Kombinacje elementów symetrii. Klasy symetrii.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Kombinacje elementów symetrii. Klasy symetrii."

Transkrypt

1 Uniwersytet Śląski Instytut Cheii Zakład Krystalografii Laboratoriu z Krystalografii Kobinacje eleentów syetrii. Klasy syetrii. 2 godz. Cel ćwiczenia: tworzenie kobinacji eleentów syetrii akroskopowej oraz przedstawienie projekcji cyklograficznych i stereograficznych grup punktowych. Pooce naukowe: odele koórek eleentarnych. Wstęp teoretyczny. Kobinacje eleentów syetrii akroskopowej W kryształach eleenty syetrii akroskopowej ogą występować pojedynczo (tylko jedna n-krotna oś syetrii, tylko jedna płaszczyzna itd.) oraz w różnych kobinacjach (zespołach). Udowodniono, że liczba dopuszczalnych kobinacji eleentów syetrii przechodzących przez środek geoetryczny kryształu i odtwarzających jego syetrię wynosi 22. W kryształach występują kobinacje: osi syetrii osi syetrii i osi syetrii inwersyjnych osi syetrii i środka syetrii Klasy syetrii są to różne, ożliwe w kryształach kobinacje (zespoły) akroskopowych eleentów syetrii przecinających się w jedny punkcie. Klasy syetrii nazywa się grupai punktowyi lub klasai krystalograficznyi. Sieciowa budowa kryształów powoduje, że liczba klas syetrii jest ograniczona, ożliwe są jedynie 32 grupy punktowe w ich skład wchodzą eleenty syetrii akroskopowej: pięć osi syetrii (1, 2, 3 4, 6) i pięć osi inwersyjnych ( 1,2,3,4, 6 ) oraz 22 dozwolone oryginalne kobinacje eleentów syetrii akroskopowej. Kolejność zapisu eleentów syetrii w grupach punktowych poszczególnych układów krystalograficznych została ustalona uownie. Zasady tworzenia iędzynarodowych syboli krystalograficznych klas syetrii zostały przedstawione w Tablicy 6. Układ trójskośny został poinięty ze względu na występowanie tylko osi foralnej 1 i środka syetrii 1.

2 Kobinacje osi syetrii Istnieje 6 dopuszczalnych trójek przecinających się osi właściwych: Tablica 1. Grupy osi syetrii i kąty iędzy poszczególnyi osiai Lp. Układ krystalograficzny X Y Z X^Y X^Z Y^Z 1 robowy trygonalny tetragonalny heksagonalny regularny regularny Kobinacje osi syetrii i osi inwersyjnych Dopuszczalne kobinacje osi syetrii właściwych z osiai inwersyjnyi otrzyuje się przez zaianę dwóch parzystokrotnych osi syetrii na osie inwersyjne. W rezultacie otrzyujey 7 nowych kobinacji eleentów syetrii. Tablica 2. Grupy eleentów syetrii powstałe z kobinacji osi syetrii i osi inwersyjnych Lp. Układ krystalograficzny Kobinacje osi syetrii Kobinacje osi syetrii i osi inwersyjnych 1 robowy ( 2 2 2) 2 trygonalny 32 3 (3 2 ) 3 tetragonalny (4 2 2 ) 4 tetragonalny ( ) 5 heksagonalny (6 2 2 ) 6 heksagonalny ( 6 2 2) 7 regularny ( )

3 Kobinacje osi syetrii i środka syetrii I. Jeżeli środek syetrii leży na osiach parzystokrotnych, to przez ten środek syetrii uszą przechodzić również płaszczyzny syetrii prostopadłe do tych osi. Tablica 3. Kobinacje parzystokrotnych osi syetrii i środka syetrii Lp. Układ krystalograficzny Oś syetrii Kobinacje parzystokrotnych osi syetrii i środka syetrii 1 jednoskośny tetragonalny heksagonalny 6 6 II. Jeżeli środek syetrii leży na osiach nieparzystokrotnych, to osie te staną się osiai inwersyjnyi. W tej kobinacji nie uzyskuje się oryginalnych zespołów eleentów syetrii. Tablica 4. Kobinacje nieparzystokrotnych osi syetrii i środka syetrii Lp. Układ krystalograficzny Oś syetrii Kobinacje nieparzystokrotnych osi syetrii i środka syetrii 1 trójskośny trygonalny 3 3 III. Jeżeli środek syetrii doda się do punktu przecięcia osi syetrii w dozwolonych kobinacjach trójek osi, to w stosunku do osi parzystokrotnych usi wystąpić prostopadła płaszczyzna syetrii, osie 3 staną się osiai inwersyjnyi. Tablica 5. Kobinacje zespołu osi syetrii i środka syetrii Lp. Układ krystalograficzny Kobinacje osi syetrii Kobinacje zespołu osi syetrii i środka syetrii 1 robowy () * 2 trygonalny ( 3) 3 tetragonalny heksagonalny regularny regularny ( ) ( ) (3) 2 3 (3) * W nawiasach podano skrócone sybole grup punktowych!

