Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Twierdzenie Wainera. Marek Czarnecki. Warszawa, 3 lipca Wydziaª Filozoi i Socjologii Uniwersytet Warszawski"

Transkrypt

1 Twierdzenie Wainera Marek Czarnecki Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 3 lipca 2009

2 Motywacje Dla dowolnej hierarchii (w sensie szybko±ci wzrostu) funkcji rekurencyjnych mo»emy, metod przek tniow, zdeniowa w arytmetyce now, jeszcze szybciej rosn c, funkcj rekurencyjn. Dla funkcji elementarnych 2 2 2n }nrazy, Dla funkcji pierwotnie rekurencyjnych funkcja Ackermanna.

3 Motywacje Dla dowolnej hierarchii (w sensie szybko±ci wzrostu) funkcji rekurencyjnych mo»emy, metod przek tniow, zdeniowa w arytmetyce now, jeszcze szybciej rosn c, funkcj rekurencyjn. Dla funkcji elementarnych 2 2 2n }nrazy, Dla funkcji pierwotnie rekurencyjnych funkcja Ackermanna. Twierdzenie Wainera ogranicza mo»liwo± wyboru funkcji interesuj nas jedynie dowodliwie caªkowite w PA. Ka»d z takich funkcji rekurencyjnych dominuje pewna funkcja z hierarchii Hardy'ego.

4 Motywacje Dla dowolnej hierarchii (w sensie szybko±ci wzrostu) funkcji rekurencyjnych mo»emy, metod przek tniow, zdeniowa w arytmetyce now, jeszcze szybciej rosn c, funkcj rekurencyjn. Dla funkcji elementarnych 2 2 2n }nrazy, Dla funkcji pierwotnie rekurencyjnych funkcja Ackermanna. Twierdzenie Wainera ogranicza mo»liwo± wyboru funkcji interesuj nas jedynie dowodliwie caªkowite w PA. Ka»d z takich funkcji rekurencyjnych dominuje pewna funkcja z hierarchii Hardy'ego. Szukamy funkcji najwolniej rosn cych deniowalnych w modelach sko«czonych. f (n) = m df N n+1 ϕ(max, m) (jako odwrotno±ci funkcji szybko rosn cych).

5 Motywacje Dla dowolnej hierarchii (w sensie szybko±ci wzrostu) funkcji rekurencyjnych mo»emy, metod przek tniow, zdeniowa w arytmetyce now, jeszcze szybciej rosn c, funkcj rekurencyjn. Dla funkcji elementarnych 2 2 2n }nrazy, Dla funkcji pierwotnie rekurencyjnych funkcja Ackermanna. Twierdzenie Wainera ogranicza mo»liwo± wyboru funkcji interesuj nas jedynie dowodliwie caªkowite w PA. Ka»d z takich funkcji rekurencyjnych dominuje pewna funkcja z hierarchii Hardy'ego. Szukamy funkcji najwolniej rosn cych deniowalnych w modelach sko«czonych. f (n) = m df N n+1 ϕ(max, m) (jako odwrotno±ci funkcji szybko rosn cych). Chcemy znale¹ odpowiednik twierdzenia Wainera w sko«czonych modelach, by móc zbudowa hierarchi funkcji szybko (wolno) rosn cych deniowalnych w modelach sko«czonych.

6 Podstawowe denicje Posta normalna Cantora Dowoln liczb porz dkow λ < ε 0 mo»na zapisa w nast puj cej postaci: λ = ω λ 1 + ω λ ω λm, gdzie λ > λ 1 λ 2 λ m 0. {λ}(n) Niech λ < ε 0 oraz n ω. λ = β + ω λm. β + ω λm 1 n {λ}(n) = β + ω {λm}(n) gdy λ m jest nast pnikiem, gdy λ m graniczna.

7 Podstawowe denicje Ci g Hardy'ego H 0 (x) = x, H α+1 = H α (x + 1), H λ (x) = H {λ}(x) (x), dla λ granicznej. Przykªady H n (x) = x + n, H ω (x) = 2x, H ω 2 (x) = 4x, H ω n (x) = 2 n x, H ω α n(x) = H (n) ω α (x).

8 Sformuªowanie twierdzenia Wainera Twierdzenie Wainera Niech f ω ω b dzie funkcj rekurencyjn i niech F (x, y) b dzie Σ 1 -formuª reprezentuj c f. Je»eli PA x!yf (x, y), to istniej α < ε 0 oraz n 0 ω takie,»e dla dowolnego x n 0 zachodzi f (x) H α (x).

9 Poj cia pomocnicze Aproksymacje sko«czonych funkcji Niech f ω ω b dzie funckj cz ±ciow o sko«czonej dziedzinie i niech S ω. Mówimy,»e S jest aproksymacj f, je»eli: x S {max S} y < x 2(y domf f (y) < x + f (y) max S) A k n(s) Niech S b dzie zbiorem sko«czonym. Przez A k n(s) oznaczamy nast puj c wªasno± : f 1 S 1 S f 2 S 2 S 1... f n S n S n 1 ( n S i jest aproksymacj f i cards n > k) i=1 ω k n, I (a, b) Przez ω k n oznaczamy {ω n+1}(k), Przez I (a, b) oznaczamy kod zbioru {x a x b}.

