2)
Przedmiotowe zasady oceniania i wymagania edukacyjne
Agnieszka Kamińska, Dorota Ponczek Matematyka na czasie Gimnazjum, klasa 3 Przedmiotowe zasady oceniania i wymagania edukacyjne Przed przystąpieniem do omawiania zagadnień programowych i przed rozwiązywaniem
MATEMATYKA ROZPOZNAWANIE FIGUR PRZESTRZENNYCH
SCENARIUSZ LEKCJI PRZEDMIOT: MATEMATYKA TEMAT: ROZPOZNAWANIE FIGUR PRZESTRZENNYCH AUTOR SCENARIUSZA : mgr Elżbieta Szmytkowska OPRACOWANIE ELEKTRONICZNO GRAFICZNE : mgr Beata Rusin TEMAT LEKCJI Rozpoznawanie
Justyna Skut pod kierunkiem mgr Jolanty Cyboń - Turowskiej
Justyna Skut pod kierunkiem mgr Jolanty Cyboń - Turowskiej 1 arkietaż jest powtarzającym się obrazem złoŝonym z wielokątów foremnych wypełniającym całą dostępną przestrzeń. Wielokąty układają się koło
Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania
Kryteria ocen z matematyki w Gimnazjum Klasa I Liczby i działania obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne skracać i rozszerzać ułamki zwykłe porównywać dwa ułamki
SPRAWDZIAN NR 1. Suma długości krawędzi prostopadłościanu o wymiarach 4 cm x 6 cm x 10 cm jest równa. A. 20 cm B. 40 cm C. 60 cm D.
SPRAWDZIAN NR 1 ARTUR ANTAS IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Zaznacz poprawną odpowiedź. Który wielokąt jest podstawą ostrosłupa o 6 wierzchołkach? A. Trójkąt. B. Czworokąt. C. Pięciokąt. D. Sześciokąt.
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN Z MATEMATYKI W KLASIE VI
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA POSZCZEGÓLNYCH OCEN Z MATEMATYKI W KLASIE VI OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który nie spełnia poniższych wymagań edukacyjnych
Matematyka 3 wymagania edukacyjne
Matematyka 3 wymagania edukacyjne Zakres podstawowy 1 POZIOMY WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE V
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE V OCENA ŚRÓDROCZNA: DOPUSZCZAJĄCY uczeń potrafi: zapisywać i odczytywać liczby w dziesiątkowym
Wymagania z matematyki na poszczególne oceny II klasy gimnazjum
Wymagania z matematyki na poszczególne oceny II klasy gimnazjum Opracowano na podstawie planu realizacji materiału nauczania matematyki Matematyka Podręcznik do gimnazjum Nowa wersja Praca zbiorowa pod
Katalog wymagań na poszczególne stopnie szkolne klasa 3
Katalog wymagań na poszczególne stopnie szkolne klasa 3 I. GRANIASTOSŁUPY I OSTROSŁUPY 6 5 4 3 2 Wskazuje wśród wielościanów graniastosłupy proste i pochyłe. Wskazuje na modelu lub rysunku krawędzie, wierzchołki,
PRZEDMIOTOWY SYSTEM OCENIANIA- MATEMATYKA KLASA 6. Rok szkolny 2012/2013. Tamara Kostencka
PRZEDMIOTOWY SYSTEM OCENIANIA- MATEMATYKA KLASA 6 Rok szkolny 2012/2013 Tamara Kostencka 1 LICZBY NA CO DZIEŃ LICZBY NATURALNE I UŁAMKI Wymagania programowe dla klasy VI szkoły podstawowej DZIAŁ WYMAGANIA
NaCoBeZU z matematyki dla klasy 7
NaCoBeZU z matematyki dla klasy 7 I. LICZBY I DZIAŁANIA 1. Znam pojęcia: liczby naturalne, całkowite, wymierne, dodatnie, ujemne, niedodatnie, odwrotne, przeciwne. 2. Zaznaczam i odczytuję położenie liczby
Katalog wymagań programowych z matematyki na poszczególne stopnie szkolne. Matematyka wokół nas klasa 4
Katalog wymagań programowych z matematyki na poszczególne stopnie szkolne. Matematyka wokół nas klasa 4 Kategorie zostały określone następująco: dotyczy wiadomości uczeń zna uczeń rozumie dotyczy przetwarzania
Regionalne Koło Matematyczne
Regionalne Koło Matematyczne Uniwersytet Mikołaja Kopernika w Toruniu Wydział Matematyki i Informatyki http://www.mat.umk.pl/rkm/ Lista rozwiązań zadań nr 2 (14-19.10.2009) nalogie i różnice miedzy trójkątem
Kryteria ocen z matematyki
Klasa I DZIAŁ: Liczby i działania Kryteria ocen z matematyki obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne skracać i rozszerzać ułamki zwykłe porównywać dwa ułamki zwykłe
PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (ZAKRES ROZSZERZONY)
PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (ZAKRES ROZSZERZONY) Program nauczania: Matematyka z plusem Liczba godzin nauki w tygodniu: 5 Planowana liczba godzin w ciągu roku: 120 Kursywą
Plan wynikowy klasa 3
Plan wynikowy klasa 3 Przedmiot: matematyka Klasa 3 liceum (technikum) Rok szkolny:........................ Nauczyciel:........................ zakres podstawowy: 28 tyg. 3 h = 84 h (78 h + 6 h do dyspozycji
WPROWADZENIE W GEOMETRIĘ GEOMETRIA W SZKOLE PODSTAWOWEJ
1 WPROWADZENIE W GEOMETRIĘ GEOMETRIA W SZKOLE PODSTAWOWEJ 2 PIERWSZE KROKI W GEOMETRII Opracowała: Anna Nakoneczny Myślę, że my nigdy do dzisiejszego czasu nie żyliśmy w takim geometrycznym okresie. Wszystko
SPIS TREŚCI. PIERWIASTKI 1. Pierwiastki Działania na pierwiastkach Działania na pierwiastkach (cd.) Zadania testowe...