4 Tablica 6. Zasady tworzenia iędzynarodowych syboli krystalograficznych klas syetrii Układ krystalograficzny Grupa punktowa Jednoskośny 2 2/ Robowy /2/2/ Pozycja w sybolu do osi Y do osi Y 2 i do osi Y 2 do osi X 2 do osi Y 2 do osi Z do osi X do osi Y 2 do osi Z 2 i do osi X 2 i do osi Y 2 i do osi Z Tetragonalny 4 4 do osi Z 4 4 do osi Z 4/ i do osi Z 4 do osi Z dwie osie 2 do osi X, Y dwie osie 2 do <110> 4 4 do osi Z dwie do osi X, Y dwie do <110> do osi Z dwie osie 2 do osi X, Y dwie do <110> 4/2/2/ 4 i do osi Z dwie osie 2 i dwie do osi X, Y dwie osie 2 i dwie do <110> Heksagonalny 6 6 6/ i do osi Z trzy 2 do osi X, Y,U trzy osie 2 do <110> 6 trzy do osi X, Y, U trzy do <110> 62 trzy do osi X, Y, U trzy osie 2 do <110> 6/2/2/ 6 i do osi Z trzy osie 2 i trzy do osi X, Y, U trzy osie 2 i trzy do <110> Trygonalny trzy 2 do osi X, Y,U 3 trzy do osi X, Y, U 3 2/ trzy osie 2 i trzy do osi X, Y, U Regularny 432 trzy osie 4 do osi X, Y, Z sześć osi 2 do <110> 43 trzy osie 4 do osi X, Y, Z sześć do <110> 4/ 3 2/ trzy osie 4 i trzy do sześć osi 2 i sześć osi X, Y, Z do <110> 23 trzy osie 2 do osi X, Y, Z 2/ 3 trzy osie 2 i trzy do do osi X, Y, Z

5 Wykonanie ćwiczenia: Zadanie 1 Pod każdy z podanych rysunków wpisz odpowiedni sybol grupy punktowej

6 Zadanie 2 Podaj, co oznaczają poszczególne pozycje w sybolach następujących grup punktowych: ; ; 2; 6 2; 2/ 3 ; 3 Zadanie 3 Przy każdy podany sybolu grupy punktowej wpisz właściwy układ krystalograficzny: a) 222 b) 3 c) 23 d) 432 e) 422 f) 6 g) 1 h) 2/ Zadanie 4 Przedstawionej poniżej kobinacji eleentów syetrii przyporządkuj projekcję cyklograficzną

7 Zadanie 5 Podaj sybol iędzynarodowy grupy punktowej, której eleenty syetrii przedstawione zostały na poniższej projekcji. Zadanie 6 Która z projekcji odpowiada przedstawionej kobinacji eleentów syetrii

8 Zadanie 7 Na rysunku poniżej przedstawiono piraidę i bipiraidę tetragonalną. Określić eleenty syetrii poszczególnych figur geoetrycznych i na tej podstawie podać grupę punktową oraz narysować jej projekcję. Literatura 1. Z.Trzaska-Durski, H.Trzaska-Durska, Podstawy krystalografii strukturalnej irentgenowskiej, PWN Warszawa Z.Trzaska-Durski i H.Trzaska-Durska, Podstawy krystalografii, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa Z.Bojarski, M.Gigla, K.Stróż, M.Surowiec, Krystalografia, PWN, Warszawa Z.Kosturkiewicz, Metody krystalografii, Wydawnictwo Naukowe UAM, Poznań Z.Bojarski, H.Habla i M.Surowiec, Materiały do nauki krystalografii, PWN, Warszawa M. Van Meerssche i J.Feneau-Dupont, Krystalografia i cheia strukturalna, PWN, Warszawa 1984.

Kombinacje elementów symetrii. Klasy symetrii.

Kombinacje elementów symetrii. Klasy symetrii. Uniwersytet Śląski Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. 0323591503, e-mail: izajen@wp.pl, opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography)

Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography) Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography) 2 godz. Cel ćwiczenia: analiza

Bardziej szczegółowo

Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography)

Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography) Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography) 2 godz. Cel ćwiczenia: analiza

Bardziej szczegółowo

Elementy symetrii makroskopowej.

Elementy symetrii makroskopowej. Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii Elementy symetrii makroskopowej. 2 godz. Cel ćwiczenia: zapoznanie się z działaniem elementów symetrii makroskopowej

Bardziej szczegółowo

Układy krystalograficzne

Układy krystalograficzne Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Układy krystalograficzne Cel ćwiczenia: kształtowanie umiejętności wyboru komórki elementarnej i przyporządkowywania

Bardziej szczegółowo

Uniwersytet Śląski Instytut Chemii Zakład Krystalografii. Laboratorium z Krystalografii. 2 godz. Komórki Bravais go

Uniwersytet Śląski Instytut Chemii Zakład Krystalografii. Laboratorium z Krystalografii. 2 godz. Komórki Bravais go Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Komórki Bravais go Cel ćwiczenia: kształtowanie umiejętności: przyporządkowywania komórek translacyjnych Bravais

Bardziej szczegółowo

Układ regularny. Układ regularny. Możliwe elementy symetrii: Możliwe elementy symetrii: 3 osie 3- krotne. m płaszczyzny przekątne.

Układ regularny. Układ regularny. Możliwe elementy symetrii: Możliwe elementy symetrii: 3 osie 3- krotne. m płaszczyzny przekątne. Układ regularny Możliwe elementy symetrii: 3 osie 3- krotne m płaszczyzny równoległe do ścian m płaszczyzny przekątne 4 osie 4- krotne 2 osie 2- krotne Układ regularny Możliwe elementy symetrii: 3 osie

Bardziej szczegółowo

Rodzina i pas płaszczyzn sieciowych

Rodzina i pas płaszczyzn sieciowych Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Rodzina i pas płaszczyzn sieciowych Cel ćwiczenia: kształtowanie umiejętności posługiwania się modelami komórek

Bardziej szczegółowo

Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography)

Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography) Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography) 2 godz. Cel ćwiczenia: analiza

Bardziej szczegółowo

Uniwersytet Śląski w Katowicach str. 1 Wydział

Uniwersytet Śląski w Katowicach str. 1 Wydział Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, pierwszy Sylabus modułu: Krystalografia (016) Nazwa wariantu modułu (opcjonalnie): _wariantu ( wariantu) 1. Informacje ogólne koordynator

Bardziej szczegółowo

Konwersatorium z chemii ciała stałego Specjalność: chemia budowlana ZESTAW 3. Symetria makro- i mikroskopowa

