STRUKTURA MATERIAŁÓW. Opracowanie: Dr hab.inż. Joanna Hucińska
|
|
- Oskar Markowski
- 7 lat temu
- Przeglądów:
Transkrypt
1 STRUKTURA MATERIAŁÓW Opracowanie: Dr hab.inż. Joanna Hucińska
2 ELEMENTY STRUKTURY MATERIAŁÓW 1. Wiązania miedzy atomami 2. Układ atomów w przestrzeni 3. Mikrostruktura 4. Makrostruktura
3 1. WIĄZANIA MIĘDZY ATOMAMI Siły oddziaływania między atomami Energia potencjalna pary atomów
4 Ważniejsze rodzaje wiązań z punktu struktury ciała stałego: jonowe: para elektronów w całości przyłączana przez anion atomowe (kowalencyjne): para elektronów wspólna metaliczne: gaz elektronowy
5 Wiązanie jonowe
6 Wiązanie atomowe
7 Wiązanie metaliczne rdzenie atomowe elektrony
8 Przykłady energii wiązań między atomami Rodzaj wiązania Jonowe Atomowe Metaliczne Substancja Chlorek sodu Tlenek magnezu Krzem Diament Aluminium Żelazo Wolfram Energia kj/mol
9 2. UKŁAD ATOMÓW W PRZESTRZENI Ciała krystaliczne (kryształy) Układ atomów/cząstek (a/cz) w przestrzeni jest statystyczne uporządkowany, symetryczny. Położenie a/cz wyznacza się przy pomocy metod rentgenowskich. Położenie a/cz odwzorowuje model geometryczny sieć przestrzenna. Ciała bezpostaciowe (amorficzne) Układ atomów w przestrzeni jest nieuporządkowany, chaotyczny.
10 Układ atomów w kryształach przedstawia się często za pomocą modeli, w postaci sztywnych kul (a) lub kul osadzonych na sztywnym szkielecie (b). Modele przedstawiają strukturę kryształu doskonałego; nie uwzględniają drgań cieplnych atomów ani defektów struktury.
11 Elementy krystalografii Elementy sieci przestrzennej: Węzeł sieci Prosta sieciowa: prosta łącząca środki dwóch dowolnych atomów Płaszczyzna sieciowa: powstała przez przesunięcie prostej sieciowej o parametr sieciowy w innym kierunku Parametr sieci: najbliższa odległość dwóch atomów na prostej sieciowej w komórce prymitywnej Liczba koordynacyjna: liczba najbliższych i równo oddalonych atomów od jednego dowolnie wybranego Stopień wypełnienia przestrzeni: stosunek objętości przestrzeni zajętej przez sfery atomów do objętości zajmowanej przez komórkę
12 a,b,c odcinki jednostkowe Sieć przestrzenna utworzona przez translację: a) punktu, b) prostej, c) płaszczyzny
13 Trzy zbiory równoległych i równoodległych płaszczyzn dzielą sieć na identyczne równoległościenne komórki, przy czym wybiera się płaszczyzny oddalone o najkrótsze odcinki translacji. Otrzymane w ten sposób komórki nazywane są jednostkowymi lub elementarnymi.
14 Komórka elementarna najmniejszy element sieci, którego powielenie w przestrzeni pozwala na odtworzenie całej sieci
15 Układ krystalograficzny Jest to układ współrzędnych opisujących sieć przestrzenną o osiach x,y,z. Wzajemną orientację osi charakteryzują kąty międzyosiowe α, β, γ. Okresy identyczności prostych przyjętych za osie współrzędnych wyznaczają odcinki jednostkowe a, b, c. Kąty międzyosiowe i odcinki jednostkowe stanowią parametry sieci. Określają one kształt i wymiar komórki elementarnej. Istnieje 7 układów krystalograficznych W ramach 7 układów krystalograficznych wyodrębnić można 14 typów sieci przestrzennych (Bravaise`a) uwzględniając możliwości centrowania przestrzennego i ściennego komórek. Komórka prymitywna: atomy wyłącznie w węzłach sieci.
16 Przykłady układów krystalograficznych L.p. Układ Parametry sieci 1. przestrzennie centrowana trójskośny α β γ a b c Sieć przestrzenna prymitywna Szkic komórki prymitywnej α = β = γ = 90 a = b c prymitywna 2. tetragonalny
17 α = β = 90 γ = 120 a = b c prymitywna 4. regularny α = β = γ = 90 a = b = c prymitywna 3. heksagonalny przestrzennie centrowana ściennie centrowana
18 W rozważaniach dotyczących sieci przestrzennych, często zachodzi potrzeba powoływania się na określone płaszczyzny lub kierunki. Ich usytuowanie w krysztale podaje się względem osi współrzędnych za pomocą trzech liczb całkowitych, tzw. wskaźników Millera. W przyjętej metodzie dokładne położenie płaszczyzn i kierunków jest nieistotne, ze względu na dowolność wyboru węzła początku układu. Wobec tego równoległe płaszczyzny i kierunki mają identyczne wskaźniki.
