Wykład 5 Otwarte i wtórne operacje symetrii
|
|
- Elżbieta Kaźmierczak
- 8 lat temu
- Przeglądów:
Transkrypt
1 Wykład 5 Otwarte i wtórne operacje symetrii 1.Otwarty iloczyn operacji symetrii 2.Osie śrubowe i płaszczyzny poślizgu 3.Sieci Bravais a 4.Wtórne operacje symetrii
2 Przekształecenia izometryczne Zamknięte Otwarte 1. oś obrotu 2. centrum inwersji (symetrii) 3. płaszczyzna symetrii 4. oś inwersyjna (obrót i odbicie w centrum) 1. Translacja 2. oś śrubowa (obrót + translacja) 3. płaszczyzna poślizgowa (odbicie + translacja)
3 Otwarty iloczyn operacji symetrii i translacji x = 0x - 1y + 0z + 0 y = 1x + 0y + 0z + 0 z = 0x + 0y + 1z + t x = a 11 x + a 13 y + a 13 z + t 1 y = a 21 x + a 22 y + a 23 z + t 2 z = a 31 x + a 32 y + a 33 z + t 3 Konsekwencją złożenia translacji z zamkniętymi operacjami symetrii będzie pojawienie się: nowych otwartych operacji symetrii: osi śrubowych oraz płaszczyzn ślizgowych, sieci translacyjnych (tzw. sieci Bravais a), wtórnych operacji symetrii.
4 Oś dwukrotna właściwa i dwukrotna śrubowa
5 Para osi enancjomorficznych
6 Osie śrubowe 6 1 i 6 5
7 Charakterystyka osi symetrii występujących w sieciach przestrzennych Oś symetrii jednokrotna właściwa jednokrotna inwersyjna* dwukrotna właściwa dwukrotna śrubowa dwukrotna inwersyjna** trójkrotna właściwa trójkrotna śrubowa trójkrotna inwersyjna czterokrotna właściwa czterokrotna śrubowa czterokrotna inwersyjna sześciokrotna właściwa sześciokrotna śrubowa sześciokrotna inwersyjna H-M = m symbol graficzny Wartość wektora translacji brak /2a o, 1/2b o lub 1/2c o - - 1/3c o 2/3c o - - 1/4c o *** 2/4c o *** 3/4c o *** - - 1/6c o 2/6c o 3/6c o 4/6c o 5/6c o -
8 Płaszczyzna poślizgowa
9 Rodzaje płaszczyzn symetrii Płaszczyzna symetrii Symbol międzynarodowy Wartość wektora translacji płaszczyzna zwierciadlana m płaszczyzna ślizgowa osiowa płaszczyzna ślizgowa diagonalna płaszczyzna ślizgowa diamentowa a b c n d a o /2 b o /2 c o /2 (a o +b o )/2, (b o +c o )/2, (a o +c o )/2 lub (a o +b o +c o )/2 (a o +b o )/4, (b o +c o )/4, (a o +c o )/4 lub (a o +b o +c o )/4
10 Sieć przestrzenna Bravais a centrowana na ścianach prostopadłych do osi OX (typ A) dwie sieci prymitywne przesunięte względem siebie równolegle
11 Komórka elementarna prymitywna i komórki centrowane
12 Typy sieci Bravais a Nazwa komórki Symbol komórki Położenia węzłów Ilość węzłów n na komórkę prymitywna P 0,0,0 n P = 8. 1/8 = 1 przestrzennie centrowana I 0,0,0; 1/2,1/2,1/2 n I = 8. 1/8 + 1 = 2 płasko centrowana F 0,0,0; 1/2,1/2,0; 1/2,0,1/2; 0,1/2,1/2 n F = 8. 1/ /2 = 4 A 0,0,0; 0,1/2,1/2 n A = 8. 1/ /2 = 2 centrowana na jednej parze ścian B 0,0,0; 1/2,0,1/2 n B = 8. 1/ /2 = 2 C 0,0,0; 1/2,1/2,0 n C = 8. 1/ /2 = 2 romboedryczna R 0,0,0; 1/3,2/3,2/3; 2/3,1/3,1/3 n F = 8. 1/8 + 2 = 3
13 Wybór komórki prymitywnej zamiast centrowanej na jednej parze ścian zamiast płasko centrowanej na jednej parze ścian typu B
14 Typy sieci Bravais a Układ krystalograficzny regularny tetragonalny ortorombowy heksagonalny jednoskośny Symbol sieci Bravais a cp ci cf tp ti op oi of o A ( l u b B, C ) hp hr mp mc Wartości wektorów translacji sieci* a, b=a, c=a a, b=a, c=a, (a+b+c)/2 a, b=a, c=a, (a+b)/2, (b+c)/2, (a+c)/2 a, b=a, c a, b=a, c, (a+b+c)/2 a, b, c a, b, c, (a+b+c)/2 a, b, c, (a+b)/2, (b+c)/2, (a+c)/2 a, b, c, (b+c)/2 (lub (a+c)/2,(a+b)/2) a, b, c a, b=a, c, (2a+b+c)/3 a, b, c a, b, c, (a+b)/2 trójskośny ap a, b, c