Konwersatorium z chemii ciała stałego Specjalność: chemia budowlana ZESTAW 3. Symetria makro- i mikroskopowa Konwersatorium z chemii ciała stałego Specjalność: chemia budowlana ZESTAW 3 Symetria makro- i mikroskopowa Kombinacje elementów symetrii; grupy punktowe i grupy przestrzenne projekcje cyklograficzne grup

Bardziej szczegółowo

Wykład 1. Symetria Budowy Kryształów

Wykład 1. Symetria Budowy Kryształów Wykład Symetria Budowy Kryształów Ciała krystaliczne i amorficzne Każda substancja ciekła (z wyjątkiem helu) podczas oziębiania traci swoje własności ciekłe i przechodzi w ciało stałe. Jednakże proces

Bardziej szczegółowo

BUDOWA KRYSTALICZNA CIAŁ STAŁYCH. Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale

BUDOWA KRYSTALICZNA CIAŁ STAŁYCH. Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale BUDOWA KRYSTALICZNA CIAŁ STAŁYCH Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale na: kryształy ciała o okresowym regularnym uporządkowaniu atomów, cząsteczek w całej swojej

Bardziej szczegółowo

Wykład 5. Komórka elementarna. Sieci Bravais go

Wykład 5. Komórka elementarna. Sieci Bravais go Wykład 5 Komórka elementarna Sieci Bravais go Doskonały kryształ składa się z atomów jonów, cząsteczek) uporządkowanych w sieci krystalicznej opisanej przez trzy podstawowe wektory translacji a, b, c,

Bardziej szczegółowo

Rozwiązanie: Zadanie 2

Rozwiązanie: Zadanie 2 Podstawowe pojęcia. Definicja kryształu. Sieć przestrzenna i sieć krystaliczna. Osie krystalograficzne i jednostki osiowe. Ściana jednostkowa i stosunek osiowy. Położenie węzłów, prostych i płaszczyzn

Bardziej szczegółowo

KRYSTALOGRAFIA Crystallography. Poziom przedmiotu Studia I stopnia Liczba godzin/tydzień 2W, 1Ćw PRZEWODNIK PO PRZEDMIOCIE

KRYSTALOGRAFIA Crystallography. Poziom przedmiotu Studia I stopnia Liczba godzin/tydzień 2W, 1Ćw PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Inżynieria Materiałowa Rodzaj przedmiotu Kierunkowy do wyboru Rodzaj zajęć Wykład, ćwiczenia KRYSTALOGRAFIA Crystallography Poziom przedmiotu Studia I stopnia Liczba godzin/tydzień

Bardziej szczegółowo

Grupy przestrzenne i ich symbolika

Grupy przestrzenne i ich symbolika Grupy przestrzenne i ich symbolika Po co mi (chemikowi) znajomość symboli grup przestrzennych? Informacje zawarte w symbolu układ krystalograficzny obecność operacji symetrii punktowej (spektroskopia)

Bardziej szczegółowo

Podstawy krystalochemii pierwiastki

Podstawy krystalochemii pierwiastki Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii Podstawy krystalochemii pierwiastki Cel ćwiczenia: określenie pełnej charakterystyki wybranych struktur pierwiastków

Bardziej szczegółowo

STRUKTURA MATERIAŁÓW

STRUKTURA MATERIAŁÓW STRUKTURA MATERIAŁÓW ELEMENTY STRUKTURY MATERIAŁÓW 1. Wiązania miedzy atomami 2. Układ atomów w przestrzeni 3. Mikrostruktura 4. Makrostruktura 1. WIĄZANIA MIĘDZY ATOMAMI Siły oddziaływania między atomami

Bardziej szczegółowo

3. Operacje symetrii, macierze operacji symetrii. Grupy punktowe. Przypisywanie grupy punktowej dla zadanych obiektów

3. Operacje symetrii, macierze operacji symetrii. Grupy punktowe. Przypisywanie grupy punktowej dla zadanych obiektów 3. Operacje symetrii, macierze operacji symetrii. Grupy punktowe. Przypisywanie grupy punktowej dla zadanych obiektów Opracowanie: dr hab. inż. Jarosław Chojnacki, Politechnika Gdańska, Gdańsk 207 Każda

Bardziej szczegółowo

Położenia, kierunki, płaszczyzny

Położenia, kierunki, płaszczyzny Położenia, kierunki, płaszczyzny Dalsze pojęcia Osie krystalograficzne; Parametry komórki elementarnej; Wskaźniki punktów kierunków i płaszczyzn; Osie krystalograficzne Osie krystalograficzne: układ osi

Bardziej szczegółowo

Podstawowe pojęcia opisujące sieć przestrzenną

Podstawowe pojęcia opisujące sieć przestrzenną Uniwersytet Śląski Instytut Chemii akład Krystalografii Laboratorium z Krystalografii 2 godz. Podstawowe pojęcia opisujące sieć przestrzenną Cel ćwiczenia: kształtowanie umiejętności posługiwania się modelami

Bardziej szczegółowo

ROZDZIAŁ I. Symetria budowy kryształów

ROZDZIAŁ I. Symetria budowy kryształów ROZDZIAŁ I Symetria budowy kryształów I Ciała krystaliczne i amorficzne Każda substancja ciekła z wyjątkiem helu) podczas oziębiania traci swoje własności ciekłe i przechodzi w ciało stałe Jednakże proces

Bardziej szczegółowo

KRYSTALOGRAFIA Studia pierwszego stopnia, stacjonarne II rok

KRYSTALOGRAFIA Studia pierwszego stopnia, stacjonarne II rok Akademia Górniczo-Hutnicza Wydział Odlewnictwa Katedra Inżynierii Stopów i Kompozytów Odlewanych Nr ćwiczenia: 1 Opracowała Temat: Cel ćwiczenia: Zakres wymaganego materiału Przebieg ćwiczenia Materiały

Bardziej szczegółowo

Laboratorium z Krystalografii. 2 godz.