19 X Y Z /2 1/3 1/6 3/6 2/6 1/6 (321) Wyprowadzenie symbolu płaszczyzny sieciowej Wszystkie równoległe płaszczyzny oznaczone są tymi samymi wskaźnikami, ogólnie (hkl). Jeżeli płaszczyzna przecina oś układu po stronie wartości ujemnych, oznacza się to znakiem minus nad wskaźnikiem.
20 Przykłady wskaźników płaszczyzn w sieci układu regularnego
21 Kierunek prostej w sieci przestrzennej wyznacza się przemieszczając równolegle prostą do początku układu o współrzędnych 000. Współrzędne najbliższego węzła, przez który prosta przechodzi, sprowadzone do liczb całkowitych i pierwszych względem siebie, zamknięte w nawiasie kwadratowym [uvw] stanowią wskaźniki kierunku. Przykłady wskaźników kierunków w sieci układu regularnego
22 W sieci przestrzennej można wyróżnić równoważne płaszczyzny i kierunki, o tej samej konfiguracji węzłów. Na przykład, w układzie regularnym płaszczyzny wszystkich ścian komórki elementarnej są równoważne. Zespół takich płaszczyzn opisuje wskaźnik jednej dowolnej płaszczyzny, zamknięty w nawiasie klamrowym, np. {100}. Kierunki równoważne oznacza się natomiast zapisując wskaźniki jednego z kierunków w nawiasie ostrym <111>.
23 Wskaźniki płaszczyzn i kierunków w sieci heksagonalnej, zwane wskaźnikami Millera-Bravais, wyznacza się stosując czteroosiowy układ współrzędnych. Osie x, y, u leżą w płaszczyźnie podstawy, a ich dodatnie kierunki tworzą kąty 120 ; oś z jest prostopadła do pozostałych. Wskaźnikami płaszczyzn są cztery liczby zawarte w nawiasie okrągłym (hkil), a wskaźnikami kierunków cztery liczby w nawiasie kwadratowym [uvtw]. Pierwsze trzy wskaźniki odnoszą się do osi leżących na płaszczyźnie podstawy, a czwarta do osi pozostałej. Przykłady wskaźników płaszczyzn i kierunków w sieci heksagonalnej
24 Niektóre substancje występują w odmianach różniących się budową krystaliczną. Zjawisko to nazywa się polimorfizmem (wielopostaciowością), a w odniesieniu do pierwiastków chemicznych alotropią. Odmiany alotropowe oznacza się greckimi literami α, β, γ itp., umieszczonymi przy symbolu chemicznym pierwiastka, np. Fe α Dwie odmiany alotropowe posiadają min.: żelazo, nikiel, kobalt, tytan, uran. Chrom, wapń i lit występują w trzech odmianach alotropowych, a mangan w czterech. Zasadniczym czynnikiem wywołującym przemiany alotropowe jest temperatura.
25 Struktura metali Sieć przestrzenna: A1 (RSC) regularna ściennie centrowana A2 (RPC) regularna przestrzennie centrowana A3 (HZ) heksagonalna zwarta Wiązanie: metaliczne
26 Sieć A1: a) schemat powstawania, b) komórka sieci z zaznaczonymi płaszczyznami {111} i kierunkami <110> zwarcie wypełnionymi atomami, c) atomy komórki w postaci sztywnych kul Sieć A1 charakteryzuje się zwartym ułożeniem atomów w przestrzeni, z płaszczyznami {100} i kierunkami <110> zwarcie wypełnionymi atomami. W sieci A1 krystalizują metale o najwyraźniejszych cechach metalicznych: srebro, złoto, platyna, aluminium, miedź, nikiel, ołów, żelazo γ, kobalt β.
27 Sieć A2: a) schemat powstawania, b) komórka sieci z zaznaczonymi kierunkami zwarcie wypełnionymi atomami <111> na płaszczyźnie (110), c) atomy komórki w postaci sztywnych kul W sieci A2 nie ma płaszczyzn zwarcie wypełnionych, są natomiast kierunki o zwartym ułożeniu atomów <111>, znajdujące się na najgęściej wypełnionych płaszczyznach {110}. Strukturę A2 posiadają np. wanad, molibden, wolfram, niob, żelazo α, chrom α, tytan β.
28 Sieć A3: a) schemat powstawania, b) komórka sieci z zaznaczonymi płaszczyznami {0001} i kierunkami <1120> zwarcie wypełnionymi atomami, c) atomy komórki w postaci sztywnych kul W idealnej sieci A3 stosunek osiowy c/a równy jest 1,633. Podobnie jak sieć A1, sieć A3 charakteryzuje się zwartym ułożeniem atomów w przestrzeni. W sieci A3 krystalizują m.in. beryl, magnez, cynk i kadm.