SPIS TREŚCI POTĘGI 1. Potęga o wykładniku naturalnym................................. 7 2. Iloczyn i iloraz potęg o jednakowych podstawach................ 8 3. Potęgowanie potęgi................................................
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 9
Dydaktyka matematyki (II etap edukacyjny) II rok matematyki Semestr letni 2018/2019 Ćwiczenia nr 9 Karta pracy: podzielność przez 9 Niektóre są dobre, z drobnymi usterkami. Najlepsze: AO, LS. Największe
1.2. Ostrosłupy. W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach.
12 Ostrosłupy W tym temacie dowiesz się: jak obliczać długości odcinków zawartych w ostrosłupach, jakie są charakterystyczne kąty w ostrosłupach Ostrosłup prosty to ostrosłup, który ma wszystkie krawędzie
Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć
Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego
XIII Olimpiada Matematyczna Juniorów
XIII Olimpiada Matematyczna Juniorów Zawody stopnia pierwszego część testowa (8 września 017 r.) Rozwiązania zadań testowych 1. W każdym z trzech lat 018, 019 i 00 pensja pana Antoniego będzie o 5% większa
W ŚWIECIE WIELOKĄTÓW GWIAŹDZISTYCH
ul. Konarskiego 2, 30-049 Kraków tel. 12 633 13 83 lub 12 633 02 47 W ŚWIECIE WIELOKĄTÓW GWIAŹDZISTYCH Arkadiusz Biel Kraków 2011 Wielokąty gwiaździste są ciekawym przypadkiem wielokątów, gdyż posiadają
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM
WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który
Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa III
Kryteria oceniania z matematyki dla klasy M+ (zakres rozszerzony) Klasa III Zakres Dopuszczający Dostateczny Dobry Bardzo dobry Funkcja potęgowa - zna i stosuje tw. o potęgach - zna wykresy funkcji potęgowej
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI O C E N A W I A D O M O Ś C I I U M I E J Ę T N O Ś C I LICZBY NATURALNE I UŁAMKI nazwy działań algorytm mnożenia i dzielenia ułamków dziesiętnych przez 10, 100,
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV DOBRY DZIAŁ 1. LICZBY NATURALNE
WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA IV DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY CELUJĄCY DZIAŁ 1. LICZBY NATURALNE dodaje liczby bez przekraczania progu dziesiątkowego, odejmuje liczby w zakresie
Opracowanie tablic: Adam Konstantynowicz, Anna Konstantynowicz, Kaja Mikoszewska
Opracowanie tablic: Adam Konstantynowicz, Anna Konstantynowicz, Kaja Mikoszewska Redaktor serii: Marek Jannasz Ilustracje: Magdalena Wójcik Projekt okładki: Teresa Chylińska-Kur, KurkaStudio Projekt makiety
Rozkład materiału nauczania
Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2016/2017 Przedmiot: MATEMATYKA Klasa: IV 67 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat
INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH
INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Moduł interdyscyplinarny: informatyka matematyka Odkrywanie elementów
KONSPEKT LEKCJI MATEMATYKI
KONSPEKT LEKCJI MATEMATYKI Temat lekcji: Matematyka w codziennym zastosowaniu. Klasa: III gimnazjum Cele główne lekcji: Uczeń umie stosować wzory na obliczanie powierzchni całkowitej i objętości brył przestrzennych.
Agnieszka Kamińska, Dorota Ponczek. MATeMAtyka 3. Plan wynikowy. Zakres podstawowy i rozszerzony
Agnieszka amińska, Dorota Ponczek MATeMAtyka 3 Plan wynikowy Zakres podstawowy i rozszerzony Oznaczenia: wymagania konieczne; P wymagania podstawowe; R wymagania rozszerzające; D wymagania dopełniające;
DZIAŁ 1. STATYSTYKA DZIAŁ 2. FUNKCJE
DZIAŁ 1. STATYSTYKA poda pojęcie diagramu słupkowego i kołowego (2) poda pojęcie wykresu (2) poda potrzebę korzystania z różnych form prezentacji informacji (2) poda pojęcie średniej, mediany (2) obliczy
ZESTAW ZADAŃ NA OCENĘ DOPUSZCZAJĄCY Z MATEMATYKI W KLASIE IV.
ZESTAW ZADAŃ NA OCENĘ DOPUSZCZAJĄCY Z MATEMATYKI W KLASIE IV. I. POTĘGI. LOGARYTMY. FUNKCJA WYKŁADNICZA 1. Przedstaw liczby 16,4, w postaci potęgi liczby: 2; 4;. 2. Wykonaj działania: a) = b) 25 5 5 =