10 Sformuªowanie lematu 1 Lemat 1 Niech a, b ω, a > 0. Je»eli H ω k n (a) < b, to: N A k n[i N (a, b)]

11 Uogólnienie ci gów Hardy'ego Denicja Niech S ω. Dla x S deniujemy: H S 0 (x) = x H S 1 (x) = x + H S α+1 (x) = H S α(h S 1 (x)), dla α < ε 0 H S λ (x) = H S {λ}(x) (x), dla λ < ε 0 granicznej. Lewa strona okre±lona jest tam, gdzie prawa strona jest okre±lona. Wielko± zbioru Powiemy,»e zbiór S jest wielko±ci α je»eli S oraz H S α(min S) = max S.

12 Uwagi pomocnicze Uwaga 1 Niech S 1 S 2 b d takie,»e S 1 jest przedziaªem w S 2, czyli S 1 = S 2 [a, b]. Wtedy H S 1 α = H S 2 α S 1, dla α < ε 0. = Hα ω [a, b] = H α [a, b]. H [a,b] α Uwaga 2 Niech S b dzie zbiorem wielko±ci ω α+1, f funkcj o sko«czonej dziedzinie. Zaªó»my,»e min S = a 0 > 0. Wtedy istnieje a S oraz S S takie,» min S = a, S jest wielko±ci ω α oraz x < a 0 2(x domf f (x) < a f (x) max S )

13 Uwagi pomocnicze 2 Uwaga 2 Niech S b dzie zbiorem wielko±ci ω α+1, f funkcj o sko«czonej dziedzinie. Zaªó»my,»e min S = a 0 > 0. Wtedy istnieje a S oraz S S takie,» min S = a, S jest wielko±ci ω α oraz x < a 0 2(x domf f (x) < a f (x) max S ) Dowód: Niech S ω wielko±ci ω α+1, min S > 0. Oznaczmy a 0 = min S, b 0 = max S. Mamy H S ω α+1 (a 0 ) = b 0. Zatem H S ω α a 0 (a 0 ) = b 0. Lewa strona równa si (H S ω α)(a 0) (a 0 ) a 0 -krotnej iteracji funkcji H S ω α. Niech a k = (H S ω α)(k) (a 0 ), dla k = 0,..., a 0. Mamy a 0 < a 1 < < a a0 b 0, poniewa» a 0 > 0, ω α > 0.

14 Dowód uwagi 2 ci g dalszy Zauwa»my,»e obraz przedziaªu [0, a 0 3] przy f ma co najwy»ej a 0 2 elementy. Dla j 1 w±ród przedziaªów [a j, a j+1 ) jest zatem taki, który nie zawiera warto±ci f (x) dla x < a 0 2. Niech b dzie to [a j0, a j0 +1). Niech a = a j0, S = S [a j0, a j0 +1]. Mamy Hω S α(a j 0 ) = Hω S α(a j 0 ) = a j0 +1. Na mocy uwagi 1 wielko± S wynosi ω α. Je»eli x < a 0 2 i x domf, to f (x) / [a j0, a j0 +1), wi c f (x) < a j0 lub f (x) a j0 +1 = max S. Zatem a i S speªniaj» dane warunki.

15 Kluczowa uwaga Uwaga 3 Je»eli S jest zbiorem wielko±ci ω α, min S > 0 oraz f jest funkcj o sko«czonej dziedzinie, to istnieje S S taki,»e S ma wielko± α, S jest aproksymacj dla f oraz min S = min S. Dowód: Stosujemy indukcj wzgl dem α. Krok bazowy: Niech α = 0 i S wielko±ci ω α = 1. Ustalmy funkcj f o ko«czonej dziedznie. Wtedy S = {a 0, a 1 } oraz S = {a 0 } jest aproksymacj dla f.

16 Dowód uwagi 3 ci g dalszy Krok niegraniczny: Zaªó»my,»e S jest wielko±ci ω α+1 i f funkcja o sko«czonej dziedzinie. Niech a 1 S i S S otrzymane z uwagi 2, czyli S wielko±ci ω α, min S = a 1 oraz x < a 1 2(x domf f (x) < a f (x) max S ). Na mocy zaªo»enia indukcyjnego mamy S S wielko±ci α taki,»e min S = min S = a 1 oraz S jest aproksymacj dla f. Poka»emy,»e {a 0 } S jest szukan aproksymacj dla f mocy α + 1, gdzie a 0 = min S.

17 Dowód uwagi 3 ci g dalszy Mamy min({a 0 } S ) = a 0 = min S. Zaªó»my,»e S = {a 1,... a n }, wtedy mamy: H {a 0} S α+1 (a 0 ) = H {a 0} S α (H {a 0} S 1 (a 0 )) = H {a 0 S } α (a 1 ) = Hα S (a 1 ) = a n. Wi c {a 0 } S jest wielko±ci α + 1. Niech teraz a {a 0 } S, a < max({a 0 } S ), x < a 2. Je±li a = a j, dla j 1, to f (x) < a j+1 lub f (x) max S. Je»eli a = a 0, to f (x) < a 1 lub f (x) max S. wi c {a 0 } S jest szukan aproksymacj f.

