Metody badań monokryształów metoda Lauego
|
|
- Antonina Rutkowska
- 8 lat temu
- Przeglądów:
Transkrypt
1 Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, Katowice, Tel opracowanie: mgr Joanna Palion Gazda Laboratorium z Krystalografii Specjalizacja: Fizykochemia związków nieorganicznych Metody badań monokryształów metoda Lauego 2 godz. Cel ćwiczenia: Rejestracja widma dyfrakcyjnego metodą Lauego. Interpretacja uzyskanych widm. Wstęp teoretyczny: W metodzie Lauego na nieruchomy kryształ pada polichromatyczna wiązka promieniowanie rentgenowskiego. Obraz dyfrakcyjny rejestruje się na płaskiej błonie fotograficznej ustawionej prostopadle do kierunku promieni pierwotnych. Płaską błonę fotograficzna można ustawić w dwóch położeniach: za kryształem metoda promieni przechodzących w której otrzymane rentgenogramy nazywa się lauegrami między kryształem a błoną fotograficzną metoda promieni zwrotnych, w której otrzymane rentgenogramy nazywa się epigramami Rys.1. a) lauegram; b) epigram Z lauegramu łatwo można obliczyć kąt ugięcia. W metodzie promieni przechodzących kąt θ dla każdego refleksu jest kreślony wzorem tg 2θ = r/d, a w metodzie promieni
2 zwrotnych tg(180 2θ) = r/d gdzie D odległość błony fotograficznej od próbki r odległość refleksu od środka rentgenogramu. Rys. 2. Metoda Lauego Istnieje tylko 10 różnych typów symetrii laugramów, które nazywają się obrazami Lauego. Obrazy Lauego oznacza się symbolami międzynarodowymi: 1, 2, 3, 4, 6, m, 2mm, 3m, 4mm, 6mm. Obraz 1 jest obrazem asymetrycznym i powstaje, gdy w krysztale nie występuje żaden element symetrii równoległy do wiązki padającej. Gdy promienie rentgenowskie biegną w krysztale równolegle do osi 2, 3, 4 i 6-krotnej, wówczas otrzymuje się obrazy typu 2, 3, 4 i 6. Gdy promienie rentgenowskie biegną równolegle do płaszczyzny symetrii, wówczas otrzymuje się obraz typu m. Gdy padające promienie rentgenowskie są równoległe do osi n krotnej, wzdłuż której przecina się n płaszczyzn symetrii, wówczas otrzymuje się obrazy typu 2mm, 3m, 4mm i 6mm. Rys. 3 Typy obrazów Lauego W oparciu o symetrię obrazów Lauego przyporządkowuje się badany kryształ do jednej z 11 klas dyfrakcyjnych, zwanych klasami Lauego (Tabela 1)
3 Układ Grupy punktowe tworzące Symbol klasy Możliwe obrazy Lauego krystalograficzny klasę dyfrakcyjną dyfrakcyjnej trójskośny 1, jednoskośny 2/m, 2, m 2/m 2, m, 1 rombowy mmm, 222, mm2 mmm 2mm, m,1 tetragonalny 4/m, 4, 4 4/m 4, m, 1 tetragonalny 4/mmm, 422, 4mm, 4 2m 4/mmm 4mm, 2mm, m, 1 trygonalny 3, 3 3 3, 1 trygonalny 3m, 32, 3 m 3 m 3m, 2, m, 1 heksagonalny 6/m, 6, 6 6/m 6, m, 1 heksagonalny 6/mmm, 622, 6mm, 6 m2 6/mmm 6mm, 2mm, m, 1 regularny m 3, 23 m 3 3, 2mm, m, 1 regularny m 3 m, 432, 4 3m m 3 m 4mm, 3m, 2mm, m, 1 Tabela 1. Podział 32 klas krystalograficznych na 11 klas Lauego oraz obrazy Lauego możliwe do otrzymania w danej klasie dyfrakcyjnej Sprzęt i odczynniki: dyfraktometr PHYWE, komputer PC wraz z oprogramowaniem PHYWE Measure, kryształ LiF, uchwyt na kryształ, uchwyt na błonę fotograficzną, błona fotograficzna. Programy: JAVA Laue - JCrystal ( Wykonanie ćwiczenia: Część I. Rejestracja widma kryształu LiF przy wykorzystaniu metody Lauego. 1.1 Na wyjściu promieniowania X zamocować przesłonę o średnicy 1mm wraz z kryształem LiF. 1.2 Uchwyt na błonę fotograficzną ustawić w odległości 1,5 cm od kryształu. 1.3 W celu uzyskania prawidłowego widma należy upewnić się czy powierzchnia kryształu i błona fotograficzna są do siebie równoległe, a zarazem prostopadłe do belki głównej Wprowadzić następujące parametry pracy dyfraktometru: a) Klawiszem HV-I wybrać funkcję HV i nastawić pokrętłem wartość 35kV, zatwierdzić klawiszem ENTER.