Laboratorium z Krystalografii. 2 godz. Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40-006 Katowice tel. 0323591627, e-mail: ewa.malicka@us.edu.pl opracowanie: dr Ewa Malicka Laboratorium z Krystalografii

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali Prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład dla studentów fizyki Rok akademicki 2017/18 (30 godz.) Wykład 1 Plan wykładu Struktura periodyczna kryształów, sieć odwrotna Struktura

Bardziej szczegółowo

Zastosowanie teorii grup. Grupy symetrii w fizyce i chemii.

Zastosowanie teorii grup. Grupy symetrii w fizyce i chemii. Zastosowanie teorii grup Grupy symetrii w fizyce i chemii Katarzyna Kolonko Streszczenie Usystematyzowanie grup punktowych, omówienie ich na przykładzie molekuł Przedstawienie wkładu teorii grup w badanie

Bardziej szczegółowo

Krystalografia i krystalochemia Wykład 15 Repetytorium

Krystalografia i krystalochemia Wykład 15 Repetytorium Krystalografia i krystalochemia Wykład 15 Repetytorium 1. Czym zajmuje się krystalografia i krystalochemia? 2. Podsumowanie wiadomości z krystalografii geometrycznej. 3. Symbolika Kreutza-Zaremby oraz

Bardziej szczegółowo

Opracowanie: mgr inż. Antoni Konitz, dr hab inż. Jarosław Chojnacki Politechnika Gdańska, Gdańsk 2007, 2016

Opracowanie: mgr inż. Antoni Konitz, dr hab inż. Jarosław Chojnacki Politechnika Gdańska, Gdańsk 2007, 2016 4. Stosowanie międzynarodowych symboli grup przestrzennych. Zamiana skróconych symboli Hermanna - Mauguina na symbole pełne. Określanie układu krystalograficznego, klasy krystalograficznej oraz operacji

Bardziej szczegółowo

Fizyka Ciała Stałego

Fizyka Ciała Stałego Wykład III Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć krystaliczną. Amorficzne, brak uporządkowania,

Bardziej szczegółowo

Aby opisać strukturę krystaliczną, konieczne jest określenie jej części składowych: sieci przestrzennej oraz bazy atomowej.

Aby opisać strukturę krystaliczną, konieczne jest określenie jej części składowych: sieci przestrzennej oraz bazy atomowej. 2. Podstawy krystalografii Podczas naszych zajęć skupimy się przede wszystkim na strukturach krystalicznych. Kryształem nazywamy (def. strukturalna) substancję stałą zbudowaną z atomów, jonów lub cząsteczek

Bardziej szczegółowo

STRUKTURA CIAŁA STAŁEGO

STRUKTURA CIAŁA STAŁEGO STRUKTURA CIAŁA STAŁEGO Podział ciał stałych Ciała - bezpostaciowe (amorficzne) Szkła, żywice, tłuszcze, niektóre proszki. Nie wykazują żadnych regularnych płaszczyzn ograniczających, nie można w nich

Bardziej szczegółowo

STRUKTURA IDEALNYCH KRYSZTAŁÓW

STRUKTURA IDEALNYCH KRYSZTAŁÓW BUDOWA WEWNĘTRZNA MATERIAŁÓW METALICZNYCH Zakres tematyczny y 1 STRUKTURA IDEALNYCH KRYSZTAŁÓW 2 1 Sieć przestrzenna kryształu TRANSLACJA WĘZŁA TRANSLACJA PROSTEJ SIECIOWEJ TRANSLACJA PŁASZCZYZNY SIECIOWEJ

Bardziej szczegółowo

STRUKTURA KRYSTALICZNA

STRUKTURA KRYSTALICZNA PODSTAWY KRYSTALOGRAFII Struktura krystaliczna Wektory translacji sieci Komórka elementarna Komórka elementarna Wignera-Seitza Jednostkowy element struktury Sieci Bravais go 2D Sieci przestrzenne Bravais

Bardziej szczegółowo

RENTGENOGRAFIA. Poziom przedmiotu Studia I stopnia niestacjonarne Liczba godzin/zjazd 1W e, 2L PRZEWODNIK PO PRZEDMIOCIE

RENTGENOGRAFIA. Poziom przedmiotu Studia I stopnia niestacjonarne Liczba godzin/zjazd 1W e, 2L PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Inżynieria materiałowa Rodzaj przedmiotu Kierunkowy obowiązkowy Rodzaj zajęć Wykład, laboratorium RENTGENOGRAFIA Poziom przedmiotu Studia I stopnia niestacjonarne Liczba godzin/zjazd

Bardziej szczegółowo

Metody badań monokryształów metoda Lauego

Metody badań monokryształów metoda Lauego Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40 006 Katowice, Tel. 0323591627 e-mail: joanna_palion@poczta.fm opracowanie: mgr Joanna Palion Gazda Laboratorium z Krystalografii

Bardziej szczegółowo

Prosta i płaszczyzna w przestrzeni

Prosta i płaszczyzna w przestrzeni Prosta i płaszczyzna w przestrzeni Wybrane wzory i informacje Równanie prostej przechodzącej przez punkt P 0 = (x 0, y 0, z 0 ) o wektorze wodzącym r 0 i równoległej do wektora v = [a, b, c] : postać parametrycznego

Bardziej szczegółowo

Krystalochemia białek 2016/2017

Krystalochemia białek 2016/2017 Zestaw zadań 4. Grupy punktowe. Składanie elementów symetrii. Translacyjne elementy symetrii grupy punktowe, składanie elementów symetrii, translacyjne elementy symetrii: osie śrubowe, płaszczyzny ślizgowe

Bardziej szczegółowo

Projekcje (rzuty) Sferyczna, stereograficzna, cyklograficzna,...

Projekcje (rzuty) Sferyczna, stereograficzna, cyklograficzna,... Projekcje (rzuty) Sferyczna, stereograficzna, cyklograficzna,... Rzut sferyczny (projekcja sferyczna) Kryształ zastępuje się zespołem płaszczyzn i prostych równoległych do odpowiadających im płaszczyzn

Bardziej szczegółowo

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne.