18 Dowód uwagi 3 ci g dalszy Krok graniczny: Niech α graniczna i zaªó»my,»e dla β < α uwaga zachodzi. Niech S b dzie wielko±ci ω α, a 0 = min S i niech f ustalona. Wtedy S jest wielko±ci ω {α}(a 0) poniewa» max S = H S ω α(a 0) = H S ω {α}(a 0 ) (a 0 ). Z zaªo»enia indukcyjnego mamy S S wielko±ci {α}(a 0 ) taki,»e min S = a 0 i S jest aproksymacj f. Wtedy S jest wielko±ci α poniewa» H S α(a 0 ) = H S {α}(a 0 ) (a 0) = max S. Zatem S ma» dane wªasno±ci. Co ko«czy dowód.

19 Dowód Lematu 1 Niech a, b ω, a > 0. Je»eli H ω k n (a) < b, to: N A k n[i N (a, b)] Dowód: Zaªó»my,»e a > 0 i H ω k n (a) < b. Niech S = [a, H ω k n (a)] [a, b]. Wtedy S jest wielko±ci ω k n. Ustalmy f. Na mocy uwagi 1 mamy S S wielko±ci ωn 1 k, który jest aproksymacj dla f. Iteruj c t procedur n razy dostajemy: f 1 S 1 [a, b] f 2 S 2 S 1... f n S n S n 1 (( n S i jest aproksymacj f i ) i=1 ( n S i jest wielko±ci ω k n i (S n jest wielko±ci k)). i=1 Zatem A k n([a, b]).

20 Lemat 2 Lemat 2 Niech f i F b d jak w zaªo»eniu twierdzenia Wainera (f dowodliwie caªkowita w PA funkcja rekurencyjna, F Σ 1 formuªa reprezentuj ca j ). Zaªó»my,»e dla ka»dej pary n, k ω mamy: N x y[a k n(i (x, y)) F (x, y)]. Wtedy istnieje model M PA oraz a, b M takie,»e M N, M F [a, b] oraz dla dowolnych n, k ω M A k n[i M (a, b)]. Dowód: Ustalmy n, k ω. Mamy N x y(f (x, y) n,k n,k A k n (I (x, y)). Niech T nast puj ca teoria w j zyku PA {a, b}: Th(N ) {F (a, b)} {A k n(i (a, b)) n, k ω}. Poniewa» ka»dy sko«czony fragment teorii T ma model (< N ; a, b >, dla stosownie wybranych a, b ω), to równie» T ma model < M; a, b >. To ko«czy dowód.

21 Lemat 3 Lemat 3 Je»eli M PA, M N, a, b M, M przeliczalny oraz M A k n[i M (a, b)] dla wszystkich n, k ω, to istnieje odcinek I M taki,»e I PA, a I oraz b M I.

22 Szkic dowodu lematu 3 Denicja Niech M PA i niech I M odcinek w M. Mówimy,»e I jest mocny w M, je»eli dla ka»dej funkcji f M M deniowalnej w M istnieje e M I takie,»e dla x I zachodzi f (x) I lub f (x) e w modelu M. Szkic dowodu Pokazujemy,»e je»eli a, b M speªniaj zaªo»enia lematu, to istnieje I M mocny w M taki,»e a I oraz b M I. Nast pnie pokazujemy,»e je»eli odcinek jest mocny, to jest on uniwersum dla modelu PA i I M.

23 Dowód twierdzenia Wainera Dowód: Niech f dowodliwie rekurencyjna w PA funkcja rekurencyjna oraz F Σ 1 formuªa reprezentuj ca f. Przypu± my,»e dla n, k ω istnieje x ω takie,»e w modelu standardowym mamy x > 0 oraz f (x) > H ω k n (x). Z lematu 1 otrzymujemy N x y[a k n(i (x, y)) F (x, y)]. Na mocy lematu 2 otrzymujemy taki model M arytmetyki PA oraz a, b M,»e N M, M F (a, b) i dla dowolnych m, k ω M A k n[i M (a, b)]. Poniewa» M N zachodzi M x yf (x, y). Na mocy lematu 3 otrzymujemy odcinek I M taki,»e I PA, a I oraz b M I. Poniewa» PA x yf (x, y), to I yf [a/x]. Niech b I takie,»e I F (a, b ). Poniewa» F (x, y) jest Σ 1 -formuª i I M mamy równie» M F (a, b ). Ale M F (a, b) i b b poniewa» b / I i b I. Jednak z zaªo»enia o dowodliwej caªkowito±ci f mamy M x!yf (x, y). Sprzeczno±.

24 Zoa Adamowicz, Paweª Zbierski Logika Matematyczna. str

25 Dzi kuj za uwag

Ekstremalnie maªe zbiory

Ekstremalnie maªe zbiory Maªe jest pi kne Instytut Matematyki Uniwersytetu Warszawskiego Nadarzyn, 27.08.2011 Zbiory silnie miary zero Przypomnienie Zbiór X [0, 1] jest miary Lebesgue'a zero, gdy dla ka»dego ε > 0 istnieje ci

Bardziej szczegółowo

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy.