15 Struktura NaCl
16 Wtórne operacje symetrii
17 Wtórne operacje symetrii (2)
18 Wtórne operacje symetrii (3)
19 Grupy przestrzenne w klasie symetrii 4
20 Wtórne operacje symetrii - podsumowanie Elementy symetrii w klasie symetrii Wtórne elementy symetrii (w grupach przestrzennych) Oś właściwa Osie właściwe o tej samej krotności, równoległe do wyjściowej, - w innych położeniach niż oś pierwotna Oś inwersyjna Płaszczyzna zwierciadlana Centrum symetrii Osie właściwe o niższej krotności niż pierwotna np.: dla osi czterokrotnej dwukrotne, dla osi sześciokrotnej dwu i trójkrotne Osie śrubowe o krotności tej samej lub niższej niż oś wyjściowa Osie inwersyjne o tej samej krotności, równoległe do wyjściowej, w innych położeniach niż oś pierwotna Osie właściwe lub inwersyjne o niższej krotności niż pierwotna np.: dla osi czterokrotnej inwersyjnej dwukrotne właściwe lub inwersyjne (płaszczyzny), dla osi sześciokrotnej inwersyjnej dwu i trójkrotne Płaszczyzny zwierciadlane równoległe do pierwotnej Centra symetrii
21 Crystal System Laue Class Space Group 1 triclinic P1, P1 monoclinic 2/m P2, P2 1, C2, Pm, Pc, Cm, Cc, P2/m, P2 1 /m, C2/m, P2/c, P2 1 /c, C2/c orthorhombic mmm P222, P222 1, P , P , C222 1, C222, F222, I222, I , Pmm2, Pmc2 1, Pcc2, Pma2, Pca2 1, Pnc2, Pmn2 1, Pba2, Pna2 1, Pnn2, Cmm2, Cmc2 1, Ccc2, Amm2, Aem2, Ama2, Aea2, Fmm2, Fdd2, Imm2, Iba2, Ima2, Pmmm, Pnnn, Pccm, Pban, Pmma, Pnna, Pmna, Pcca, Pbam, Pccn, Pbcm, Pnnm, Pmmn, Pbcn, Pbca, Pnma, Cmcm, Cmce, Cmmm, Cccm, Cmme, Ccce, Fmmm, Fddd, Immm, Ibam, Ibca, Imma tetragonal 4/m P4, P4 1, P4 2, P4 3, I4, I4 1, P4, I4, P4/m, P4 2 /m, P4/n, P4 2 /n, I4/m, I4 1 /a tetragonal 4/mmm P422, P42 1 2, P4 1 22, P , P4 2 22, P , P4 3 22, P , I422, I4 1 22, P4mm, P4bm, P4 2 cm, P4 2 nm, P4cc, P4nc, P4 2 mc, P4 2 bc, I4mm, I4cm, I4 1 md, I4 1 cd, P42m, P42c, P42 1 m, P42 1 c, P4m2, P4c2, P4b2, P4n2, I4m2, I4c2, I42m, I42d, P4/mmm, P4/mcc, P4/nbm, P4/nnc, P4/mbm, P4/mnc, P4/nmm, P4/mcc, P4 2 /mmc, P4 2 /mcm, P4 2 /nbc, P4 2 /nnm, P4 2 /mbc, P4 2 /mnm, P4 2 /nmc, P4 2 /ncm, I4/mmm, I4/mcm, I4/amd, I4/ 1 acd trigonal 3 P3, P3 1, P3 2, R3, P3, R3, P312, P321, P3 trigonal 3m 1 12, P3 1 21, P3 2 12, P3 2 21, R32, P3m1, P31m, P3c1, P31c, R3m, R3c, P31m, P31c, P3m1, P3c1, R3m, R3c hexgonal 6/m P6, P6 1, P6 5, P6 2, P6 4, P6 3, P6, P6/m, P6 3 /m hexagonal 6/mmm P622, P6 1 22, P6 5 22, P6 2 22, P6 4 22, P6 3 22, P6mm, P6cc, P6 3 cm, P6 3 mc, P6m2, P6c2, P62m, P62c, P6/mmm, P6/mcc, P6 3 /mcm, P6 3 /mmc P23, F23, I23, P2 cubic m3 1 3, I2 1 3, Pm3, Pn3, Fm3, Fd3, Im3, Pa3, Ia3 P432, P4 cubic m3m 2 32, F432, F4 1 32, I432, P4 3 32, P4 1 32, I4 1 32, P43m, F43m, I43m, P43n, F43c, I43d, Pm3m, Pn3n, Pm3n, Pn3m, Fm3m, Fm3c, Fd3m, Fd3c, Im3m, Ia3d
Opracowanie: mgr inż. Antoni Konitz, dr hab inż. Jarosław Chojnacki Politechnika Gdańska, Gdańsk 2007, 2016
4. Stosowanie międzynarodowych symboli grup przestrzennych. Zamiana skróconych symboli Hermanna - Mauguina na symbole pełne. Określanie układu krystalograficznego, klasy krystalograficznej oraz operacji
Układ regularny. Układ regularny. Możliwe elementy symetrii: Możliwe elementy symetrii: 3 osie 3- krotne. m płaszczyzny przekątne.