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne. Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Strukturalne element smetrii. Krstalograficne grup prestrenne. god. Cel ćwicenia: aponanie się diałaniem elementów smetrii

Bardziej szczegółowo

S 2, C 2h,D 2h,D 3d,D 4h, D 6h, O h

S 2, C 2h,D 2h,D 3d,D 4h, D 6h, O h Są tylko 32 grupy punktowe, które spełniają ten warunek, Można je pogrupować w 7 typów grup (spośród omówionych 12- tu), które spełniają powyższe własności S 2, C 2h,D 2h,D 3d,D 4h, D 6h, O h nazywają

Bardziej szczegółowo

Ćwiczenia nr 4. TEMATYKA: Rzutowanie

Ćwiczenia nr 4. TEMATYKA: Rzutowanie TEMATYKA: Rzutowanie Ćwiczenia nr 4 DEFINICJE: Rzut na prostą: rzutem na prostą l (zwaną rzutnią) w kierunku rzutowania k (k l) nazywamy przekształcenie płaszczyzny przyporządkowujące: a) Punktom prostej

Bardziej szczegółowo

Uniwersytet Śląski w Katowicach str. 1 Wydział

Uniwersytet Śląski w Katowicach str. 1 Wydział Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, drugi Sylabus modułu: Krystalografia (024) Nazwa wariantu modułu (opcjonalnie): _wariantu ( wariantu) 1. Informacje ogólne koordynator

Bardziej szczegółowo

Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu

Co należy zauważyć Rzuty punktu leżą na jednej prostej do osi rzutów x 12, którą nazywamy prostą odnoszącą Wysokość punktu jest odległością rzutu Oznaczenia A, B, 1, 2, I, II, punkty a, b, proste α, β, płaszczyzny π 1, π 2, rzutnie k kierunek rzutowania d(a,m) odległość punktu od prostej m(a,b) prosta przechodząca przez punkty A i B α(1,2,3) płaszczyzna

Bardziej szczegółowo

MATERIA. = m i liczby całkowite. ciała stałe. - kryształy - ciała bezpostaciowe (amorficzne) - ciecze KRYSZTAŁY. Periodyczność

MATERIA. = m i liczby całkowite. ciała stałe. - kryształy - ciała bezpostaciowe (amorficzne) - ciecze KRYSZTAŁY. Periodyczność MATERIA ciała stałe - kryształy - ciała bezpostaciowe (amorficzne) - ciecze - gazy KRYSZTAŁY Periodyczność Kryształ (idealny) struktura zbudowana z powtarzających się w przestrzeni periodycznie identycznych

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 2 v.16 Sieci płaskie i struktura powierzchni 1 Typy sieci dwuwymiarowych (płaskich) Przecinając monokryształ wzdłuż jednej z płaszczyzn

Bardziej szczegółowo

Prof. nzw. dr hab. Jarosław Mizera & dr inż. Joanna Zdunek

Prof. nzw. dr hab. Jarosław Mizera & dr inż. Joanna Zdunek Prof. nzw. dr hab. Jarosław Mizera & dr inż. Joanna Zdunek Krystalografia to nauka zajmująca się opisem i badaniem periodycznej budowy wewnętrznej materiałów krystalicznych oraz ich klasyfikacją. Plan

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: JFT s Punkty ECTS: 4. Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Rok akademicki: 2013/2014 Kod: JFT s Punkty ECTS: 4. Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Nazwa modułu: Struktury i symetrie ciała stałego Rok akademicki: 2013/2014 Kod: JFT-2-011-s Punkty ECTS: 4 Wydział: Fizyki i Informatyki Stosowanej Kierunek: Fizyka Techniczna Specjalność: Poziom studiów:

Bardziej szczegółowo

Budowa ciał stałych. sieć krystaliczna układy krystalograficzne sieć realna defekty wiązania w ciałach stałych

Budowa ciał stałych. sieć krystaliczna układy krystalograficzne sieć realna defekty wiązania w ciałach stałych Budowa ciał stałych sieć krystaliczna układy krystalograficzne sieć realna defekty wiązania w ciałach stałych Ciała stałe to substancje o regularnej, przestrzennej budowie krystalicznej, czyli regularnym

Bardziej szczegółowo

Krystalografia. Symetria a właściwości fizyczne kryształów

Krystalografia. Symetria a właściwości fizyczne kryształów Krystalografia Symetria a właściwości fizyczne kryształów Właściwości fizyczne kryształów a ich symetria Grupy graniczne Piroelektryczność Piezoelektryczność Właściwości optyczne kryształów Właściwości

Bardziej szczegółowo

1. Elementy (abstrakcyjnej) teorii grup

1. Elementy (abstrakcyjnej) teorii grup 1. Elementy (abstrakcyjnej) teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3 є G - (g 1

Bardziej szczegółowo

WIDOKI I PRZEKROJE PRZEDMIOTÓW LINIE PRZENIKANIA BRYŁ

WIDOKI I PRZEKROJE PRZEDMIOTÓW LINIE PRZENIKANIA BRYŁ Zapis i Podstawy Konstrukcji Widoki i przekroje przedmiotów 1 WIDOKI I PRZEKROJE PRZEDMIOTÓW LINIE PRZENIKANIA BRYŁ Rzutami przedmiotów mogą być zarówno widoki przestawiające zewnętrzne kształty przedmiotów

Bardziej szczegółowo

Właściwości optyczne kryształów

Właściwości optyczne kryształów Właściwości optyczne kryształów -ośrodki jedno- (n x =n y n z ) lub dwuosiowe (n x n y n z n x ) - oś optyczna : w tym kierunku rozchodzą się dwie takie same fale (z tą samą prędkością); w ośrodkach jednoosiowych