A = n. 2. Ka»dy podzbiór zbioru sko«czonego jest zbiorem sko«czonym. Dowody tych twierdze«(elementarne, lecz nieco nu» ce) pominiemy. Logika i teoria mnogo±ci, konspekt wykªad 12 Teoria mocy, cz ± II Def. 12.1 Ka»demu zbiorowi X przyporz dkowujemy oznaczany symbolem X obiekt zwany liczb kardynaln (lub moc zbioru X) w taki sposób,»e ta

Bardziej szczegółowo

Mierzalne liczby kardynalne

Mierzalne liczby kardynalne czyli o miarach mierz cych wszystko Instytut Matematyki Uniwersytetu Warszawskiego Grzegorzewice, 26 stycznia 2007 Ogólny problem miary Pytanie Czy na pewnym zbiorze X istnieje σ-addytywna miara probabilistyczna,

Bardziej szczegółowo

Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt:

Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: Zdzisªaw Dzedzej, Katedra Analizy Nieliniowej pok. 611 Kontakt: zdzedzej@mif.pg.gda.pl www.mif.pg.gda.pl/homepages/zdzedzej () 5 pa¹dziernika 2016 1 / 1 Literatura podstawowa R. Rudnicki, Wykªady z analizy

Bardziej szczegółowo

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1

JAO - J zyki, Automaty i Obliczenia - Wykªad 1. JAO - J zyki, Automaty i Obliczenia - Wykªad 1 J zyki formalne i operacje na j zykach J zyki formalne s abstrakcyjnie zbiorami sªów nad alfabetem sko«czonym Σ. J zyk formalny L to opis pewnego problemu decyzyjnego: sªowa to kody instancji (wej±cia)

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Prawdopodobie«stwo warunkowe, twierdzenie Bayesa, niezale»no± zdarze«.

Prawdopodobie«stwo warunkowe, twierdzenie Bayesa, niezale»no± zdarze«. Prawdopodobie«stwo warunkowe, twierdzenie Bayesa, niezale»no± zdarze«. Alicja Czy» WFTiMS April 14, 2010 Spis tre±ci 1 Wprowadzenie Denicja prawdopodobie«stwa warunkowego Twierdzenie Bayesa Niezale»no±

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Strategia czy intuicja?

Strategia czy intuicja? Strategia czy intuicja czyli o grach niesko«czonych Instytut Matematyki Uniwersytetu Warszawskiego Grzegorzewice, 29 sierpnia 2009 Denicja gry Najprostszy przypadek: A - zbiór (na ogóª co najwy»ej przeliczalny),

Bardziej szczegółowo

Metody dowodzenia twierdze«

Metody dowodzenia twierdze« Metody dowodzenia twierdze«1 Metoda indukcji matematycznej Je±li T (n) jest form zdaniow okre±lon w zbiorze liczb naturalnych, to prawdziwe jest zdanie (T (0) n N (T (n) T (n + 1))) n N T (n). 2 W przypadku

Bardziej szczegółowo

Automorzmy modeli i twierdzenie EhrenfeuchtaMostowskiego

Automorzmy modeli i twierdzenie EhrenfeuchtaMostowskiego Automorzmy modeli i twierdzenie EhrenfeuchtaMostowskiego Krzysztof Kapulkin IX Warsztaty Logiczne 5 12 lipca 2008 1 Wst p W referacie tym przedstawiamy wyniki uzyskane przez Andrzeja Ehrenfeuchta i Andrzeja

Bardziej szczegółowo

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X.

Relacj binarn okre±lon w zbiorze X nazywamy podzbiór ϱ X X. Relacje 1 Relacj n-argumentow nazywamy podzbiór ϱ X 1 X 2... X n. Je±li ϱ X Y jest relacj dwuargumentow (binarn ), to zamiast (x, y) ϱ piszemy xϱy. Relacj binarn okre±lon w zbiorze X nazywamy podzbiór

Bardziej szczegółowo

Twierdzenie Wedderburna Witold Tomaszewski

Twierdzenie Wedderburna Witold Tomaszewski Twierdzenie Wedderburna Witold Tomaszewski Pier±cie«przemienny P nazywamy dziedzin caªkowito±ci (lub po prostu dziedzin ) je±li nie posiada nietrywialnych dzielników zera. Pier±cie«z jedynk nazywamy pier±cieniem

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Preliminaria logiczne

Preliminaria logiczne Preliminaria logiczne Jerzy Pogonowski Zakªad Logiki i Kognitywistyki UAM www.kognitywistyka.amu.edu.pl http://logic.amu.edu.pl/index.php/dydaktyka pogon@amu.edu.pl MDTiAR Jerzy Pogonowski (MEG) Preliminaria

Bardziej szczegółowo

ELEMENTARNA TEORIA LICZB. 1. Podzielno±

ELEMENTARNA TEORIA LICZB. 1. Podzielno± ELEMENTARNA TEORIA LICZB IZABELA AGATA MALINOWSKA N = {1, 2,...} 1. Podzielno± Denicja 1.1. Niepusty podzbiór A zbioru liczb naturalnych jest ograniczony, je»eli istnieje taka liczba naturalna n 0,»e m

Bardziej szczegółowo

Przekroje Dedekinda 1

Przekroje Dedekinda 1 Przekroje Dedekinda 1 O liczbach wymiernych (tj. zbiorze Q) wiemy,»e: 1. zbiór Q jest uporz dkowany relacj mniejszo±ci < ; 2. zbiór liczb wymiernych jest g sty, tzn.: p, q Q : p < q w : p < w < q 3. 2

Bardziej szczegółowo

Wykªad 4. Funkcje wielu zmiennych.