29 Kolejność ułożenia płaszczyzn w sieciach zwarcie wypełnionych: ABCABC...lub ACBACB... w sieci A1 i ABABAB... w sieci A3
30 Struktura ceramik Kryształy, ciała niekrystaliczne lub szkła, o ułożeniu atomów typowym dla cieczy Sieć przestrzenna kryształów bardziej złożona niż metali Wiązania od czysto jonowych do czysto kowalencyjnych
31 Komórka elementarna sieci Al 2 O 3 Wg.: L.A. Dobrzański, Podstawy nauki o materiałach i metaloznawstwo
32 Komórka elementarna SiO 4 4- Wg.: L.A. Dobrzański, Podstawy nauki o materiałach i metaloznawstwo
33 Schemat rozmieszczenia jonów w szkle sodowo-krzemianowym Wg.: L.A. Dobrzański, Podstawy nauki o materiałach i metaloznawstwo
34 Struktura polimerów Zwykle ciała bezpostaciowe Struktura makrocząsteczek lub długich łańcuchów zbudowanych z wielkiej ilości małych elementów (monomerów) Głównie wiązania kowalencyjne
35 Wg.: L.A. Dobrzański, Podstawy nauki o materiałach i metaloznawstwo
36 Wg.: L.A. Dobrzański, Podstawy nauki o materiałach i metaloznawstwo
37 3. MIKROSTRUKTURA Mikrostruktura materiału elementy struktury widoczne przy użyciu mikroskopów dających powiększenie większe niż 40x. Wydzielenia grafitu w żeliwie: zarejestrowane na wypolerowanym preparacie (zgładzie), przy użyciu świetlnego mikroskopu metalograficznego 10 µm
38 30 µm Dwa rodzaje ziaren w stali: zarejestrowane na wypolerowanym i wytrawionym preparacie (zgładzie), przy użyciu świetlnego mikroskopu metalograficznego
39 4. MAKROSTRUKTURA Makrostruktura materiału - elementy struktury widoczne nieuzbrojonym okiem lub przy użyciu przyrządów optycznych dających obraz powiększony nie więcej niż 40x.
40 Produkty korozji na wewnętrznej powierzchni rurociągu ze stali węglowej
STRUKTURA MATERIAŁÓW
STRUKTURA MATERIAŁÓW ELEMENTY STRUKTURY MATERIAŁÓW 1. Wiązania miedzy atomami 2. Układ atomów w przestrzeni 3. Mikrostruktura 4. Makrostruktura 1. WIĄZANIA MIĘDZY ATOMAMI Siły oddziaływania między atomami
MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska
MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I dr inż. Hanna Smoleńska Struktura materiałów UKŁAD ATOMÓW W PRZESTRZENI CIAŁA KRYSTALICZNE Układ atomów/cząstek (a/cz) w przestrzeni jest statystyczne
STRUKTURA CIAŁA STAŁEGO. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
STRUKTURA CIAŁA STAŁEGO Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego STRUKTURA CIAŁA STAŁEGO 1. BUDOWA ATOMU 2. WIĄZANIA MIEDZY ATOMAMI 3. UKŁAD
BUDOWA KRYSTALICZNA CIAŁ STAŁYCH. Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale
BUDOWA KRYSTALICZNA CIAŁ STAŁYCH Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale na: kryształy ciała o okresowym regularnym uporządkowaniu atomów, cząsteczek w całej swojej
STRUKTURA CIAŁA STAŁEGO
STRUKTURA CIAŁA STAŁEGO Podział ciał stałych Ciała - bezpostaciowe (amorficzne) Szkła, żywice, tłuszcze, niektóre proszki. Nie wykazują żadnych regularnych płaszczyzn ograniczających, nie można w nich
Aby opisać strukturę krystaliczną, konieczne jest określenie jej części składowych: sieci przestrzennej oraz bazy atomowej.
2. Podstawy krystalografii Podczas naszych zajęć skupimy się przede wszystkim na strukturach krystalicznych. Kryształem nazywamy (def. strukturalna) substancję stałą zbudowaną z atomów, jonów lub cząsteczek
Rozwiązanie: Zadanie 2
Podstawowe pojęcia. Definicja kryształu. Sieć przestrzenna i sieć krystaliczna. Osie krystalograficzne i jednostki osiowe. Ściana jednostkowa i stosunek osiowy. Położenie węzłów, prostych i płaszczyzn
STRUKTURA IDEALNYCH KRYSZTAŁÓW
BUDOWA WEWNĘTRZNA MATERIAŁÓW METALICZNYCH Zakres tematyczny y 1 STRUKTURA IDEALNYCH KRYSZTAŁÓW 2 1 Sieć przestrzenna kryształu TRANSLACJA WĘZŁA TRANSLACJA PROSTEJ SIECIOWEJ TRANSLACJA PŁASZCZYZNY SIECIOWEJ
STRUKTURA KRYSTALICZNA
PODSTAWY KRYSTALOGRAFII Struktura krystaliczna Wektory translacji sieci Komórka elementarna Komórka elementarna Wignera-Seitza Jednostkowy element struktury Sieci Bravais go 2D Sieci przestrzenne Bravais
Fizyka Ciała Stałego
Wykład III Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć krystaliczną. Amorficzne, brak uporządkowania,
Wykład 5. Komórka elementarna. Sieci Bravais go
Wykład 5 Komórka elementarna Sieci Bravais go Doskonały kryształ składa się z atomów jonów, cząsteczek) uporządkowanych w sieci krystalicznej opisanej przez trzy podstawowe wektory translacji a, b, c,
Położenia, kierunki, płaszczyzny
Położenia, kierunki, płaszczyzny Dalsze pojęcia Osie krystalograficzne; Parametry komórki elementarnej; Wskaźniki punktów kierunków i płaszczyzn; Osie krystalograficzne Osie krystalograficzne: układ osi
Wstęp. Krystalografia geometryczna
Wstęp Przedmiot badań krystalografii. Wprowadzenie do opisu struktury kryształów. Definicja sieci Bravais go i bazy atomowej, komórki prymitywnej i elementarnej. Podstawowe typy komórek elementarnych.