Bardziej szczegółowo

STRUKTURA MATERIAŁÓW. Opracowanie: Dr hab.inż. Joanna Hucińska

STRUKTURA MATERIAŁÓW. Opracowanie: Dr hab.inż. Joanna Hucińska STRUKTURA MATERIAŁÓW Opracowanie: Dr hab.inż. Joanna Hucińska ELEMENTY STRUKTURY MATERIAŁÓW 1. Wiązania miedzy atomami 2. Układ atomów w przestrzeni 3. Mikrostruktura 4. Makrostruktura 1. WIĄZANIA MIĘDZY

Bardziej szczegółowo

Materiałoznawstwo optyczne. KRYSZTAŁY Y cz. 2

Materiałoznawstwo optyczne. KRYSZTAŁY Y cz. 2 Materiałoznawstwo optyczne KRYSZTAŁY Y cz. 2 Komórki elementarne Bravais Grupy translacyjne Bravais Układ Grupa translacyjna regularny P, I, F tetragonalny P, I rombowy P, C, I, F jednoskośny P, C, trójskośny

Bardziej szczegółowo

Symetria w fizyce materii

Symetria w fizyce materii Symetria w fizyce materii - Przekształcenia symetrii w dwóch i trzech wymiarach - Wprowadzenie w teorię grup; grupy symetrii - Wprowadzenie w teorię reprezentacji grup - Teoria grup a mechanika kwantowa

Bardziej szczegółowo

Właściwości kryształów

Właściwości kryształów Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne

Bardziej szczegółowo

Elementy symetrii makroskopowej w ujęciu macierzowym.

Elementy symetrii makroskopowej w ujęciu macierzowym. Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Element smetrii makroskopowej w ujęciu macierowm. 2 god. Cel ćwicenia: tworenie macier smetrii elementów smetrii makroskopowej

Bardziej szczegółowo

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna Wykład II Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Amorficzne, brak uporządkowania, np. szkła; Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć

Bardziej szczegółowo

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna

Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna Wykład II Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Amorficzne, brak uporządkowania, np. szkła; Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć

Bardziej szczegółowo

ĆWICZENIE Nr 27. Laboratorium Inżynierii Materiałowej. Akceptował: Kierownik Katedry prof. dr hab. B. Surowska. Opracował: dr inż. S.

ĆWICZENIE Nr 27. Laboratorium Inżynierii Materiałowej. Akceptował: Kierownik Katedry prof. dr hab. B. Surowska. Opracował: dr inż. S. POLITECHNIKA LUBELSKA WYDZIAŁ MECHANICZNY KATEDRA INŻYNIERII MATERIAŁOWEJ Akceptował: Kierownik Katedry prof. dr hab. B. Surowska Laboratorium Inżynierii Materiałowej ĆWICZENIE Nr 27 Opracował: dr inż.

Bardziej szczegółowo

Nazwa przedmiotu BAZY DANYCH I METODY KOMPUTEROWE W KRYSTALOGRAFII Databases and Computer Methods in Crystallography

Nazwa przedmiotu BAZY DANYCH I METODY KOMPUTEROWE W KRYSTALOGRAFII Databases and Computer Methods in Crystallography Nazwa przedmiotu BAZY DANYCH I METODY KOMPUTEROWE W KRYSTALOGRAFII Databases and Computer Methods in Crystallography Kierunek: Inżynieria materiałowa Rodzaj przedmiotu: Kierunkowy do wyboru Rodzaj zajęć:

Bardziej szczegółowo

Rok akademicki: 2018/2019 Kod: MIM s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne

Rok akademicki: 2018/2019 Kod: MIM s Punkty ECTS: 5. Poziom studiów: Studia I stopnia Forma i tryb studiów: Stacjonarne Nazwa modułu: Podstawy krystalografii Rok akademicki: 2018/2019 Kod: MIM-1-102-s Punkty ECTS: 5 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Inżynieria Materiałowa Specjalność: Poziom

Bardziej szczegółowo

Wykład II Sieć krystaliczna

Wykład II Sieć krystaliczna Wykład II Sieć krystaliczna Podstawowe definicje Wiele z pośród ciał stałych ma budowę krystaliczną. To znaczy, Ŝe atomy z których się składają ułoŝone są w określonym porządku. Porządek ten daje się stosunkowo

Bardziej szczegółowo

MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska

MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I dr inż. Hanna Smoleńska Struktura materiałów UKŁAD ATOMÓW W PRZESTRZENI CIAŁA KRYSTALICZNE Układ atomów/cząstek (a/cz) w przestrzeni jest statystyczne

Bardziej szczegółowo

RYSUNEK TECHNICZNY BUDOWLANY RZUTOWANIE AKSONOMETRYCZNE

RYSUNEK TECHNICZNY BUDOWLANY RZUTOWANIE AKSONOMETRYCZNE RYSUNEK TECHNICZNY BUDOWLANY RZUTOWANIE AKSONOMETRYCZNE MOJE DANE dr inż. Sebastian Olesiak Katedra Geomechaniki, Budownictwa i Geotechniki Pokój 309, pawilon A-1 (poddasze) e-mail: olesiak@agh.edu.pl

Bardziej szczegółowo

W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ

W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ POLITECHNIKA BIAŁOSTOCKA Wydział Budownictwa i Inżynierii Środowiska Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: POWIERZCHNIA SWOBODNA CIECZY W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ Ćwiczenie

Bardziej szczegółowo

TENSOMETRIA ZARYS TEORETYCZNY

TENSOMETRIA ZARYS TEORETYCZNY TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej badanej konstrukcji. Aby wyznaczyć stan naprężenia trzeba

Bardziej szczegółowo

PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A

PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A PYTANIA KONTROLNE STAN NAPRĘŻENIA, ODKSZTAŁCENIA PRAWO HOOKE A TENSOMETRIA ZARYS TEORETYCZNY Stan naprężenia jest niemożliwy do pomiaru, natomiast łatwo zmierzyć stan odkształcenia na powierzchni zewnętrznej

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem

Bardziej szczegółowo

Bezpośredni opiekunowie laboratorium: Prof. dr hab. Marek Szafrański. Prof. dr hab. Maciej Kozak, dr Marceli Kaczmarski.