Wykªad 4. Funkcje wielu zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 4. Funkcje wielu zmiennych. Zbiory na pªaszczy¹nie i w przestrzeni.

Bardziej szczegółowo

Metodydowodzenia twierdzeń

Metodydowodzenia twierdzeń 1 Metodydowodzenia twierdzeń Przez zdanie rozumiemy dowolne stwierdzenie, które jest albo prawdziwe, albo faªszywe (nie mo»e by ono jednocze±nie prawdziwe i faªszywe). Tradycyjnie b dziemy u»ywali maªych

Bardziej szczegółowo

Zbiory i odwzorowania

Zbiory i odwzorowania Zbiory i odwzorowania 1 Sposoby okre±lania zbiorów 1) Zbiór wszystkich elementów postaci f(t), gdzie t przebiega zbiór T : {f(t); t T }. 2) Zbiór wszystkich elementów x zbioru X speªniaj cych warunek ϕ(x):

Bardziej szczegółowo

Podstawy matematyki dla informatyków. Funkcje. Funkcje caªkowite i cz ±ciowe. Deniowanie funkcji. Wykªad pa¹dziernika 2012

Podstawy matematyki dla informatyków. Funkcje. Funkcje caªkowite i cz ±ciowe. Deniowanie funkcji. Wykªad pa¹dziernika 2012 Podstawy matematyki dla informatyków Wykªad 3 Funkcje 18 pa¹dziernika 2012 Deniowanie funkcji Funkcje caªkowite i cz ±ciowe Denicja wprost: f (x) = x + y f = λx. x + y Denicja warunkowa: { n/2, je±li n

Bardziej szczegółowo

Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1

Ciaªa i wielomiany. 1 Denicja ciaªa. Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Ciaªa i wielomiany 1 Denicja ciaªa Niech F b dzie zbiorem, i niech + (dodawanie) oraz (mno»enie) b d dziaªaniami na zbiorze F. Denicja. Zbiór F wraz z dziaªaniami + i nazywamy ciaªem,

Bardziej szczegółowo

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb Wybrane poj cia i twierdzenia z wykªadu z teorii liczb 1. Podzielno± Przedmiotem bada«teorii liczb s wªasno±ci liczb caªkowitych. Zbiór liczb caªkowitych oznacza b dziemy symbolem Z. Zbiór liczb naturalnych

Bardziej szczegółowo

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14

WST P DO TEORII INFORMACJI I KODOWANIA. Grzegorz Szkibiel. Wiosna 2013/14 WST P DO TEORII INFORMACJI I KODOWANIA Grzegorz Szkibiel Wiosna 2013/14 Spis tre±ci 1 Kodowanie i dekodowanie 4 1.1 Kodowanie a szyfrowanie..................... 4 1.2 Podstawowe poj cia........................

Bardziej szczegółowo

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych.

Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Wykªad jest prowadzony w oparciu o podr cznik Analiza matematyczna 2. Denicje, twierdzenia, wzory M. Gewerta i Z. Skoczylasa. Wykªad 7. Ekstrema lokalne funkcji dwóch zmiennych. Denicja Mówimy,»e funkcja

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Arytmetyka pierwszego rz du

Arytmetyka pierwszego rz du Arytmetyka pierwszego rz du B dziemy bada arytmetyk liczb naturalnych z z perspektywy logiki pierwszego rz du. Sªowo arytmetyka u»ywane jest w odniesieniu do ró»nych teorii dotycz cych liczb naturalnych.

Bardziej szczegółowo

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15

ARYTMETYKA MODULARNA. Grzegorz Szkibiel. Wiosna 2014/15 ARYTMETYKA MODULARNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Denicja kongruencji i jej podstawowe wªasno±ci 3 2 Systemy pozycyjne 8 3 Elementy odwrotne 12 4 Pewne zastosowania elementów odwrotnych

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych dr Krzysztof yjewski Informatyka I rok I 0 in» 12 stycznia 2016 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0 y 0 )

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej

Zadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej Zadania z analizy matematycznej - sem. II Ekstrema funkcji wielu zmiennych, twierdzenia o funkcji odwrotnej i funkcji uwikªanej Denicja 1. Niech X = R n b dzie przestrzeni unormowan oraz d(x, y) = x y.