Podstawowe pojęcia opisujące sieć przestrzenną
Uniwersytet Śląski Instytut Chemii akład Krystalografii Laboratorium z Krystalografii 2 godz. Podstawowe pojęcia opisujące sieć przestrzenną Cel ćwiczenia: kształtowanie umiejętności posługiwania się modelami
Prof. nzw. dr hab. Jarosław Mizera & dr inż. Joanna Zdunek
Prof. nzw. dr hab. Jarosław Mizera & dr inż. Joanna Zdunek Krystalografia to nauka zajmująca się opisem i badaniem periodycznej budowy wewnętrznej materiałów krystalicznych oraz ich klasyfikacją. Plan
Wstęp do Optyki i Fizyki Materii Skondensowanej. Mateusz Goryca
Wstęp do Optyki i Fizyki Materii Skondensowanej Mateusz Goryca mgoryca@fuw.edu.pl Uniwersytet Warszawski 2015 Materia skondensowana OC 6 H 13 H 13 C 6 O OC 6 H 13 H 17 C 8 O H 17 C 8 O N N Cu O O H 21
Układy krystalograficzne
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Układy krystalograficzne Cel ćwiczenia: kształtowanie umiejętności wyboru komórki elementarnej i przyporządkowywania
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii. Laboratorium z Krystalografii. 2 godz. Komórki Bravais go
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Komórki Bravais go Cel ćwiczenia: kształtowanie umiejętności: przyporządkowywania komórek translacyjnych Bravais
MATERIA. = m i liczby całkowite. ciała stałe. - kryształy - ciała bezpostaciowe (amorficzne) - ciecze KRYSZTAŁY. Periodyczność
MATERIA ciała stałe - kryształy - ciała bezpostaciowe (amorficzne) - ciecze - gazy KRYSZTAŁY Periodyczność Kryształ (idealny) struktura zbudowana z powtarzających się w przestrzeni periodycznie identycznych
Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna
Wykład II Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Amorficzne, brak uporządkowania, np. szkła; Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć
Elementy teorii powierzchni metali
prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 2 v.16 Sieci płaskie i struktura powierzchni 1 Typy sieci dwuwymiarowych (płaskich) Przecinając monokryształ wzdłuż jednej z płaszczyzn
Właściwości kryształów
Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne
Podstawy krystalochemii pierwiastki
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii Podstawy krystalochemii pierwiastki Cel ćwiczenia: określenie pełnej charakterystyki wybranych struktur pierwiastków
Fizyka Ciała Stałego. Struktura krystaliczna. Struktura amorficzna
Wykład II Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Amorficzne, brak uporządkowania, np. szkła; Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć
Elementy teorii powierzchni metali
Prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład dla studentów fizyki Rok akademicki 2017/18 (30 godz.) Wykład 1 Plan wykładu Struktura periodyczna kryształów, sieć odwrotna Struktura
Układ regularny. Układ regularny. Możliwe elementy symetrii: Możliwe elementy symetrii: 3 osie 3- krotne. m płaszczyzny przekątne.
Układ regularny Możliwe elementy symetrii: 3 osie 3- krotne m płaszczyzny równoległe do ścian m płaszczyzny przekątne 4 osie 4- krotne 2 osie 2- krotne Układ regularny Możliwe elementy symetrii: 3 osie
Temat 3. Nauka o materiałach. Budowa metali i stopów
Temat 3 Nauka o materiałach Budowa metali i stopów BUDOWA MATERII SKALA 10-3 do 10-6 10-6 do 10-10 m m 10-10 do 10-16 m ~10-24 m? STRUKTURA MATERII WG TEORII STRUN: 1) kryształ; 2) sieć atomów; 3) atom;
Sieć przestrzenna. c r. b r. a r. komórka elementarna. r r
Sieć przestrzenna c r b r r r u a r vb uvw = + + w c v a r komórka elementarna V = r r a ( b c) v Układy krystalograficzne (7) i Sieci Bravais (14) Triclinic (P) a b c, α β γ 90 ο Monoclinic (P) a b c,
DEFEKTY STRUKTURY KRYSTALICZNEJ
DEFEKTY STRUKTURY KRYSTALICZNEJ Rodzaje defektów (wad) budowy krystalicznej Punktowe Liniowe Powierzchniowe Defekty punktowe Wakanse: wolne węzły Atomy międzywęzłowe Liczba wad punktowych jest funkcją
Temat 1: Budowa atomu zadania
Budowa atomu Zadanie 1. (0-1) Dany jest atom sodu Temat 1: Budowa atomu zadania 23 11 Na. Uzupełnij poniższą tabelkę. Liczba masowa Liczba powłok elektronowych Ładunek jądra Liczba nukleonów Zadanie 2.