4 b) Klawiszem HV-I wybrać funkcję I i nastawić pokrętłem wartość 1mA, zatwierdzić klawiszem ENTER. c) Przyciskiem GATE-TIMER wybrać funkcje TIMER i pokrętłem ustawić żądany czas na 30min., zatwierdzić klawiszem ENTER. d) Klawiszem HV-ON włączyć lampę rentgenowską. 1.5 Po zakończeniu rejestracji widma należy wywołać film. (wywoływacz znajduje się nad błoną fotograficzną) 1.6 Po minucie usunąć wywoływacz i włożyć błonę fotograficzna pod strumień zimnej wody i polewać przez ok. 5 minut. 1.7 Obliczyć kąty ugięcia dla uzyskanych refleksów. Część II. Interpretacja obrazów Lauego dla wybranych związków. 2.1 Korzystając z programu JAVA Laue oraz znając parametry komórek poniższych związków określ typy obserwowanych (w różnych kierunkach) obrazów Lauego i na tej podstawie podaj grupę dyfrakcyjną i układ krystalograficzny Nazwa związku P 4 S 10 a: 9,180 b: 9,190 c: 9,070 Al 2 O 3 a: 11,795 b: 2,910 c: 5,621 Cd(N 3 ) 2 a: 7,820 b: 6,460 c: 16,04 HgI 2 a: 4,357 b: 4,357 c: 12,36 CuS a: 3,802 b: 3,802 c: 16,430 CsCl a: 7,020 b: 7,020 c: 7,020 Parametry komórki Kierunek Typy obrazów Długości Kąty [ ] Lauego krawędzi [Å] α: 101,2 β: 110,5 γ: 92,40 β: 103,79 γ: 120 [210] [210] [210] [321] Grupa dyfrakcyjna Lauego 2.2 Zapisz obrazy Lauego dla związku HgI 2 i dołącz do sprawozdania. Układ krystalograficzny
5 2.3 Korzystając z programu JAVA Laue określ, które z poniższych par związków należą do tych samych klas dyfrakcyjnych. L.p. Związek nr 1 Związek nr 2 1 PdF 2 a: 4,956 b: 4,956 c: 3,389 NH 4 Cl a: 3,868 b: 3,868 c: 3,868 2 NaCl a: 5,620 b: 5,620 c: 5,620 3 ZnS a: 3,811 b: 3,811 c: 6,234 4 CaO a: 4,799 b: 4,799 c: 4,799 5 Zn(OH) 2 a: 5,160 b: 8,530 c: 4,920 6 PdO a: 3,030 b: 3,030 c: 5,333 γ: 120 PbS a: 5,930 b: 5,930 c: 5,930 NaBF 4 a: 6,837 b: 6,262 c: 6,792 K 2 SO 4 a: 5,947 b: 5,947 c: 8,375 BaSiO 3 a: 5,1125 b: 5,1125 c: 12,387 MgO a: 4,217 b: 4,217 c: 4,217 γ: 120 γ: Zapisz obrazy Lauego dla par tych związków, które można rozróżnić metodą Lauego i dołącz do sprawozdania. Rys. 4 Grupy obrotowe
6 Rys. 5 Grupy centrosymetryczne Część III. Zadania dodatkowe 1. Na podstawie serii lauegramów stwierdzono, że kryształ należy do grupy dyfrakcyjnej Lauego 4/m. Do jakiej grupy punktowej może należeć ten kryształ? 2. Do jakiej grupy dyfrakcyjnej Lauego należy kryształ o symbolu grupy punktowej 2? Podać symbole innych grup punktowych mających tę samą grupę dyfrakcyjną Lauego. 3. Do jakich klas dyfrakcyjnych Lauego należą substancje, krystalizujące w podanych poniżej grupach przestrzennych: a) P2 1, b) Pban, c) P32 1, d) P6cc. 4. Kamera Lauego do badań w promieniach przechodzących ma kasetę w kształcie walca, do której założono błonę fotograficzną o średnicy 2R = 150mm. Główka goniometryczna umożliwia ustawienie monokryształu w odległości D = 30mm od błony. Polichromatyczna wiązka promieniowania padającego na monokryształ składa się z fal o długości od λ 1 = 0,8Å do λ 2 = 2Å. Jakie są odległości d hkl między płaszczyznami dającymi refleksy rejestrowane na błonie?