Układ regularny Możliwe elementy symetrii: 3 osie 3- krotne m płaszczyzny równoległe do ścian m płaszczyzny przekątne 4 osie 4- krotne 2 osie 2- krotne Układ regularny Możliwe elementy symetrii: 3 osie
Grupy przestrzenne i ich symbolika
Grupy przestrzenne i ich symbolika Po co mi (chemikowi) znajomość symboli grup przestrzennych? Informacje zawarte w symbolu układ krystalograficzny obecność operacji symetrii punktowej (spektroskopia)
Wykład 5. Komórka elementarna. Sieci Bravais go
Wykład 5 Komórka elementarna Sieci Bravais go Doskonały kryształ składa się z atomów jonów, cząsteczek) uporządkowanych w sieci krystalicznej opisanej przez trzy podstawowe wektory translacji a, b, c,
Krystalochemia białek 2016/2017
Zestaw zadań 4. Grupy punktowe. Składanie elementów symetrii. Translacyjne elementy symetrii grupy punktowe, składanie elementów symetrii, translacyjne elementy symetrii: osie śrubowe, płaszczyzny ślizgowe
STRUKTURA CIAŁA STAŁEGO
STRUKTURA CIAŁA STAŁEGO Podział ciał stałych Ciała - bezpostaciowe (amorficzne) Szkła, żywice, tłuszcze, niektóre proszki. Nie wykazują żadnych regularnych płaszczyzn ograniczających, nie można w nich
Sieć przestrzenna. c r. b r. a r. komórka elementarna. r r
Sieć przestrzenna c r b r r r u a r vb uvw = + + w c v a r komórka elementarna V = r r a ( b c) v Układy krystalograficzne (7) i Sieci Bravais (14) Triclinic (P) a b c, α β γ 90 ο Monoclinic (P) a b c,
GRUPY SYMETRII Symetria kryształu
GRUPY SYMETRII Smetria krstału Zamknięte (punktowe) operacje smetrii (minimum jeden punkt prestreni nie porusa się wskutek astosowania amkniętej operacji smetrii): Obrot i obrot inwersjne; Inwersja (smetria
Krystalografia i krystalochemia Wykład 15 Repetytorium
Krystalografia i krystalochemia Wykład 15 Repetytorium 1. Czym zajmuje się krystalografia i krystalochemia? 2. Podsumowanie wiadomości z krystalografii geometrycznej. 3. Symbolika Kreutza-Zaremby oraz
S 2, C 2h,D 2h,D 3d,D 4h, D 6h, O h
Są tylko 32 grupy punktowe, które spełniają ten warunek, Można je pogrupować w 7 typów grup (spośród omówionych 12- tu), które spełniają powyższe własności S 2, C 2h,D 2h,D 3d,D 4h, D 6h, O h nazywają
Konwersatorium z chemii ciała stałego Specjalność: chemia budowlana ZESTAW 3. Symetria makro- i mikroskopowa
Konwersatorium z chemii ciała stałego Specjalność: chemia budowlana ZESTAW 3 Symetria makro- i mikroskopowa Kombinacje elementów symetrii; grupy punktowe i grupy przestrzenne projekcje cyklograficzne grup
STANY SKUPIENIA MATERII
STANY SKUPIENIA MATERII Tradycyjne od XVII wieku wyróżniamy trzy stany skupienia: stały,ciekły, gazowy Obecnie fizyka wróżnia pięć (6?) stanów skupienia faza gazowa faza nadkrytyczna (między cieczą a gazem)
Elementy symetrii makroskopowej.
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii Elementy symetrii makroskopowej. 2 godz. Cel ćwiczenia: zapoznanie się z działaniem elementów symetrii makroskopowej
Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography)
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography) 2 godz. Cel ćwiczenia: analiza
Aby opisać strukturę krystaliczną, konieczne jest określenie jej części składowych: sieci przestrzennej oraz bazy atomowej.