Budowa ciał stałych. sieć krystaliczna układy krystalograficzne sieć realna defekty wiązania w ciałach stałych
Budowa ciał stałych sieć krystaliczna układy krystalograficzne sieć realna defekty wiązania w ciałach stałych Ciała stałe to substancje o regularnej, przestrzennej budowie krystalicznej, czyli regularnym
Temat 3. Nauka o materiałach. Budowa metali i stopów
Temat 3 Nauka o materiałach Budowa metali i stopów BUDOWA MATERII SKALA 10-3 do 10-6 10-6 do 10-10 m m 10-10 do 10-16 m ~10-24 m? STRUKTURA MATERII WG TEORII STRUN: 1) kryształ; 2) sieć atomów; 3) atom;
Krystalografia i krystalochemia Wykład 15 Repetytorium
Krystalografia i krystalochemia Wykład 15 Repetytorium 1. Czym zajmuje się krystalografia i krystalochemia? 2. Podsumowanie wiadomości z krystalografii geometrycznej. 3. Symbolika Kreutza-Zaremby oraz
Rodzina i pas płaszczyzn sieciowych
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Rodzina i pas płaszczyzn sieciowych Cel ćwiczenia: kształtowanie umiejętności posługiwania się modelami komórek
Krystalografia. Typowe struktury pierwiastków i związków chemicznych
Krystalografia Typowe struktury pierwiastków i związków chemicznych Wiązania w kryształach jonowe silne, bezkierunkowe kowalencyjne silne, kierunkowe metaliczne słabe lub silne, bezkierunkowe van der Waalsa
KRYSTALOGRAFIA Studia pierwszego stopnia, stacjonarne II rok
Akademia Górniczo-Hutnicza Wydział Odlewnictwa Katedra Inżynierii Stopów i Kompozytów Odlewanych Nr ćwiczenia: 1 Opracowała Temat: Cel ćwiczenia: Zakres wymaganego materiału Przebieg ćwiczenia Materiały
S 2, C 2h,D 2h,D 3d,D 4h, D 6h, O h
Są tylko 32 grupy punktowe, które spełniają ten warunek, Można je pogrupować w 7 typów grup (spośród omówionych 12- tu), które spełniają powyższe własności S 2, C 2h,D 2h,D 3d,D 4h, D 6h, O h nazywają
Stany skupienia materii
Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -słabo ściśliwe - uporządkowanie bliskiego zasięgu -tworzą powierzchnię
Wykład 1. Symetria Budowy Kryształów
Wykład Symetria Budowy Kryształów Ciała krystaliczne i amorficzne Każda substancja ciekła (z wyjątkiem helu) podczas oziębiania traci swoje własności ciekłe i przechodzi w ciało stałe. Jednakże proces
Laboratorium z Krystalografii. 2 godz.
Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40-006 Katowice tel. 0323591627, e-mail: ewa.malicka@us.edu.pl opracowanie: dr Ewa Malicka Laboratorium z Krystalografii
Ciała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami.
Ciała stałe Ciała krystaliczne Ciała amorficzne Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. r T = Kryształy rosną przez regularne powtarzanie się identycznych
DEFEKTY STRUKTURY KRYSTALICZNEJ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
DEFEKTY STRUKTURY KRYSTALICZNEJ Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Defekty struktury krystalicznej są to każdego rodzaju odchylenia od
ROZDZIAŁ I. Symetria budowy kryształów
ROZDZIAŁ I Symetria budowy kryształów I Ciała krystaliczne i amorficzne Każda substancja ciekła z wyjątkiem helu) podczas oziębiania traci swoje własności ciekłe i przechodzi w ciało stałe Jednakże proces
Właściwości cieplne Stabilność termiczna materiałów. Stabilność termiczna materiałów
Właściwości cieplne Stabilność termiczna materiałów Temperatury topnienia lub mięknięcia (M) różnych materiałów Materiał T [ O K] Materiał T [ O K] Materiał T [ O K] diament, grafit 4000 żelazo 809 poliestry
Grupy przestrzenne i ich symbolika
Grupy przestrzenne i ich symbolika Po co mi (chemikowi) znajomość symboli grup przestrzennych? Informacje zawarte w symbolu układ krystalograficzny obecność operacji symetrii punktowej (spektroskopia)
Elementy teorii powierzchni metali
prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 4 v.16 Wiązanie metaliczne Wiązanie metaliczne Zajmujemy się tylko metalami dlatego w zasadzie interesuje nas tylko wiązanie metaliczne.