7 5. W kamerze Lauego do badań w promieniach przechodzących błona fotograficzna ma średnicę 2R = 100 mm. Monokryształ jest ustawiony w odległości D = 30mm od błony. Obliczyć minimalną wartość napięcia pracy lampy rentgenowskiej, przy którym można rejestrować refleksy od płaszczyzn o wartości d hkl 1,8Å. 6. Monokryształ z układu regularnego o a 0 = 3,61Å jest umieszczony w kamerze do badań w promieniach przechodzących w odległości D = 30mm od błony fotograficznej. Jaka fala daje refleks od płaszczyzny (111), leżący w odległości r = 30mm od środka błony? Jakie refleksy i od jakich długości fal również mogą padać na to samo miejsce na błonie? 7. Uzupełnij poniższa tabelę Dodatkowo proszę rozwiązać zadania o numerach 81, 83,85, 87, 88, 89, które znajdują się na stronie internetowej Olimpiady Krystalograficznej Część IV. Metoda obracanego kryształu Rys.6. Zależności geometryczne między węzłami sieci odwrotnej i refleksami na rentgenogramie w metodzie obracanego kryształu; K monokryształ, F błona fotograficzna, R promień kamery, L 0, L 1, L n płaszczyzny sieci odwrotnej, W 0, W 1, W n warstwice na rentgenogramie
8 1. Monokryształ z układu regularnego o a 0 = 3,16Å jest umieszczony w kamerze obracanego monokryształu o średnicy 2R = 57,3mm, tak, że obraca się wokół osi krystalograficznej X. Obliczyć liczbę warstwic, jak jest rejestrowana na błonie o wysokości h = 100 mm, przy promieniowaniu λ = 1,54 Å. 2. W kamerze o średnicy 2R = 57,3mm jest umieszczony monokryształ obracający się wokół osi krystalograficznej Z. Na monokryształ pada promieniowanie λcuk a= 1,54Å. Otrzymano warstwice równikową 0 i cztery warstwice wyższych rzędów. Odstępy między symetrycznymi warstwicami wynoszą odpowiednio: 2y 1 = 10,2mm, 2y 2 = 21,6mm, 2y 3 = 35,4mm, 2y 4 = 56,6mm. Obliczyć okres translacji t, który odpowiada wartości c Metodą obracanego kryształu wykonano rentgenogram w kamerze o średnicy 57,3mm stosując promieniowanie rentgenowskie o długości fali 1,524 Å. Na skali milimetrowej podłożonej pod rentgenogram określono położenie poszczególnych warstwic: h = 3 5,40mm h = 2 22,44mm h = 1 31,83mm h = 0 39,40mm h = 1 46,96mm h = 2 56,35mm h = 3 73,20mm Obliczyć wartość a 0 kryształu, wykorzystując każdą z warstwic. Wynik uśrednić.
Metody badań monokryształów metoda Lauego
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40 006 Katowice, Tel. 0323591627 e-mail: joanna_palion@poczta.fm opracowanie: mgr Joanna Palion Gazda Laboratorium z Krystalografii
Laboratorium z Krystalografii. 2 godz.
Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40-006 Katowice tel. 0323591627, e-mail: ewa.malicka@us.edu.pl opracowanie: dr Ewa Malicka Laboratorium z Krystalografii
Monochromatyzacja promieniowania molibdenowej lampy rentgenowskiej
Uniwersytet Śląski Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40 006 Katowice tel. (032)359 1503, e-mail: izajen@wp.pl, opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii
Laboratorium z Krystalografii. 2 godz.
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Kα i Kβ promieniowania charakterystycznego X emitowanego przez anodę
Laboratorium z Krystalografii. 2 godz.
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Ka i Kb promieniowania charakterystycznego X emitowanego przez anodę
Laboratorium z Krystalografii specjalizacja: Fizykochemia związków nieorganicznych
Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. 0323591197, e-mail: izajen@wp.pl opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii
Krystalografia. Dyfrakcja na monokryształach. Analiza dyfraktogramów
Krystalografia Dyfrakcja na monokryształach. Analiza dyfraktogramów Wyznaczanie struktury Pomiar obrazów dyfrakcyjnych Stworzenie modelu niezdeformowanej sieci odwrotnej refleksów Wybór komórki elementarnej
Rejestracja dyfraktogramów polikrystalicznych związków. Wskaźnikowanie dyfraktogramów i wyznaczanie typu komórki Bravais go.
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40006 Katowice tel. 0323591503, email: izajen@wp.pl opracowanie: dr hab. Izabela Jendrzejewska Laboratorium z Krystalografii
Układy krystalograficzne
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Układy krystalograficzne Cel ćwiczenia: kształtowanie umiejętności wyboru komórki elementarnej i przyporządkowywania
Układ regularny. Układ regularny. Możliwe elementy symetrii: Możliwe elementy symetrii: 3 osie 3- krotne. m płaszczyzny przekątne.
Układ regularny Możliwe elementy symetrii: 3 osie 3- krotne m płaszczyzny równoległe do ścian m płaszczyzny przekątne 4 osie 4- krotne 2 osie 2- krotne Układ regularny Możliwe elementy symetrii: 3 osie
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii. Laboratorium z Krystalografii. 2 godz. Komórki Bravais go
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Komórki Bravais go Cel ćwiczenia: kształtowanie umiejętności: przyporządkowywania komórek translacyjnych Bravais
Absorpcja promieni rentgenowskich 2 godz.
Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. (032)3591627, e-mail: joanna_palion@poczta.fm opracowanie: mgr Joanna Palion-Gazda Laboratorium
Rentgenografia - teorie dyfrakcji
Rentgenografia - teorie dyfrakcji widmo promieniowania rentgenowskiego Widmo emisyjne promieniowania rentgenowskiego: -promieniowanie charakterystyczne -promieniowanie ciągłe (białe) Efekt naświetlenia
Wykład 5. Komórka elementarna. Sieci Bravais go
Wykład 5 Komórka elementarna Sieci Bravais go Doskonały kryształ składa się z atomów jonów, cząsteczek) uporządkowanych w sieci krystalicznej opisanej przez trzy podstawowe wektory translacji a, b, c,
Krystalografia. Dyfrakcja
Krystalografia Dyfrakcja Podstawowe zagadnienia Rodzaje promieniowania używane w dyfrakcyjnych metodach badań struktur krystalicznych, ich źródła Fizyczne podstawy i warunki dyfrakcji Równania dyfrakcji:
STRUKTURA CIAŁA STAŁEGO
STRUKTURA CIAŁA STAŁEGO Podział ciał stałych Ciała - bezpostaciowe (amorficzne) Szkła, żywice, tłuszcze, niektóre proszki. Nie wykazują żadnych regularnych płaszczyzn ograniczających, nie można w nich
Rejestracja dyfraktogramów polikrystalicznych związków. Wskaźnikowanie dyfraktogramów i wyznaczanie typu komórki Bravais go.
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40006 Katowice tel. 0323591503, email: izajen@wp.pl opracowanie: dr hab. Izabela Jendrzejewska Laboratorium z Krystalografii
PROMIENIOWANIE RENTGENOWSKIE
PROMIENIOWANIE RENTGENOWSKIE 1. Zagadnienia teoretyczne Promieniowanie rentgenowskie, poziomy energetyczne w atomie, stała Planck a i metody wyznaczania jej wartości, struktura krystalograficzna, dyfrakcyjne
Bezpośredni opiekunowie laboratorium: Prof. dr hab. Marek Szafrański. Prof. dr hab. Maciej Kozak, dr Marceli Kaczmarski.
Bezpośredni opiekunowie laboratorium: Prof. dr hab. Marek Szafrański Prof. dr hab. Maciej Kozak, dr Marceli Kaczmarski. Ćwiczenia w tym laboratorium polegają na analizie obrazu dyfrakcyjnego promieni rentgenowskich.
Rozwiązanie: Zadanie 2
Podstawowe pojęcia. Definicja kryształu. Sieć przestrzenna i sieć krystaliczna. Osie krystalograficzne i jednostki osiowe. Ściana jednostkowa i stosunek osiowy. Położenie węzłów, prostych i płaszczyzn
Rodzina i pas płaszczyzn sieciowych
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Rodzina i pas płaszczyzn sieciowych Cel ćwiczenia: kształtowanie umiejętności posługiwania się modelami komórek
BUDOWA KRYSTALICZNA CIAŁ STAŁYCH. Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale
BUDOWA KRYSTALICZNA CIAŁ STAŁYCH Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale na: kryształy ciała o okresowym regularnym uporządkowaniu atomów, cząsteczek w całej swojej
Aby opisać strukturę krystaliczną, konieczne jest określenie jej części składowych: sieci przestrzennej oraz bazy atomowej.
2. Podstawy krystalografii Podczas naszych zajęć skupimy się przede wszystkim na strukturach krystalicznych. Kryształem nazywamy (def. strukturalna) substancję stałą zbudowaną z atomów, jonów lub cząsteczek
STRUKTURA KRYSTALICZNA
PODSTAWY KRYSTALOGRAFII Struktura krystaliczna Wektory translacji sieci Komórka elementarna Komórka elementarna Wignera-Seitza Jednostkowy element struktury Sieci Bravais go 2D Sieci przestrzenne Bravais
Charakterystyka promieniowania miedziowej lampy rentgenowskiej.
Uniwersytet Śląski - Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. 0323591503, e-mail: izajen@wp.pl, opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii
ĆWICZENIE Nr 27. Laboratorium Inżynierii Materiałowej. Akceptował: Kierownik Katedry prof. dr hab. B. Surowska. Opracował: dr inż. S.
POLITECHNIKA LUBELSKA WYDZIAŁ MECHANICZNY KATEDRA INŻYNIERII MATERIAŁOWEJ Akceptował: Kierownik Katedry prof. dr hab. B. Surowska Laboratorium Inżynierii Materiałowej ĆWICZENIE Nr 27 Opracował: dr inż.
Uniwersytet Śląski w Katowicach str. 1 Wydział
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, drugi Sylabus modułu: Krystalografia (024) Nazwa wariantu modułu (opcjonalnie): _wariantu ( wariantu) 1. Informacje ogólne koordynator
Elementy symetrii makroskopowej.