Bardziej szczegółowo

Wielomiany o wspóªczynnikach rzeczywistych

Wielomiany o wspóªczynnikach rzeczywistych Wielomiany o wspóªczynnikach rzeczywistych Wielomian: W (x) = a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0 wspóªczynniki wielomianu: a 0, a 1, a 2,..., a n 1, a n ; wyraz wolny: a 0

Bardziej szczegółowo

Hotel Hilberta. Zdumiewaj cy ±wiat niesko«czono±ci. Marcin Kysiak. Festiwal Nauki, 20.09.2011. Instytut Matematyki Uniwersytetu Warszawskiego

Hotel Hilberta. Zdumiewaj cy ±wiat niesko«czono±ci. Marcin Kysiak. Festiwal Nauki, 20.09.2011. Instytut Matematyki Uniwersytetu Warszawskiego Zdumiewaj cy ±wiat niesko«czono±ci Instytut Matematyki Uniwersytetu Warszawskiego Festiwal Nauki, 20.09.2011 Nasze do±wiadczenia hotelowe Fakt oczywisty Hotel nie przyjmie nowych go±ci, je»eli wszystkie

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków Matematyka dyskretna dla informatyków Cz ± I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szyma«ski Uniwersytet im. Adama Mickiewicza Pozna«2007 4 Zależności rekurencyjne Wiele zale»no±ci

Bardziej szczegółowo

Przeksztaªcenia liniowe

Przeksztaªcenia liniowe Przeksztaªcenia liniowe Przykªady Pokaza,»e przeksztaªcenie T : R 2 R 2, postaci T (x, y) = (x + y, x 6y) jest przeksztaªceniem liniowym Sprawdzimy najpierw addytywno± przeksztaªcenia T Niech v = (x, y

Bardziej szczegółowo

Funkcje jednej zmiennej. Granica, ci gªo±. (szkic wykªadu)

Funkcje jednej zmiennej. Granica, ci gªo±. (szkic wykªadu) Funkcje jednej zmiennej Granica, ci gªo± (szkic wykªadu) opracowaªa Gra»yna Ciecierska 1 Granica funkcji Denicja Niech 0 R, r > 0 Otoczeniem punktu 0 o promieniu r nazywamy przedziaª ( 0 r, 0 +r) Otoczeniem

Bardziej szczegółowo

1 Poj cia pomocnicze. Przykªad 1. A A d

1 Poj cia pomocnicze. Przykªad 1. A A d Poj cia pomocnicze Otoczeniem punktu x nazywamy dowolny zbiór otwarty zawieraj cy punkt x. Najcz ±ciej rozwa»amy otoczenia kuliste, tj. kule o danym promieniu ε i ±rodku x. S siedztwem punktu x nazywamy

Bardziej szczegółowo

Zbiory ograniczone i kresy zbiorów

Zbiory ograniczone i kresy zbiorów Zbiory ograniczone i kresy zbiorów Def.. Liczb m nazywamy ograniczeniem dolnym a liczb M ograniczeniem górnym zbioru X R gdy (i) x m; (ii) x M. Mówimy,»e zbiór X jest ograniczony z doªu (odp. z góry) gdy

Bardziej szczegółowo

Indeksowane rodziny zbiorów

Indeksowane rodziny zbiorów Logika i teoria mnogo±ci, konspekt wykªad 7 Indeksowane rodziny zbiorów Niech X b dzie przestrzeni zbiorem, którego podzbiorami b d wszystkie rozpatrywane zbiory, R rodzin wszystkich podzbiorów X za± T

Bardziej szczegółowo

1 Metody iteracyjne rozwi zywania równania f(x)=0

1 Metody iteracyjne rozwi zywania równania f(x)=0 1 Metody iteracyjne rozwi zywania równania f()=0 1.1 Metoda bisekcji Zaªó»my,»e funkcja f jest ci gªa w [a 0, b 0 ]. Pierwiastek jest w przedziale [a 0, b 0 ] gdy f(a 0 )f(b 0 ) < 0. (1) Ustalmy f(a 0

Bardziej szczegółowo

Statystyka matematyczna - ZSTA LMO

Statystyka matematyczna - ZSTA LMO Statystyka matematyczna - ZSTA LMO Šukasz Smaga Wydziaª Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza w Poznaniu Wykªad 4 Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 4 1 / 18 Wykªad 4 - zagadnienia

Bardziej szczegółowo

Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja

Macierze. 1 Podstawowe denicje. 2 Rodzaje macierzy. Denicja Macierze 1 Podstawowe denicje Macierz wymiaru m n, gdzie m, n N nazywamy tablic liczb rzeczywistych (lub zespolonych) postaci a 11 a 1j a 1n A = A m n = [a ij ] m n = a i1 a ij a in a m1 a mj a mn W macierzy

Bardziej szczegółowo

Matematyka. Justyna Winnicka. rok akademicki 2016/2017. Szkoªa Gªówna Handlowa

Matematyka. Justyna Winnicka. rok akademicki 2016/2017. Szkoªa Gªówna Handlowa Matematyka Justyna Winnicka Szkoªa Gªówna Handlowa rok akademicki 2016/2017 kontakt, konsultacje, koordynator mail: justa_kowalska@yahoo.com, jkowal4@sgh.waw.pl, justyna.winnicka@sgh.waw.pl konsultacje:

Bardziej szczegółowo

Listy Inne przykªady Rozwi zywanie problemów. Listy w Mathematice. Marcin Karcz. Wydziaª Matematyki, Fizyki i Informatyki.