2. Podstawy krystalografii Podczas naszych zajęć skupimy się przede wszystkim na strukturach krystalicznych. Kryształem nazywamy (def. strukturalna) substancję stałą zbudowaną z atomów, jonów lub cząsteczek
ROZDZIAŁ I. Symetria budowy kryształów
ROZDZIAŁ I Symetria budowy kryształów I Ciała krystaliczne i amorficzne Każda substancja ciekła z wyjątkiem helu) podczas oziębiania traci swoje własności ciekłe i przechodzi w ciało stałe Jednakże proces
3. Operacje symetrii, macierze operacji symetrii. Grupy punktowe. Przypisywanie grupy punktowej dla zadanych obiektów
3. Operacje symetrii, macierze operacji symetrii. Grupy punktowe. Przypisywanie grupy punktowej dla zadanych obiektów Opracowanie: dr hab. inż. Jarosław Chojnacki, Politechnika Gdańska, Gdańsk 207 Każda
STRUKTURA KRYSTALICZNA
PODSTAWY KRYSTALOGRAFII Struktura krystaliczna Wektory translacji sieci Komórka elementarna Komórka elementarna Wignera-Seitza Jednostkowy element struktury Sieci Bravais go 2D Sieci przestrzenne Bravais
Wykład 4: Struktura krystaliczna
Wykład 4: Struktura krystaliczna Wg Blicharskiego, Wstęp do materiałoznawstwa http://webmineral.com/ Komórka elementarna Geometria komórki Dla zdefiniowania trójwymiarowej komórki elementarnej należy podać
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii. Laboratorium z Krystalografii. 2 godz. Komórki Bravais go
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Komórki Bravais go Cel ćwiczenia: kształtowanie umiejętności: przyporządkowywania komórek translacyjnych Bravais
Położenia, kierunki, płaszczyzny
Położenia, kierunki, płaszczyzny Dalsze pojęcia Osie krystalograficzne; Parametry komórki elementarnej; Wskaźniki punktów kierunków i płaszczyzn; Osie krystalograficzne Osie krystalograficzne: układ osi
MATERIA. = m i liczby całkowite. ciała stałe. - kryształy - ciała bezpostaciowe (amorficzne) - ciecze KRYSZTAŁY. Periodyczność
MATERIA ciała stałe - kryształy - ciała bezpostaciowe (amorficzne) - ciecze - gazy KRYSZTAŁY Periodyczność Kryształ (idealny) struktura zbudowana z powtarzających się w przestrzeni periodycznie identycznych
Elementy teorii powierzchni metali
Prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład dla studentów fizyki Rok akademicki 2017/18 (30 godz.) Wykład 1 Plan wykładu Struktura periodyczna kryształów, sieć odwrotna Struktura
Rozwiązanie: Zadanie 2
Podstawowe pojęcia. Definicja kryształu. Sieć przestrzenna i sieć krystaliczna. Osie krystalograficzne i jednostki osiowe. Ściana jednostkowa i stosunek osiowy. Położenie węzłów, prostych i płaszczyzn
STRUKTURA MATERIAŁÓW
STRUKTURA MATERIAŁÓW ELEMENTY STRUKTURY MATERIAŁÓW 1. Wiązania miedzy atomami 2. Układ atomów w przestrzeni 3. Mikrostruktura 4. Makrostruktura 1. WIĄZANIA MIĘDZY ATOMAMI Siły oddziaływania między atomami
NOWA STRONA INTERNETOWA PRZEDMIOTU: http://xrd.ceramika.agh.edu.pl/
Wskaźnikowanie rentgenogramów i wyznaczanie parametrów sieciowych Wykład 8 1. Wskaźnikowanie rentgenogramów. 2. Metoda róŝnic wskaźnikowania rentgenogramów substancji z układu regularnego. 3. Metoda ilorazów
BUDOWA KRYSTALICZNA CIAŁ STAŁYCH. Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale
BUDOWA KRYSTALICZNA CIAŁ STAŁYCH Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale na: kryształy ciała o okresowym regularnym uporządkowaniu atomów, cząsteczek w całej swojej
Elementy teorii powierzchni metali
prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 2 v.16 Sieci płaskie i struktura powierzchni 1 Typy sieci dwuwymiarowych (płaskich) Przecinając monokryształ wzdłuż jednej z płaszczyzn
Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography)
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography) 2 godz. Cel ćwiczenia: analiza
Krystalografia. Dyfrakcja na monokryształach. Analiza dyfraktogramów
Krystalografia Dyfrakcja na monokryształach. Analiza dyfraktogramów Wyznaczanie struktury Pomiar obrazów dyfrakcyjnych Stworzenie modelu niezdeformowanej sieci odwrotnej refleksów Wybór komórki elementarnej
S. Baran - Podstawy fizyki materii skondensowanej Struktura krystaliczna. Struktura krystaliczna
S. Baran - Podstawy fizyki materii skondensowanej Struktura krystaliczna Struktura krystaliczna Kwarc (SiO2) (źródło: Wikipedia) Piryt (FeS2) (źródło: Wikipedia) Halit/Sól kamienna (NaCl) (źródło: Wikipedia)
Fizyka Ciała Stałego
Wykład III Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć krystaliczną. Amorficzne, brak uporządkowania,
Zastosowanie teorii grup. Grupy symetrii w fizyce i chemii.