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii Elementy symetrii makroskopowej. 2 godz. Cel ćwiczenia: zapoznanie się z działaniem elementów symetrii makroskopowej
10. Analiza dyfraktogramów proszkowych
10. Analiza dyfraktogramów proszkowych Celem ćwiczenia jest zapoznanie się zasadą analizy dyfraktogramów uzyskiwanych z próbek polikrystalicznych (proszków). Zwykle dyfraktometry wyposażone są w oprogramowanie
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Otrzymywanie promieni rentgenowskich. 2. Budowa lampy rentgenowskiej. 3. Własności
Charakterystyka promieniowania molibdenowej lampy rentgenowskiej
Uniwersytet Śląski Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40 006 Katowice tel. 0323591503, e-mail: izajen@wp.pl, opracowanie: dr hab. Izabela Jendrzejewska Laboratorium z Krystalografii
STRUKTURA MATERIAŁÓW
STRUKTURA MATERIAŁÓW ELEMENTY STRUKTURY MATERIAŁÓW 1. Wiązania miedzy atomami 2. Układ atomów w przestrzeni 3. Mikrostruktura 4. Makrostruktura 1. WIĄZANIA MIĘDZY ATOMAMI Siły oddziaływania między atomami
DYFRAKCYJNE METODY BADANIA STRUKTURY CIAŁ STAŁYCH
LABORATORIUM INŻYNIERII MATERIAŁOWEJ W ENERGETYCE Ćwiczenie 7 DYFRAKCYJNE METODY BADANIA STRUKTURY CIAŁ STAŁYCH Instrukcja zawiera: 1. Cel ćwiczenia 2. Wprowadzenie teoretyczne; definicje i wzory 3. Opis
NOWA STRONA INTERNETOWA PRZEDMIOTU: http://xrd.ceramika.agh.edu.pl/
Wskaźnikowanie rentgenogramów i wyznaczanie parametrów sieciowych Wykład 8 1. Wskaźnikowanie rentgenogramów. 2. Metoda róŝnic wskaźnikowania rentgenogramów substancji z układu regularnego. 3. Metoda ilorazów
Dyfrakcja rentgenowska (XRD) w analizie fazowej Wykład 3
Dyfrakcja rentgenowska () w analizie fazowej Wykład 3 1. Podział metod rentgenowskich ze względu na badane materiały oraz rodzaj stosowanego promieniowania. 2. Metoda Lauego. 3. Metoda obracanego monokryształu.
Położenia, kierunki, płaszczyzny
Położenia, kierunki, płaszczyzny Dalsze pojęcia Osie krystalograficzne; Parametry komórki elementarnej; Wskaźniki punktów kierunków i płaszczyzn; Osie krystalograficzne Osie krystalograficzne: układ osi
S P R A W O Z D A N I E D O ĆWICZENIA X 1 D E B Y E A SCHERRERA W Y Z N A C Z A N I E S T A Ł E J S I E C I M E T O DĄ.
S P R A W O Z D A N I E D O ĆWICZENIA X 1 W Y Z N A C Z A N I E S T A Ł E J S I E C I M E T O DĄ D E B Y E A SCHERRERA Wyznaczanie stałej sieci metodą Debey a Scherrera, 9 listopada 004 r. Celem doświadczenia
Prezentacja przebiegu pomiaru obrazu dyfrakcyjnego monokryształu na czterokołowym dyfraktometrze Oxford Diffraction Gemini A Ultra.
INSTRUKCJA DO ĆWICZEŃ Prezentacja przebiegu pomiaru obrazu dyfrakcyjnego monokryształu na czterokołowym dyfraktometrze Oxford Diffraction Gemini A Ultra. I. Cel ćwiczenia Głównym celem ćwiczenia jest zapoznanie
Grupy przestrzenne i ich symbolika
Grupy przestrzenne i ich symbolika Po co mi (chemikowi) znajomość symboli grup przestrzennych? Informacje zawarte w symbolu układ krystalograficzny obecność operacji symetrii punktowej (spektroskopia)
S 2, C 2h,D 2h,D 3d,D 4h, D 6h, O h
Są tylko 32 grupy punktowe, które spełniają ten warunek, Można je pogrupować w 7 typów grup (spośród omówionych 12- tu), które spełniają powyższe własności S 2, C 2h,D 2h,D 3d,D 4h, D 6h, O h nazywają
Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne
Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub
ROZDZIAŁ I. Symetria budowy kryształów
ROZDZIAŁ I Symetria budowy kryształów I Ciała krystaliczne i amorficzne Każda substancja ciekła z wyjątkiem helu) podczas oziębiania traci swoje własności ciekłe i przechodzi w ciało stałe Jednakże proces
Krystalografia i krystalochemia Wykład 15 Repetytorium
Krystalografia i krystalochemia Wykład 15 Repetytorium 1. Czym zajmuje się krystalografia i krystalochemia? 2. Podsumowanie wiadomości z krystalografii geometrycznej. 3. Symbolika Kreutza-Zaremby oraz
Wykład 1. Symetria Budowy Kryształów
Wykład Symetria Budowy Kryształów Ciała krystaliczne i amorficzne Każda substancja ciekła (z wyjątkiem helu) podczas oziębiania traci swoje własności ciekłe i przechodzi w ciało stałe. Jednakże proces
Natęż. ężenie refleksu dyfrakcyjnego
Natęż ężenie refleksu dyfrakcyjnego Wskaźnikowanie dyfraktogramów 1. Natężenie refleksu dyfrakcyjnego - od czego i jak zależy 1. Wskaźnikowanie dyfraktogramów -metoda różnic 3. Wygaszenia systematyczne
Podstawy krystalochemii pierwiastki
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii Podstawy krystalochemii pierwiastki Cel ćwiczenia: określenie pełnej charakterystyki wybranych struktur pierwiastków
RENTGENOWSKA ANALIZA STRUKTURALNA
LABORATORIUM INŻYNIERII MATERIAŁOWEJ W ENERGETYCE Ćwiczenie 5 Instrukcja zawiera: RENTGENOWSKA ANALIZA STRUKTURALNA 1. Cel ćwiczenia 2. Wprowadzenie teoretyczne; definicje i wzory 3. Sposób przygotowania
Dyfrakcja rentgenowska (XRD) w analizie fazowej Wykład 4 i 5 1. Podział metod rentgenowskich ze wzgl
Dyfrakcja rentgenowska () w analizie fazowej Wykład 4 i 5 1. Podział metod rentgenowskich ze względu na badane materiały oraz rodzaj stosowanego promieniowania. 2. Metoda Lauego. 3. Metoda obracanego monokryształu.