Listy Inne przykªady Rozwi zywanie problemów. Listy w Mathematice. Marcin Karcz. Wydziaª Matematyki, Fizyki i Informatyki. Wydziaª Matematyki, Fizyki i Informatyki 10 marca 2008 Spis tre±ci Listy 1 Listy 2 3 Co to jest lista? Listy List w Mathematice jest wyra»enie oddzielone przecinkami i zamkni te w { klamrach }. Elementy

Bardziej szczegółowo

1 Granice funkcji wielu zmiennych.

1 Granice funkcji wielu zmiennych. AM WNE 008/009. Odpowiedzi do zada«przygotowawczych do czwartego kolokwium. Granice funkcji wielu zmiennych. Zadanie. Zadanie. Pochodne. (a) 0, Granica nie istnieje, (c) Granica nie istnieje, (d) Granica

Bardziej szczegółowo

Ci gªy fragment rachunku µ

Ci gªy fragment rachunku µ Ci gªy fragment rachunku µ Marek Czarnecki Wydziaª Filozoi i Socjologii Uniwersytet Warszawski Wydziaª Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 28 maja 2009 Motywacje 1. Rozwa»amy

Bardziej szczegółowo

Zadania. 4 grudnia k=1

Zadania. 4 grudnia k=1 Zadania 4 grudnia 205 Zadanie. Poka»,»e dla dowolnych liczb zespolonych z,..., z n istnieje zbiór B {,..., n}, taki,»e n z k π z k. k B Zadanie 2. Jakie warunki musz speªnia ci gi a n i b n, aby istniaªy

Bardziej szczegółowo

MODEL HAHNFELDTA I IN. ANGIOGENEZY NOWOTWOROWEJ Z UWZGL DNIENIEM LEKOOPORNO CI KOMÓREK NOWOTWOROWYCH

MODEL HAHNFELDTA I IN. ANGIOGENEZY NOWOTWOROWEJ Z UWZGL DNIENIEM LEKOOPORNO CI KOMÓREK NOWOTWOROWYCH MODEL HAHNFELDTA I IN. ANGIOGENEZY NOWOTWOROWEJ Z UWZGL DNIENIEM LEKOOPORNO CI KOMÓREK NOWOTWOROWYCH Urszula Fory± Zakªad Biomatematyki i Teorii Gier, Instytut Matematyki Stosowanej i Mechaniki, Wydziaª

Bardziej szczegółowo

Czy funkcja zadana wzorem f(x) = ex e x. 1 + e. = lim. e x + e x lim. lim. 2 dla x = 1 f(x) dla x (0, 1) e e 1 dla x = 1

Czy funkcja zadana wzorem f(x) = ex e x. 1 + e. = lim. e x + e x lim. lim. 2 dla x = 1 f(x) dla x (0, 1) e e 1 dla x = 1 II KOLOKWIUM Z AM M1 - GRUPA A - 170101r Ka»de zadanie jest po 5 punktów Ostatnie zadanie jest nieobowi zkowe, ale mo»e dostarczy dodatkowe 5 punktów pod warunkiem rozwi zania pozostaªych zada«zadanie

Bardziej szczegółowo

ANALIZA MATEMATYCZNA Z ALGEBR

ANALIZA MATEMATYCZNA Z ALGEBR ANALIZA MATEMATYCZNA Z ALGEBR WYKŠAD II Maªgorzata Murat MACIERZ A rzeczywist (zespolon ) o m wierszach i n kolumnach nazywamy przyporz dkowanie ka»dej uporz dkowanej parze liczb naturalnych (i, j), gdzie

Bardziej szczegółowo

Oba zbiory s uporz dkowane liniowo. Badamy funkcj w pobli»u kresów dziedziny. Pewne punkty szczególne (np. zmiana denicji funkcji).

Oba zbiory s uporz dkowane liniowo. Badamy funkcj w pobli»u kresów dziedziny. Pewne punkty szczególne (np. zmiana denicji funkcji). Plan Spis tre±ci 1 Granica 1 1.1 Po co?................................. 1 1.2 Denicje i twierdzenia........................ 4 1.3 Asymptotyka, granice niewªa±ciwe................. 7 2 Asymptoty 8 2.1

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów 18 maja 2013 Twierdzenie Halla o maª»e«stwach Problem Wyobra¹my sobie,»e mamy m dziewczyn i pewn liczb chªopców. Ka»da dziewczyna chce wyj± za m», przy czym ka»da z nich godzi si po±lubi tylko pewnych

Bardziej szczegółowo

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15

ANALIZA NUMERYCZNA. Grzegorz Szkibiel. Wiosna 2014/15 ANALIZA NUMERYCZNA Grzegorz Szkibiel Wiosna 2014/15 Spis tre±ci 1 Metoda Eulera 3 1.1 zagadnienia brzegowe....................... 3 1.2 Zastosowanie ró»niczki...................... 4 1.3 Output do pliku