Zastosowanie teorii grup Grupy symetrii w fizyce i chemii Katarzyna Kolonko Streszczenie Usystematyzowanie grup punktowych, omówienie ich na przykładzie molekuł Przedstawienie wkładu teorii grup w badanie
Uniwersytet Śląski w Katowicach str. 1 Wydział
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, pierwszy Sylabus modułu: Krystalografia (016) Nazwa wariantu modułu (opcjonalnie): _wariantu ( wariantu) 1. Informacje ogólne koordynator
Natęż. ężenie refleksu dyfrakcyjnego
Natęż ężenie refleksu dyfrakcyjnego Wskaźnikowanie dyfraktogramów 1. Natężenie refleksu dyfrakcyjnego - od czego i jak zależy 1. Wskaźnikowanie dyfraktogramów -metoda różnic 3. Wygaszenia systematyczne
Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography)
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography) 2 godz. Cel ćwiczenia: analiza
Metody badań monokryształów metoda Lauego
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40 006 Katowice, Tel. 0323591627 e-mail: joanna_palion@poczta.fm opracowanie: mgr Joanna Palion Gazda Laboratorium z Krystalografii
Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne.
Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Strukturalne element smetrii. Krstalograficne grup prestrenne. god. Cel ćwicenia: aponanie się diałaniem elementów smetrii
Wykład II Sieć krystaliczna
Wykład II Sieć krystaliczna Podstawowe definicje Wiele z pośród ciał stałych ma budowę krystaliczną. To znaczy, Ŝe atomy z których się składają ułoŝone są w określonym porządku. Porządek ten daje się stosunkowo
ELEMENTY I OPERACJE SYMETRII Symbol Element symetrii Operacja symetrii
ELEMENTY I OPERACJE SYMETRII Symbol Element symetrii Operacja symetrii C n oś symetrii n-krotna (oś główna - oś o obrót wokół osi symetrii o kąt równy 360 0 /n najwyższej krotności) σ płaszczyzna symetrii
Układy krystalograficzne
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Układy krystalograficzne Cel ćwiczenia: kształtowanie umiejętności wyboru komórki elementarnej i przyporządkowywania
Krystalografia. Typowe struktury pierwiastków i związków chemicznych
Krystalografia Typowe struktury pierwiastków i związków chemicznych Wiązania w kryształach jonowe silne, bezkierunkowe kowalencyjne silne, kierunkowe metaliczne słabe lub silne, bezkierunkowe van der Waalsa
Budowa ciał stałych. sieć krystaliczna układy krystalograficzne sieć realna defekty wiązania w ciałach stałych
Budowa ciał stałych sieć krystaliczna układy krystalograficzne sieć realna defekty wiązania w ciałach stałych Ciała stałe to substancje o regularnej, przestrzennej budowie krystalicznej, czyli regularnym
Wykład 1. Symetria Budowy Kryształów
Wykład Symetria Budowy Kryształów Ciała krystaliczne i amorficzne Każda substancja ciekła (z wyjątkiem helu) podczas oziębiania traci swoje własności ciekłe i przechodzi w ciało stałe. Jednakże proces
= a (a c-c )x(3) 1/2. Grafit i nanorurki węglowe Grafen sieć rombowa (heksagonalna) z bazą dwuatomową
Grafit i nanorurki węglowe Grafen sieć rombowa (heksagonalna) z bazą dwuatomową a 1 = a (a c-c )x(3) 1/ ( 3 a, ), ( 3 a a a = a, ) wektory bazowe sieci odwrotnej definiuje się inaczej niż w 3D musi zachodzić
Symetria w fizyce materii
Symetria w fizyce materii - Przekształcenia symetrii w dwóch i trzech wymiarach - Wprowadzenie w teorię grup; grupy symetrii - Wprowadzenie w teorię reprezentacji grup - Teoria grup a mechanika kwantowa
Rodzina i pas płaszczyzn sieciowych
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Rodzina i pas płaszczyzn sieciowych Cel ćwiczenia: kształtowanie umiejętności posługiwania się modelami komórek
Laboratorium z Krystalografii. 2 godz.
Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40-006 Katowice tel. 0323591627, e-mail: ewa.malicka@us.edu.pl opracowanie: dr Ewa Malicka Laboratorium z Krystalografii
1. Elementy (abstrakcyjnej) teorii grup
1. Elementy (abstrakcyjnej) teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3 є G - (g 1
Wstęp do Optyki i Fizyki Materii Skondensowanej. Mateusz Goryca
Wstęp do Optyki i Fizyki Materii Skondensowanej Mateusz Goryca mgoryca@fuw.edu.pl Uniwersytet Warszawski 2015 Materia skondensowana OC 6 H 13 H 13 C 6 O OC 6 H 13 H 17 C 8 O H 17 C 8 O N N Cu O O H 21
Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna
Wykład II Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Amorficzne, brak uporządkowania, np. szkła; Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć
Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna
Wykład II Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Amorficzne, brak uporządkowania, np. szkła; Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć
WYKŁAD 5 Zastosowanie teorii grup w analizie widm oscylacyjnych
WYKŁAD 5 Zastosowanie teorii grup w analizie widm oscylacyjnych Prof. dr hab. Halina Abramczyk Dr inż. Beata Brożek-Płuska POLITECHNIKA ŁÓDZKA Wydział Chemiczny, Instytut Techniki Radiacyjnej Laboratorium
Wstęp. Krystalografia geometryczna
Wstęp Przedmiot badań krystalografii. Wprowadzenie do opisu struktury kryształów. Definicja sieci Bravais go i bazy atomowej, komórki prymitywnej i elementarnej. Podstawowe typy komórek elementarnych.
KRYSTALOGRAFIA Studia pierwszego stopnia, stacjonarne II rok
Akademia Górniczo-Hutnicza Wydział Odlewnictwa Katedra Inżynierii Stopów i Kompozytów Odlewanych Nr ćwiczenia: 1 Opracowała Temat: Cel ćwiczenia: Zakres wymaganego materiału Przebieg ćwiczenia Materiały
Translacja jako operacja symetrii. Wybór komórki elementarnej wg A. Bravais, połowa XIX wieku wybieramy komórkę. Symetria sieci translacyjnej
Trnslcj jko opercj symetrii Wykłd trzeci W obrębie figur nieskończonych przesunięcie (trnslcję) możn trktowć jko opercję symetrii Jest tk np. w szlkch ornmentcyjnych (bordiurch) i siecich krysztłów polimerów
Rejestracja dyfraktogramów polikrystalicznych związków. Wskaźnikowanie dyfraktogramów i wyznaczanie typu komórki Bravais go.
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40006 Katowice tel. 0323591503, email: izajen@wp.pl opracowanie: dr hab. Izabela Jendrzejewska Laboratorium z Krystalografii
STRUKTURA MATERIAŁÓW. Opracowanie: Dr hab.inż. Joanna Hucińska
STRUKTURA MATERIAŁÓW Opracowanie: Dr hab.inż. Joanna Hucińska ELEMENTY STRUKTURY MATERIAŁÓW 1. Wiązania miedzy atomami 2. Układ atomów w przestrzeni 3. Mikrostruktura 4. Makrostruktura 1. WIĄZANIA MIĘDZY
FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE
Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Co powinienem umieć Umiejętności znam podstawowe przekształcenia geometryczne: symetria osiowa i środkowa,
Odbicie lustrzane, oś symetrii
Odbicie lustrzane, oś symetrii 1. Określ, czy poniższe figury są swoimi lustrzanymi odbiciami. Jeśli nie, odpowiedź uzasadnij. 2. Dokończ rysunki, tak aby dorysowana część była odbiciem lustrzanym. 3.
Elementy symetrii. obiekt geometryczny taki jak linia, płaszczyzna lub punkt, względem którego dokonuje się operacji symetrii.
ELEMENTY SYMETRII Element symetrii obiekt geometryczny taki jak linia, płaszczyzna lub punkt, względem którego dokonuje się operacji symetrii. ELEMENTY SYMETRII Elementy symetrii PŁASZZYZNA peracje symetrii
Dyfrakcja rentgenowska (XRD) w analizie fazowej Wykład 7
Dyfrakcja rentgenowska () w analizie fazowej Wykład 7 1. Opracowanie wyników pomiaru. 2. Korzystanie z kart identyfikacyjnych. 3. Parametry sieciowe a układ krystalograficzny. 4. Wskaźnikowanie rentgenogramów.
C h można przedstawić w bazie wektorów bazowych grafenu (*) (**) Nanorurki węglowe (jednościenne)
Nanorurki węglowe (jednościenne) zwinięte paski arkusza grafenu (wstęgi grafenowej) (węzły sieciowe Bravais i węzły podsieci) wstęgi: chiralna fotelowa zykzak komórka elementarna jednoznacznie definiuje
Materiałoznawstwo optyczne. KRYSZTAŁY Y cz. 2
Materiałoznawstwo optyczne KRYSZTAŁY Y cz. 2 Komórki elementarne Bravais Grupy translacyjne Bravais Układ Grupa translacyjna regularny P, I, F tetragonalny P, I rombowy P, C, I, F jednoskośny P, C, trójskośny
Kombinacje elementów symetrii. Klasy symetrii.