Dyfrakcja rentgenowska (XRD) w analizie fazowej Wykład 2 i 3
Dyfrakcja rentgenowska () w analizie fazowej Wykład 2 i 3 1. Historia odkrycie promieniowania X i pierwsze eksperymenty z jego zastosowaniem. 2. Fale elektromagnetyczne. 3. Źródła promieniowania X, promieniowanie
Kombinacje elementów symetrii. Klasy symetrii.
Uniwersytet Śląski Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. 0323591503, e-mail: izajen@wp.pl, opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii
Elementy teorii powierzchni metali
prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 2 v.16 Sieci płaskie i struktura powierzchni 1 Typy sieci dwuwymiarowych (płaskich) Przecinając monokryształ wzdłuż jednej z płaszczyzn
Podstawowe pojęcia opisujące sieć przestrzenną
Uniwersytet Śląski Instytut Chemii akład Krystalografii Laboratorium z Krystalografii 2 godz. Podstawowe pojęcia opisujące sieć przestrzenną Cel ćwiczenia: kształtowanie umiejętności posługiwania się modelami
ZADANIE RTG1 WYZNACZANIE STAŁEJ SIECI KRYSZTAŁU LiF METODĄ DYFRAKCJI RENTGENOWSKIEJ
ZADANIE RTG1 WYZNACZANIE STAŁEJ SIECI KRYSZTAŁU LiF METODĄ DYFRAKCJI RENTGENOWSKIEJ Wytyczne do ćwiczenia Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodą pomiaru dyfrakcji rentgenowskiej za
Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography)
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography) 2 godz. Cel ćwiczenia: analiza
Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography)
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography) 2 godz. Cel ćwiczenia: analiza
Laboratorium techniki laserowej. Ćwiczenie 5. Modulator PLZT
Laboratorium techniki laserowej Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 006 1.Wstęp Rozwój techniki optoelektronicznej spowodował poszukiwania nowych materiałów
Wskaźnikowanie rentgenogramów i wyznaczanie parametrów sieciowych Wykład 8
Wskaźnikowanie rentgenogramów i wyznaczanie parametrów sieciowych Wykład 8 1. Wskaźnikowanie rentgenogramów. 2. Metoda róŝnic wskaźnikowania rentgenogramów substancji z układu regularnego. 3. Metoda ilorazów
MATERIA. = m i liczby całkowite. ciała stałe. - kryształy - ciała bezpostaciowe (amorficzne) - ciecze KRYSZTAŁY. Periodyczność
MATERIA ciała stałe - kryształy - ciała bezpostaciowe (amorficzne) - ciecze - gazy KRYSZTAŁY Periodyczność Kryształ (idealny) struktura zbudowana z powtarzających się w przestrzeni periodycznie identycznych
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Otrzymywanie promieniowania rentgenowskiego. 2. Budowa lampy rentgenowskiej.
WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ
ĆWICZENIE 84 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ Cel ćwiczenia: Wyznaczenie długości fali emisji lasera lub innego źródła światła monochromatycznego, wyznaczenie stałej siatki
Ćwiczenie nr 8 WYZNACZANIE GRUPY DYFRAKCYJNEJ KRYSZTAŁU Z WYKORZYSTANIEM KAMERY CCD
Ćwiczenie nr 8 WYZNACZANIE GRUPY DYFRAKCYJNEJ KRYSZTAŁU Z WYKORZYSTANIEM KAMERY CCD Wprowadzenie Proces analizy rentgenowskiej monokryształów można podzielić na dwa etapy: a) wyznaczenie parametrów komórki
Dyfrakcja wysokoenergetycznych elektronów RHEED
Dyfrakcja wysokoenergetycznych elektronów RHEED Ryszard Zdyb Cel ćwiczenia Wyznaczenie stałej sieci monokryształu krzemu. Poznanie powierzchniowo czułej techniki dyfrakcyjnej odbiciowej dyfrakcji wysokoenergetycznych
Dyfrakcja. Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia
Dyfrakcja 1 Dyfrakcja Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia uginanie na szczelinie uginanie na krawędziach przedmiotów
Opracowanie: mgr inż. Antoni Konitz, dr hab inż. Jarosław Chojnacki Politechnika Gdańska, Gdańsk 2007, 2016
4. Stosowanie międzynarodowych symboli grup przestrzennych. Zamiana skróconych symboli Hermanna - Mauguina na symbole pełne. Określanie układu krystalograficznego, klasy krystalograficznej oraz operacji
Krystalochemia białek 2016/2017
Zestaw zadań 4. Grupy punktowe. Składanie elementów symetrii. Translacyjne elementy symetrii grupy punktowe, składanie elementów symetrii, translacyjne elementy symetrii: osie śrubowe, płaszczyzny ślizgowe
WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ
ĆWICZEIE 8 WYZACZAIE DŁUGOŚCI FALI ŚWIETLEJ ZA POMOCĄ SIATKI DYFRAKCYJEJ Opis teoretyczny do ćwiczenia zamieszczony jest na stronie www.wtc.wat.edu.pl w dziale DYDAKTYKA FIZYKA ĆWICZEIA LABORATORYJE. Opis
ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne
ĆWICZENIE 4 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO Wprowadzenie teoretyczne Rys. Promień przechodzący przez pryzmat ulega dwukrotnemu załamaniu na jego powierzchniach bocznych i odchyleniu o kąt δ. Jeżeli
Wykład 17: Optyka falowa cz.1.
Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza
S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach. Dyfrakcja na kryształach
S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach Dyfrakcja na kryształach Warunki dyfrakcji źródło: Ch. Kittel Wstęp do fizyki..., rozdz. 2, rys. 6, str. 49 Konstrukcja Ewalda
KRYSTALOGRAFIA Studia pierwszego stopnia, stacjonarne II rok
Akademia Górniczo-Hutnicza Wydział Odlewnictwa Katedra Inżynierii Stopów i Kompozytów Odlewanych Nr ćwiczenia: 1 Opracowała Temat: Cel ćwiczenia: Zakres wymaganego materiału Przebieg ćwiczenia Materiały
Metody dyfrakcyjne do wyznaczania struktury krystalicznej materiałów
Metody dyfrakcyjne do wyznaczania struktury krystalicznej materiałów prowadzący : dr inŝ. Marcin Małys (malys@mech.pw.edu.pl) dr inŝ. Wojciech Wróbel (wrobel@mech.pw.edu.pl) gdzie nas szykać: pok. 333
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Otrzymywanie promieni rentgenowskich. 2. Budowa lampy rentgenowskiej. 3. Własności
Ćwiczenie 53. Soczewki
Ćwiczenie 53. Soczewki Małgorzata Nowina-Konopka, Andrzej Zięba Cel ćwiczenia Pomiar ogniskowych soczewki skupiającej i układu soczewek (skupiająca i rozpraszająca), obliczenie ogniskowej soczewki rozpraszającej.
Konwersatorium z chemii ciała stałego Specjalność: chemia budowlana ZESTAW 3. Symetria makro- i mikroskopowa
Konwersatorium z chemii ciała stałego Specjalność: chemia budowlana ZESTAW 3 Symetria makro- i mikroskopowa Kombinacje elementów symetrii; grupy punktowe i grupy przestrzenne projekcje cyklograficzne grup
3. Operacje symetrii, macierze operacji symetrii. Grupy punktowe. Przypisywanie grupy punktowej dla zadanych obiektów
3. Operacje symetrii, macierze operacji symetrii. Grupy punktowe. Przypisywanie grupy punktowej dla zadanych obiektów Opracowanie: dr hab. inż. Jarosław Chojnacki, Politechnika Gdańska, Gdańsk 207 Każda
WYZNACZANIE GRUPY DYFRAKCYJNEJ KRYSZTAŁU Z WYKORZYSTANIEM KAMERY CCD. Instrukcja do ćwiczeń
WYZNACZANIE GRUPY DYFRAKCYJNEJ KRYSZTAŁU Z WYKORZYSTANIEM KAMERY CCD Instrukcja do ćwiczeń K. Ślepokura Zakład Krystalografii Wydział Chemii Uniwersytetu Wrocławskiego Wrocław, 2018 Wprowadzenie Proces
Elementy teorii powierzchni metali
Prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład dla studentów fizyki Rok akademicki 2017/18 (30 godz.) Wykład 1 Plan wykładu Struktura periodyczna kryształów, sieć odwrotna Struktura
Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography)
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography) 2 godz. Cel ćwiczenia: analiza
RENTGENOGRAFIA. Poziom przedmiotu Studia I stopnia niestacjonarne Liczba godzin/zjazd 1W e, 2L PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: Kierunek: Inżynieria materiałowa Rodzaj przedmiotu Kierunkowy obowiązkowy Rodzaj zajęć Wykład, laboratorium RENTGENOGRAFIA Poziom przedmiotu Studia I stopnia niestacjonarne Liczba godzin/zjazd
Wykład 5 Otwarte i wtórne operacje symetrii
Wykład 5 Otwarte i wtórne operacje symetrii 1.Otwarty iloczyn operacji symetrii 2.Osie śrubowe i płaszczyzny poślizgu 3.Sieci Bravais a 4.Wtórne operacje symetrii Przekształecenia izometryczne Zamknięte
Kombinacje elementów symetrii. Klasy symetrii.