Opracowanie: mgr inż. Antoni Konitz, dr hab inż. Jarosław Chojnacki Politechnika Gdańska, Gdańsk 2007, 2016
4. Stosowanie międzynarodowych symboli grup przestrzennych. Zamiana skróconych symboli Hermanna - Mauguina na symbole pełne. Określanie układu krystalograficznego, klasy krystalograficznej oraz operacji
Kierunek i poziom studiów: Chemia budowlana, II stopień Sylabus modułu: Chemia ciała stałego 0310-CH-S2-B-065
Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia budowlana, II stopień Sylabus modułu: Chemia ciała stałego 065 1. Informacje ogólne koordynator modułu rok akademicki 2014/2015
STRUKTURA KRYSZTAŁÓW
STRUKTURA KRYSZTAŁÓW Skala wielkości spotykanych w krystalografii: Średnica atomu wodoru: 10 Rozmiar komórki elementarnej: od kilku do kilkudziesięciu Å o D = 1*10 m = 1A 1 Struktura = sieć + baza atomowa
Nauka o Materiałach Wykład II Monokryształy Jerzy Lis
Wykład II Monokryształy Jerzy Lis Treść wykładu: 1. Wstęp stan krystaliczny 2. Budowa kryształów - krystalografia 3. Budowa kryształów rzeczywistych defekty WPROWADZENIE Stan krystaliczny jest podstawową
Laboratorium inżynierii materiałowej LIM
Laboratorium inżynierii materiałowej LIM wybrane zagadnienia fizyki ciała stałego czyli skrót skróconego skrótu dr hab. inż.. Ryszard Pawlak, P prof. PŁP Fizyka Ciała Stałego I. Wstęp Związki Fizyki Ciała
Zad: 1 Spośród poniższych jonów wybierz te, które mają identyczną konfigurację elektronową:
Zad: 1 Spośród poniższych jonów wybierz te, które mają identyczną konfigurację elektronową: Zad: 2 Zapis 1s 2 2s 2 2p 6 3s 2 3p 2 (K 2 L 8 M 4 ) przedstawia konfigurację elektronową atomu A. argonu. B.
Wykład V Wiązanie kowalencyjne. Półprzewodniki
Wykład V Wiązanie kowalencyjne. Półprzewodniki Wiązanie kowalencyjne molekuła H 2 Tworzenie wiązania kowalencyjnego w molekule H 2 : elektron w jednym atomie przyciągany jest przez jądro drugiego. Wiązanie
BADANIA STRUKTURY MATERIAŁÓW. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
BADANIA STRUKTURY MATERIAŁÓW Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego 1. MAKROSTRUKTURA 2. MIKROSTRUKTURA 3. STRUKTURA KRYSTALICZNA Makrostruktura
Kinetyka zarodkowania
Kinetyka zarodkowania Wyrażenie na liczbę zarodków n r o kształcie kuli i promieniu r w jednostce objętości cieczy przy założeniu, że tworzenie się zarodków jest zdarzeniem losowym: n r Ne G kt v ( 21
Metale i niemetale. Krystyna Sitko
Metale i niemetale Krystyna Sitko Substancje proste czyli pierwiastki dzielimy na : metale np. złoto niemetale np. fosfor półmetale np. krzem Spośród 115 znanych obecnie pierwiastków aż 91 stanowią metale
Natęż. ężenie refleksu dyfrakcyjnego
Natęż ężenie refleksu dyfrakcyjnego Wskaźnikowanie dyfraktogramów 1. Natężenie refleksu dyfrakcyjnego - od czego i jak zależy 1. Wskaźnikowanie dyfraktogramów -metoda różnic 3. Wygaszenia systematyczne
30/01/2018. Wykład X: Właściwości cieplne. Treść wykładu: Stabilność termiczna materiałów
Wykład X: Właściwości cieplne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu:. Stabilność termiczna materiałów 2. 3. 4. Rozszerzalność cieplna
WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ. Zmiany makroskopowe. Zmiany makroskopowe
WŁAŚCIWOŚCI MECHANICZNE PLASTYCZNOŚĆ Zmiany makroskopowe Zmiany makroskopowe R e = R 0.2 - umowna granica plastyczności (0.2% odkształcenia trwałego); R m - wytrzymałość na rozciąganie (plastyczne); 1
Opracowała: mgr inż. Ewelina Nowak
Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Opracowała: mgr
Wiązania chemiczne. Związek klasyfikacji ciał krystalicznych z charakterem wiązań atomowych. 5 typów wiązań
Wiązania chemiczne Związek klasyfikacji ciał krystalicznych z charakterem wiązań atomowych 5 typów wiązań wodorowe A - H - A, jonowe ( np. KCl ) molekularne (pomiędzy atomami gazów szlachetnych i małymi
Własności magnetyczne materii
Własności magnetyczne materii Dipole magnetyczne Najprostszą strukturą magnetyczną są magnetyczne dipole. Fe 3 O 4 Kompas, Chiny 220 p.n.e Kołowy obwód z prądem dipol magnetyczny! Wartość B w środku kołowego
Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography)
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography) 2 godz. Cel ćwiczenia: analiza
INŻYNIERIA MATERIAŁOWA w elektronice
Wydział Elektroniki Mikrosystemów i Fotoniki Politechniki Wrocławskiej... INŻYNIERIA MATERIAŁOWA w elektronice... Dr hab. inż. JAN FELBA Profesor nadzwyczajny PWr 1 PROGRAM WYKŁADU Struktura materiałów