Bezpośredni opiekunowie laboratorium: Prof. dr hab. Marek Szafrański. Prof. dr hab. Maciej Kozak, dr Marceli Kaczmarski. Bezpośredni opiekunowie laboratorium: Prof. dr hab. Marek Szafrański Prof. dr hab. Maciej Kozak, dr Marceli Kaczmarski. Ćwiczenia w tym laboratorium polegają na analizie obrazu dyfrakcyjnego promieni rentgenowskich.

Bardziej szczegółowo

Kierunek i poziom studiów: Chemia budowlana, II stopień Sylabus modułu: Chemia ciała stałego 0310-CH-S2-B-065

Kierunek i poziom studiów: Chemia budowlana, II stopień Sylabus modułu: Chemia ciała stałego 0310-CH-S2-B-065 Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia budowlana, II stopień Sylabus modułu: Chemia ciała stałego 065 1. Informacje ogólne koordynator modułu rok akademicki 2014/2015

Bardziej szczegółowo

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2). 1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego

Bardziej szczegółowo

Zestaw Obliczyć objętość równoległościanu zbudowanego na wektorach m, n, p jeśli wiadomo, że objętość równoległościanu zbudowanego na wektorach:

Zestaw Obliczyć objętość równoległościanu zbudowanego na wektorach m, n, p jeśli wiadomo, że objętość równoległościanu zbudowanego na wektorach: Zestaw 9. Wykazać, że objętość równoległościanu zbudowanego na przekątnych ścian danego równoległościanu jest dwa razy większa od objętości równoległościanu danego.. Obliczyć objętość równoległościanu

Bardziej szczegółowo

Materiałoznawstwo optyczne KRYSZTAŁY

Materiałoznawstwo optyczne KRYSZTAŁY Materiałoznawstwo optyczne KRYSZTAŁY Kryształy kryształ: ciało o prawidłowej budowie wewnętrznej, fizycznie i chemicznie jednorodne, anizotropowe, mające wszystkie wektorowe własności fizyczne jednakowe

Bardziej szczegółowo

NOWA STRONA INTERNETOWA PRZEDMIOTU: http://xrd.ceramika.agh.edu.pl/

NOWA STRONA INTERNETOWA PRZEDMIOTU: http://xrd.ceramika.agh.edu.pl/ Wskaźnikowanie rentgenogramów i wyznaczanie parametrów sieciowych Wykład 8 1. Wskaźnikowanie rentgenogramów. 2. Metoda róŝnic wskaźnikowania rentgenogramów substancji z układu regularnego. 3. Metoda ilorazów

Bardziej szczegółowo

Rysunek 1. Udowodnij, że AB CD = BC DA. Rysunek 2. Po inwersji o środku w punkcie E. Rysunek 3. Po inwersji o środku w punkcie A

Rysunek 1. Udowodnij, że AB CD = BC DA. Rysunek 2. Po inwersji o środku w punkcie E. Rysunek 3. Po inwersji o środku w punkcie A g H e D c H' E g' h e' O d A C' d' C A' F' f' I' G' B' G I F f INWERSJA Inwersją o środku O i promieniu r nazywamy takie przekształcenie płaszczyzny (bez punktu O), które każdemu punktowi X O przyporządkowuje

Bardziej szczegółowo

Skrypt 23. Geometria analityczna. Opracowanie L7

Skrypt 23. Geometria analityczna. Opracowanie L7 Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 2 Geometria analityczna 1.

Bardziej szczegółowo

TMM-1 Wyznaczanie współrzędnych tensorów bezwładności członów manipulatorów

TMM-1 Wyznaczanie współrzędnych tensorów bezwładności członów manipulatorów aboratoriu Teorii Mechanizów TMM-1 Wyznaczanie współrzędnych tensorów bezwładności członów anipulatorów Cele ćwiczenia jest doświadczalne wyznaczanie współrzędnych tensorów bezwładności członów anipulatora

Bardziej szczegółowo

Wyznaczanie struktury krystalicznej i molekularnej wybranego związku koordynacyjnego w oparciu o rentgenowską analizę strukturalną

Wyznaczanie struktury krystalicznej i molekularnej wybranego związku koordynacyjnego w oparciu o rentgenowską analizę strukturalną INSTRUKCJA DO ĆWICZEŃ Wyznaczanie struktury krystalicznej i molekularnej wybranego związku koordynacyjnego w oparciu o rentgenowską analizę strukturalną I. Cel ćwiczenia Wyznaczenie struktury krystalicznej

Bardziej szczegółowo

Wykład 5 Otwarte i wtórne operacje symetrii

Wykład 5 Otwarte i wtórne operacje symetrii Wykład 5 Otwarte i wtórne operacje symetrii 1.Otwarty iloczyn operacji symetrii 2.Osie śrubowe i płaszczyzny poślizgu 3.Sieci Bravais a 4.Wtórne operacje symetrii Przekształecenia izometryczne Zamknięte

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Krystalografia i rentgenografia Rok akademicki: 2012/2013 Kod: MIM-1-505-s Punkty ECTS: 5 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Inżynieria Materiałowa Specjalność:

Bardziej szczegółowo

Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt): F x E' E''

Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt): F x E' E'' GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2012/2013 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni

Bardziej szczegółowo

Sieć przestrzenna. c r. b r. a r. komórka elementarna. r r

Sieć przestrzenna. c r. b r. a r. komórka elementarna. r r Sieć przestrzenna c r b r r r u a r vb uvw = + + w c v a r komórka elementarna V = r r a ( b c) v Układy krystalograficzne (7) i Sieci Bravais (14) Triclinic (P) a b c, α β γ 90 ο Monoclinic (P) a b c,