Uniwersytet Śląski Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. 0323591503, e-mail: izajen@wp.pl, opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii
Metody badań monokryształów metoda Lauego
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40 006 Katowice, Tel. 0323591627 e-mail: joanna_palion@poczta.fm opracowanie: mgr Joanna Palion Gazda Laboratorium z Krystalografii
Dyfrakcja rentgenowska (XRD) w analizie fazowej Wykład 6 i 7
Dyfrakcja rentgenowska () w analizie fazowej Wykład 6 i 7 1. Wyniki pomiarów rentgenowskich w metodzie DSH. 2. Intensywność refleksów. 3. Reguły wygaszeń. 4. Parametry pomiarowe i przygotowanie próbek
UNIWERSYTET im. ADAMA MICKIEWICZA w POZNANIU WYDZIAŁ FIZYKI. specjalność: Fizyka z Informatyką Zakład Fizyki Kryształów PRACA MAGISTERSKA
UNIWERSYTET im. ADAMA MICKIEWICZA w POZNANIU WYDZIAŁ FIZYKI specjalność: Fizyka z Informatyką Zakład Fizyki Kryształów PRACA MAGISTERSKA PRZEMIANY FAZOWE NA POWIERZCHNIACH KRYSZTAŁÓW FERROICZNYCH JUSTYNA
Struktura energetyczna ciał stałych. Fizyka II dla EiT oraz E, lato
Struktura energetyczna ciał stałych Fizyka II dla EiT oraz E, lato 016 1 Struktura kryształu Doskonały kryształ składa się z uporządkowanych atomów w sieci krystalicznej, opisanej przez trzy podstawowe
1. Podstawowe pojęcia. Stechiometria w komórce elementarnej. Wyznaczanie gęstości teoretycznej kryształu. Zamiana baz w układach współrzędnych
1. Podstawowe pojęcia. Stechiometria w komórce elementarnej. Wyznaczanie gęstości teoretycznej kryształu. Zamiana baz w układach współrzędnych Opracowanie: dr hab. inż. Jarosław Chojnacki i mgr inż. Antoni
STRUKTURA IDEALNYCH KRYSZTAŁÓW
BUDOWA WEWNĘTRZNA MATERIAŁÓW METALICZNYCH Zakres tematyczny y 1 STRUKTURA IDEALNYCH KRYSZTAŁÓW 2 1 Sieć przestrzenna kryształu TRANSLACJA WĘZŁA TRANSLACJA PROSTEJ SIECIOWEJ TRANSLACJA PŁASZCZYZNY SIECIOWEJ
WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc
WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;
Rejestracja dyfraktogramów polikrystalicznych związków. Wskaźnikowanie dyfraktogramów i wyznaczanie typu komórki Bravais go.
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40006 Katowice tel. 0323591503, email: izajen@wp.pl opracowanie: dr hab. Izabela Jendrzejewska Laboratorium z Krystalografii
Podstawowe pojęcia opisujące sieć przestrzenną
Uniwersytet Śląski Instytut Chemii akład Krystalografii Laboratorium z Krystalografii 2 godz. Podstawowe pojęcia opisujące sieć przestrzenną Cel ćwiczenia: kształtowanie umiejętności posługiwania się modelami
Metody dyfrakcyjne do wyznaczania struktury krystalicznej materiałów
Metody dyfrakcyjne do wyznaczania struktury krystalicznej materiałów prowadzący : dr inŝ. Marcin Małys (malys@mech.pw.edu.pl) dr inŝ. Wojciech Wróbel (wrobel@mech.pw.edu.pl) gdzie nas szykać: pok. 333
Struktura energetyczna ciał stałych. Fizyka II, lato
Struktura energetyczna ciał stałych Fizyka II, lato 016 1 Stany związane Studnia potencjału o nieskończończonej głębokości jest idealizacją. W praktyce realizowalna jest skończona studnia, w której energia
Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt): F x E' E''
GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2012/2013 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni
MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska
MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I dr inż. Hanna Smoleńska Struktura materiałów UKŁAD ATOMÓW W PRZESTRZENI CIAŁA KRYSTALICZNE Układ atomów/cząstek (a/cz) w przestrzeni jest statystyczne
Mechanika teoretyczna
Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe
Ciała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami.