Metody badań monokryształów metoda Lauego
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40 006 Katowice, Tel. 0323591627 e-mail: joanna_palion@poczta.fm opracowanie: mgr Joanna Palion Gazda Laboratorium z Krystalografii
ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1050
ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 1050 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa ul. Szczotkarska 42 Wydanie nr 11 Data wydania: 27 maja 2019 r. Nazwa i adres AB 1050 AKADEMIA
Wykład 4: Struktura krystaliczna
Wykład 4: Struktura krystaliczna Wg Blicharskiego, Wstęp do materiałoznawstwa http://webmineral.com/ Komórka elementarna Geometria komórki Dla zdefiniowania trójwymiarowej komórki elementarnej należy podać
Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne
Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub
MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I. dr inż. Hanna Smoleńska
MATERIAŁOZNAWSTWO Wydział Mechaniczny, Mechatronika, sem. I dr inż. Hanna Smoleńska Charakterystyka ciał stałych Materia i jej składniki Główne grupy materiałów inżynierskich Dobór materiałów Materia i
Wykład XI: Właściwości cieplne. JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych
Wykład XI: Właściwości cieplne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Ceramiki i Materiałów Ogniotrwałych Treść wykładu: 1. Stabilność termiczna materiałów 2. Pełzanie wysokotemperaturowe
Zespół Szkół Samochodowych
Zespół Szkół Samochodowych Podstawy Konstrukcji Maszyn Materiały Konstrukcyjne i Eksploatacyjne Temat: OTRZYMYWANIE STOPÓW ŻELAZA Z WĘGLEM. 2016-01-24 1 1. Stopy metali. 2. Odmiany alotropowe żelaza. 3.
Wykład II Sieć krystaliczna
Wykład II Sieć krystaliczna Podstawowe definicje Wiele z pośród ciał stałych ma budowę krystaliczną. To znaczy, Ŝe atomy z których się składają ułoŝone są w określonym porządku. Porządek ten daje się stosunkowo
SUROWCE I RECYKLING. Wykład 2
SUROWCE I RECYKLING Wykład 2 Układ krystalograficzny grupuje kryształy o pewnych wspólnych cechach symetrii geometrycznej Postacie krystalograficzne Kryształy ograniczone ścianami jednoznacznymi stanowią
WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE
WIĄZANIA Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE Przyciąganie Wynika z elektrostatycznego oddziaływania między elektronami a dodatnimi jądrami atomowymi. Może to być
Zastosowanie teorii grup. Grupy symetrii w fizyce i chemii.
Zastosowanie teorii grup Grupy symetrii w fizyce i chemii Katarzyna Kolonko Streszczenie Usystematyzowanie grup punktowych, omówienie ich na przykładzie molekuł Przedstawienie wkładu teorii grup w badanie
Różne typy wiązań mają ta sama przyczynę: energia powstającej stabilnej cząsteczki jest mniejsza niż sumaryczna energia tworzących ją, oddalonych
Wiązania atomowe Atomy wieloelektronowe, obsadzanie stanów elektronowych, układ poziomów energii. Przykładowe konfiguracje elektronów, gazy szlachetne, litowce, chlorowce, układ okresowy pierwiastków,
Anna Grych Test z budowy atomu i wiązań chemicznych
Anna Grych Test z budowy atomu i wiązań chemicznych 1. Uzupełnij tabelkę wpisując odpowiednie dane: Nazwa atomu Liczba nukleonów protonów neutronów elektronów X -... 4 2 Y -... 88 138 Z -... 238 92 W -...
Model wiązania kowalencyjnego cząsteczka H 2
Model wiązania kowalencyjnego cząsteczka H 2 + Współrzędne elektronu i protonów Orbitale wiążący i antywiążący otrzymane jako kombinacje orbitali atomowych Orbital wiążący duża gęstość ładunku między jądrami
Nauka o Materiałach. Wykład IX. Odkształcenie materiałów właściwości plastyczne. Jerzy Lis
Nauka o Materiałach Wykład IX Odkształcenie materiałów właściwości plastyczne Jerzy Lis Nauka o Materiałach Treść wykładu: 1. Odkształcenie plastyczne 2. Parametry makroskopowe 3. Granica plastyczności
Wykład IX: Odkształcenie materiałów - właściwości plastyczne
Wykład IX: Odkształcenie materiałów - właściwości plastyczne JERZY LIS Wydział Inżynierii Materiałowej i Ceramiki Katedra Technologii Ceramiki i Materiałów Ogniotrwałych Treść wykładu: 1. Odkształcenie
NIEDOSKONAŁOŚCI BUDOWY CIAŁA STAŁEGO KRYSZTAŁY RZECZYWISTE.
NIEDOSKONAŁOŚCI BUDOWY CIAŁA STAŁEGO KRYSZTAŁY RZECZYWISTE http://home.agh.edu.pl/~grzesik KRYSZTAŁY IDEALNE Kryształ idealny ciało stałe, w którym atomy, jony lub cząsteczki wykazują idealne uporządkowanie
Elementy symetrii makroskopowej.