Uniwersytet Śląski Instytut Cheii Zakład Krystalografii Laboratoriu z Krystalografii Kobinacje eleentów syetrii. Klasy syetrii. 2 godz. Cel ćwiczenia: tworzenie kobinacji eleentów syetrii akroskopowej
WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ
ĆWICZENIE 8 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ. Wykaz przyrządów Transmisyjne siatki dyfrakcyjne (S) : typ A -0 linii na milimetr oraz typ B ; Laser lub inne źródło światła
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego
Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 6 Elektronowy mikroskop transmisyjny w badaniach struktury metali metodą elektronograficzną Cel ćwiczenia: Celem ćwiczenia jest zbadanie struktury
Materiałoznawstwo optyczne. KRYSZTAŁY Y cz. 2
Materiałoznawstwo optyczne KRYSZTAŁY Y cz. 2 Komórki elementarne Bravais Grupy translacyjne Bravais Układ Grupa translacyjna regularny P, I, F tetragonalny P, I rombowy P, C, I, F jednoskośny P, C, trójskośny
Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..
Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54
Ciała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami.
Ciała stałe Ciała krystaliczne Ciała amorficzne Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. r T = Kryształy rosną przez regularne powtarzanie się identycznych
L1 Pomiar naprężeń mikroskopowych w metalach i stopach z wykorzystaniem dyfrakcji rentgenowskiej
FIZYKA METALI - LABORATORIUM 1 Pomiar naprężeo mikroskopowych w metalach i stopach z wykorzystaniem dyfrakcji rentgenowskiej 1. CEL ĆWICZENIA Celem dwiczenia jest identyfikacja naprężeo mikroskopowych
S. Baran - Podstawy fizyki materii skondensowanej Struktura krystaliczna. Struktura krystaliczna
S. Baran - Podstawy fizyki materii skondensowanej Struktura krystaliczna Struktura krystaliczna Kwarc (SiO2) (źródło: Wikipedia) Piryt (FeS2) (źródło: Wikipedia) Halit/Sól kamienna (NaCl) (źródło: Wikipedia)
Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu
Oznaczenia A, B, 1, 2, I, II, punkty a, b, proste α, β, płaszczyzny π 1, π 2, rzutnie k kierunek rzutowania d(a,m) odległość punktu od prostej m(a,b) prosta przechodząca przez punkty A i B α(1,2,3) płaszczyzna
Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego.
Ćwiczenie 6 Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego. Interferometr Macha-Zehndera Interferometr Macha-Zehndera jest często wykorzystywany
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI
Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Otrzymywanie promieni rentgenowskich. 2. Budowa lampy rentgenowskiej. 3. Własności
20. Na poniŝszym rysunku zaznaczono bieg promienia świetlnego 1. Podaj konstrukcję wyznaczającą kierunek padania promienia 2 na soczewkę.
Optyka stosowana Załamanie światła. Soczewki 1. Współczynnik załamania światła dla wody wynosi n 1 = 1,33, a dla szkła n 2 = 1,5. Ile wynosi graniczny kąt padania dla promienia świetlnego przechodzącego
Fizyka fal cyrklem i linijką
FOTON 124, Wiosna 2014 23 Fizyka fal cyrklem i linijką Jerzy Ginter Wydział Fizyki UW Istotnym elementem nauki geometrii na poziomie elementarnym były zadania konstrukcyjne, w których problem rozwiązywało
BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA
BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA Celem ćwiczenia jest: 1. demonstracja dużej liczby prążków w interferometrze Lloyda z oświetleniem monochromatycznym,
Ćwiczenie nr 6. Zjawiska elektrooptyczne Sprawdzanie prawa Malusa, badanie komórki Pockelsa i Kerra
Ćwiczenie nr 6. Zjawiska elektrooptyczne Sprawdzanie prawa Malusa badanie komórki Pockelsa i Kerra Opracowanie: Ryszard Poprawski Katedra Fizyki Doświadczalnej Politechnika Wrocławska Wstęp Załamanie światła
Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego
Paweł Szroeder Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Wykład IX Rentgenografia strukturalna (XRD) Dyfrakcja sformułowanie Bragga Kryształ traktujemy jako układ równoodległych
Fizyka Ciała Stałego
Wykład III Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć krystaliczną. Amorficzne, brak uporządkowania,
STATYCZNA PRÓBA SKRĘCANIA
Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie STATYCZNA PRÓBA SKRĘCANIA Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Skręcanie pręta występuje w przypadku