Ciała stałe Ciała krystaliczne Ciała amorficzne Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. r T = Kryształy rosną przez regularne powtarzanie się identycznych
I. Potęgi. Logarytmy. Funkcja wykładnicza.
WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Potęgi. Logarytmy. Funkcja wykładnicza. dobrą, bardzo - oblicza potęgi o wykładnikach wymiernych; - zna
STRUKTURA KRYSZTAŁÓW
STRUKTURA KRYSZTAŁÓW Skala wielkości spotykanych w krystalografii: Średnica atomu wodoru: 10 Rozmiar komórki elementarnej: od kilku do kilkudziesięciu Å o D = 1*10 m = 1A 1 Struktura = sieć + baza atomowa
Geometria analityczna
Wydział Matematyki Stosowanej Zestaw zadań nr 10 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus maja 018r. 1 Działania na wektorach Zadanie 1. Oblicz długość wektorów: Geometria
Inwersja w przestrzeni i rzut stereograficzny zadania
Inwersja w przestrzeni i rzut stereograficzny zadania Rozważmy sferę S o środku O i promieniu R. Inwersją względem sfery S nazywamy przekształcenie, które przekształca punkt A na punkt A leżący na półprostej
GEOMETRIA ANALITYCZNA W PRZESTRZENI
Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 13. Egzaminy I termin wtorek 31.01 14:00 Aula A Wydział Budownictwa II termin poprawkowy czwartek 9.02 14:00 Aula A Wydział Budownictwa
Struktura energetyczna ciał stałych
011-05-0 Struktura energetyczna ciał stałych Fizyka II dla Elektroniki, lato 011 1 Stany związane Studnia potencjału o nieskończończonej głębokości jest idealizacją. W praktyce realizowalna jest skończona
Kombinacje elementów symetrii. Klasy symetrii.
Uniwersytet Śląski Instytut Cheii Zakład Krystalografii Laboratoriu z Krystalografii Kobinacje eleentów syetrii. Klasy syetrii. 2 godz. Cel ćwiczenia: tworzenie kobinacji eleentów syetrii akroskopowej
Podsumowanie wiadomości o przekształceniach izometrycznych na płaszczyźnie
Podsumowanie wiadomości o przekształceniach izometrycznych na płaszczyźnie 1. Cele lekcji a) Wiadomości 1. Utrwalenie wiadomości o przekształceniach izometrycznych. b) Umiejętności 1. Uczeń potrafi zastąpić
Krystalografia. Symetria a właściwości fizyczne kryształów
Krystalografia Symetria a właściwości fizyczne kryształów Właściwości fizyczne kryształów a ich symetria Grupy graniczne Piroelektryczność Piezoelektryczność Właściwości optyczne kryształów Właściwości
WYKŁAD I KONSTRUKCJE PODSTAWOWE RZUT RÓWNOLEGŁY RZUT PROSTOKĄTNY AKSONOMETRIA. AdamŚwięcicki
WYKŁAD I KONSTRUKCJE PODSTAWOWE RZUT RÓWNOLEGŁY RZUT PROSTOKĄTNY AKSONOMETRIA AdamŚwięcicki KONSTRUKCJA PROSTEJ PRZECHODZĄCEJ PRZEZ DWA PUNKTY a B B A A KONSTRUKCJA ODCINKA B B A A wariant I KONSTRUKCJA
1. Potęgi. Logarytmy. Funkcja wykładnicza
1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności
Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)
Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji
PRÓBNY EGZAMIN MATURALNY
PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 142033 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Pole trójkata
Prosta i płaszczyzna w przestrzeni
Prosta i płaszczyzna w przestrzeni Wybrane wzory i informacje Równanie prostej przechodzącej przez punkt P 0 = (x 0, y 0, z 0 ) o wektorze wodzącym r 0 i równoległej do wektora v = [a, b, c] : postać parametrycznego
Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17
Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1 MECHANIKA OGÓLNA - lista zadań 2016/17 Część 1 analiza kinematyczna układów płaskich Przeprowadzić analizę kinematyczną układu. Odpowiednią
Arkusz 6. Elementy geometrii analitycznej w przestrzeni
Arkusz 6. Elementy geometrii analitycznej w przestrzeni Zadanie 6.1. Obliczyć długości podanych wektorów a) a = [, 4, 12] b) b = [, 5, 2 2 ] c) c = [ρ cos φ, ρ sin φ, h], ρ 0, φ, h R c) d = [ρ cos φ cos
Dydaktyka matematyki III-IV etap edukacyjny (wykłady)
Dydaktyka matematyki III-IV etap edukacyjny (wykłady) Wykład nr 9: Geometria w szkole geometria dynamiczna, miejsca geometryczne, przekształcenia geometryczne Semestr zimowy 2018/2019 DGS = Dynamic Geometry
Geometria analityczna
Geometria analityczna Wektory Zad Dane są wektory #» a, #» b, #» c Znaleźć długość wektora #» x (a #» a = [, 0, ], #» b = [0,, 3], #» c = [,, ], #» x = #» #» a b + 3 #» c ; (b #» a = [,, ], #» b = [,,
Wykład 14. Elementy algebry macierzy
Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,