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii Elementy symetrii makroskopowej. 2 godz. Cel ćwiczenia: zapoznanie się z działaniem elementów symetrii makroskopowej
Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography)
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii Międzynarodowe Tablice Krystalograficzne (International Tables for Crystallography) 2 godz. Cel ćwiczenia: analiza
PODSTAWY INŻYNIERII MATERIAŁOWEJ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
PODSTAWY INŻYNIERII MATERIAŁOWEJ Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego WPROWADZENIE 1. GENEZA INŻYNIERII MATERIAŁOWEJ 2. KLASYFIKACJA MATERIAŁÓW
Tradycyjny podział stanów skupienia: fazy skondensowane
Tradycyjny podział stanów skupienia: o o o stały (ciało stałe) zachowuje objętość i kształt ciekły (ciecz) zachowuje objętość, łatwo zmienia kształt gazowy (gaz) łatwo zmienia objętość i kształt lód woda
1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?
Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody
Metody badań monokryształów metoda Lauego
Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40 006 Katowice, Tel. 0323591627 e-mail: joanna_palion@poczta.fm opracowanie: mgr Joanna Palion Gazda Laboratorium z Krystalografii
INŻYNIERIA NOWYCH MATERIAŁÓW
INŻYNIERIA NOWYCH MATERIAŁÓW Wykład: 15 h Seminarium 15 h Laboratorium 45 h Świat materiałów Metale Ceramika, szkło Kompozyty Polimery, elastomery Pianki Materiały naturalne Znaczenie różnych materiałów
WŁASNOŚCI CIAŁ STAŁYCH I CIECZY
WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)
Wewnętrzna budowa materii - zadania
Poniższe zadania rozwiąż na podstawie układu okresowego. Zadanie 1 Oceń poprawność poniższych zdań, wpisując P, gdy zdanie jest prawdziwe oraz F kiedy ono jest fałszywe. Stwierdzenie Atom potasu posiada
NOWA STRONA INTERNETOWA PRZEDMIOTU: http://xrd.ceramika.agh.edu.pl/
Wskaźnikowanie rentgenogramów i wyznaczanie parametrów sieciowych Wykład 8 1. Wskaźnikowanie rentgenogramów. 2. Metoda róŝnic wskaźnikowania rentgenogramów substancji z układu regularnego. 3. Metoda ilorazów
Struktura materiałów. Zakres tematyczny. Politechnika Rzeszowska - Materiały lotnicze - I LD / dr inż. Maciej Motyka.
STRUKTURA, KLASYFIKACJA I OGÓLNA CHARAKTERYSTYKA MATERIAŁÓW INŻYNIERSKICH Zakres tematyczny y 1 Struktura materiałów MATERIAŁAMI (inżynierskimi) nazywa się skondensowane (stałe) substancje, których właściwości
Budowa atomu. Wiązania chemiczne
strona /6 Budowa atomu. Wiązania chemiczne Dorota Lewandowska, Anna Warchoł, Lidia Wasyłyszyn Treść podstawy programowej: Budowa atomu; jądro i elektrony, składniki jądra, izotopy. Promieniotwórczość i
Spis treœci Wstêp Od epoki br¹zu do in ynierii materia³owej Przedmowa Rozdzia³ 1 Budowa atomowa metali Rozdzia³ 2 Krzepniêcie metali
5 Spis treœci Wstêp Od epoki br¹zu do in ynierii materia³owej Adolf Maciejny... 17 Przedmowa Znaczenie metali w rozwoju cywilizacji... 31 Rozdzia³ 1 Budowa atomowa metali Karol Przyby³owicz... 37 1.1.
PIERWIASTKI STOPOWE W STALACH
PIERWIASTKI STOPOWE W STALACH Stal stopowa - stop żelaza z węglem, zawierający do ok. 2 % węgla i pierwiastki (dodatki stopowe) wprowadzone celowo dla nadania stali wymaganych właściwości, otrzymany w
PIERWIASTKI STOPOWE W STALACH. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
PIERWIASTKI STOPOWE W STALACH Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Stal stopowa stop żelaza z węglem, zawierający do ok. 2% węgla i pierwiastki
Zasady obsadzania poziomów
Zasady obsadzania poziomów Model atomu Bohra Model kwantowy atomu Fala stojąca Liczby kwantowe -główna liczba kwantowa (n = 1,2,3...) kwantuje energię elektronu (numer orbity) -poboczna liczba kwantowa
Nowoczesna teoria atomistyczna
Nowoczesna teoria atomistyczna Joseph Louis Proust Prawo stosunków stałych (1797) (1754-1826) John Dalton, Prawo stosunków wielokrotnych (1804) Louis Joseph Gay-Lussac Prawo stosunków objętościowych (1808)
Dobór materiałów konstrukcyjnych cz. 2
Dobór materiałów konstrukcyjnych cz. 2 dr inż. Hanna Smoleńska Katedra Inżynierii Materiałowej i Spajania Wydział Mechaniczny, Politechnika Gdańska Materiały edukacyjne Własności materiałów brane pod uwagę