Bardziej szczegółowo

Ćwiczenie 2: Wyznaczanie wskaźników prostych oraz płaszczyzn sieciowych

Ćwiczenie 2: Wyznaczanie wskaźników prostych oraz płaszczyzn sieciowych Ćwiczenie 2: Wyznaczanie wskaźników prostych oraz płaszczyzn sieciowych Opracowanie: dr hab. inż. Jarosław Chojnacki, Gdaosk 207 W opisie geometrii struktur krystalicznych często konieczne jest wskazanie

Bardziej szczegółowo

Właściwości optyczne kryształów

Właściwości optyczne kryształów Właściwości optyczne kryształów Właściwości optyczne i dielektryczne Właściwości optyczne i dielektryczne są ściśle ze sobą związane: n = ε χ = ε 1 Gdzie n jest współczynnikiem załamania światła, ε przenikalnością

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA W PRZESTRZENI

GEOMETRIA ANALITYCZNA W PRZESTRZENI Wykład z Podstaw matematyki dla studentów Inżynierii Środowiska Wykład 13. Egzaminy I termin wtorek 31.01 14:00 Aula A Wydział Budownictwa II termin poprawkowy czwartek 9.02 14:00 Aula A Wydział Budownictwa

Bardziej szczegółowo

wiczenie 15 ZGINANIE UKO Wprowadzenie Zginanie płaskie Zginanie uko nie Cel wiczenia Okre lenia podstawowe

wiczenie 15 ZGINANIE UKO Wprowadzenie Zginanie płaskie Zginanie uko nie Cel wiczenia Okre lenia podstawowe Ćwiczenie 15 ZGNANE UKOŚNE 15.1. Wprowadzenie Belką nazywamy element nośny konstrukcji, którego: - jeden wymiar (długość belki) jest znacznie większy od wymiarów przekroju poprzecznego - obciążenie prostopadłe

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 DEFINICJE PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 Czworokąt to wielokąt o 4 bokach i 4 kątach. Przekątną czworokąta nazywamy odcinek łączący przeciwległe wierzchołki. Wysokością czworokąta nazywamy

Bardziej szczegółowo

Rozkład normalny, niepewność standardowa typu A

Rozkład normalny, niepewność standardowa typu A Podstawy Metrologii i Technik Eksperymentu Laboratorium Rozkład normalny, niepewność standardowa typu A Instrukcja do ćwiczenia nr 1 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy

Bardziej szczegółowo

M10. Własności funkcji liniowej

M10. Własności funkcji liniowej M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji

Bardziej szczegółowo

PUNKT PROSTA. Przy rysowaniu rzutów prostej zaczynamy od rzutowania punktów przebicia rzutni prostą (śladów). Następnie łączymy rzuty na π 1 i π 2.

PUNKT PROSTA. Przy rysowaniu rzutów prostej zaczynamy od rzutowania punktów przebicia rzutni prostą (śladów). Następnie łączymy rzuty na π 1 i π 2. WYKŁAD 1 Wprowadzenie. Różne sposoby przedstawiania przedmiotu. Podstawy teorii zapisu konstrukcji w grafice inżynierskiej. Zasady rzutu prostokątnego. PUNKT Punkt w odwzorowaniach Monge a rzutujemy prostopadle

Bardziej szczegółowo

Ćwiczenie nr 8 - Modyfikacje części, tworzenie brył złożonych

Ćwiczenie nr 8 - Modyfikacje części, tworzenie brył złożonych Ćwiczenie nr 8 - Modyfikacje części, tworzenie brył złożonych Wprowadzenie Utworzone elementy bryłowe należy traktować jako wstępnie wykonane elementy, które dopiero po dalszej obróbce będą gotowymi częściami

Bardziej szczegółowo

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ

METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ METODY MATEMATYCZNE I STATYSTYCZNE W INŻYNIERII CHEMICZNEJ Wykład 3 Elementy analizy pól skalarnych, wektorowych i tensorowych Prof. Antoni Kozioł, Wydział Chemiczny Politechniki Wrocławskiej 1 Analiza

Bardziej szczegółowo

Metody badań monokryształów metoda Lauego

Metody badań monokryształów metoda Lauego Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40 006 Katowice, Tel. 0323591627 e-mail: joanna_palion@poczta.fm opracowanie: mgr Joanna Palion Gazda Laboratorium z Krystalografii

Bardziej szczegółowo

Krzywe stożkowe Lekcja VII: Hiperbola

Krzywe stożkowe Lekcja VII: Hiperbola Krzywe stożkowe Lekcja VII: Hiperbola Wydział Matematyki Politechniki Wrocławskiej Czym jest hiperbola? Hiperbola jest krzywą stożkową powstałą przez przecięcie stożka płaszczyzną pod kątem 0 β < α (gdzie

Bardziej szczegółowo

Właściwości optyczne kryształów

Właściwości optyczne kryształów Właściwości optyczne kryształów Światło Kolor Długość fali w próżni (nm) 660 610 580 550 470 410 1 Właściwości optyczne i dielektryczne Właściwości optyczne i dielektryczne są ściśle ze sobą związane:

Bardziej szczegółowo

Rok akademicki 2005/2006

Rok akademicki 2005/2006 GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2005/2006 Zadanie I. 1. Według podanych współrzędnych punktów wykreślić je w przestrzeni (na jednym rysunku aksonometrycznym) i określić, gdzie w przestrzeni

Bardziej szczegółowo

ZAAWANSOWANYCH MATERIAŁÓW I TECHNOLOGII

ZAAWANSOWANYCH MATERIAŁÓW I TECHNOLOGII WOJSKOWA AKADEMIA TECHNICZNA Wydział Nowych Technologii i Chemii KATEDRA ZAAWANSOWANYCH MATERIAŁÓW I TECHNOLOGII Temat: Grafika inżynierska Podstawy Inżynierii Wytwarzania T 1: elementy przestrzeni rzuty

Bardziej szczegółowo