Bardziej szczegółowo

CAŠKA NIEOZNACZONA. Politechnika Lubelska. Z.Šagodowski. 18 lutego 2016

CAŠKA NIEOZNACZONA. Politechnika Lubelska. Z.Šagodowski. 18 lutego 2016 WYKŠAD CAŠKA NIEOZNACZONA Z.Šagodowski Politechnika Lubelska 8 lutego 06 Denicja CAŠKA NIEOZNACZONA Funkcja F jest funkcja pierwotn funkcji f na przedziale A, je»eli Zauwa»my,ze F (x) = f (x), dla ka»dego

Bardziej szczegółowo

COLT - Obliczeniowa teoria uczenia si

COLT - Obliczeniowa teoria uczenia si Hung Son Nguyen (UW) COLT - Obliczeniowa teoria uczenia si 2007 1 / 32 COLT - Obliczeniowa teoria uczenia si Hung Son Nguyen Institute of Mathematics, Warsaw University son@mimuw.edu.pl 2007 Hung Son Nguyen

Bardziej szczegółowo

Macierze i Wyznaczniki

Macierze i Wyznaczniki dr Krzysztof yjewski Mechatronika; S-I.in». 5 pa¹dziernika 6 Macierze i Wyznaczniki Kilka wzorów i informacji pomocniczych: Denicja. Tablic nast puj cej postaci a a... a n a a... a n A =... a m a m...

Bardziej szczegółowo

Matematyka dyskretna dla informatyków

Matematyka dyskretna dla informatyków Matematyka dyskretna dla informatyków Cz ± I: Elementy kombinatoryki Jerzy Jaworski Zbigniew Palka Jerzy Szyma«ski Uniwersytet im. Adama Mickiewicza Pozna«2007 2 Podstawowe zasady i prawa przeliczania

Bardziej szczegółowo

2 Podstawowe obiekty kombinatoryczne

2 Podstawowe obiekty kombinatoryczne 2 Podstawowe obiety ombinatoryczne Oznaczenia: N {0, 1, 2,... } zbiór liczb naturalnych. Dla n N przyjmujemy [n] {1, 2,..., n}. W szczególno±ci [0] jest zbiorem pustym. Je±li A jest zbiorem so«czonym,

Bardziej szczegółowo

2 Liczby rzeczywiste - cz. 2

2 Liczby rzeczywiste - cz. 2 2 Liczby rzeczywiste - cz. 2 W tej lekcji omówimy pozostaªe tematy zwi zane z liczbami rzeczywistymi. 2. Przedziaªy liczbowe Wyró»niamy nast puj ce rodzaje przedziaªów liczbowych: (a) przedziaªy ograniczone:

Bardziej szczegółowo

Algorytmy zwiazane z gramatykami bezkontekstowymi

Algorytmy zwiazane z gramatykami bezkontekstowymi Algorytmy zwiazane z gramatykami bezkontekstowymi Rozpoznawanie j zyków bezkontekstowych Problem rozpoznawania j zyka L polega na sprawdzaniu przynale»no±ci sªowa wej±ciowego x do L. Zakªadamy,»e j zyk

Bardziej szczegółowo

Ekstrema lokalne i punkty otwarto±ci funkcji ci gªej

Ekstrema lokalne i punkty otwarto±ci funkcji ci gªej Politechnika Šódzka, Instytut Matematyki Konopnica, maj 2016 Plan Wspóªautorzy Omawiane wyniki zostaªy uzyskane w pracy M. Balcerzak, M. Popªawski, J. Wódka, Local extrema and nonopenness points for continuous

Bardziej szczegółowo

ZADANIA. Maciej Zakarczemny

ZADANIA. Maciej Zakarczemny ZADANIA Maciej Zakarczemny 2 Spis tre±ci 1 Algebra 5 2 Analiza 7 2.1 Granice iterowane, granica podwójna funkcji dwóch zmiennych....... 7 2.2 Caªki powierzchniowe zorientowane...................... 8 2.2.1

Bardziej szczegółowo

f(x) f(x 0 ) i f +(x 0 ) := lim = f(x 0 + x) f(x 0 ) wynika ci gªo± funkcji w punkcie x 0. W ka»dym przypadku zachodzi:

f(x) f(x 0 ) i f +(x 0 ) := lim = f(x 0 + x) f(x 0 ) wynika ci gªo± funkcji w punkcie x 0. W ka»dym przypadku zachodzi: Pochodna funkcji Def 1 Pochodn wªa±ciw funkcji f w punkcie x 0 nazywamy granic f (x 0 ) := lim o ile granica ta istnieje i jest wªa±ciwa Funkcj f nazywamy wtedy ró»niczkowaln Przy zaªo»eniu,»e f jest ci

Bardziej szczegółowo

Aproksymacja funkcji metod najmniejszych kwadratów

Aproksymacja funkcji metod najmniejszych kwadratów Aproksymacja funkcji metod najmniejszych kwadratów Teoria Interpolacja polega na znajdowaniu krzywej przechodz cej przez wszystkie w zªy. Zdarzaj si jednak sytuacje, w których dane te mog by obarczone

Bardziej szczegółowo

Logika [dla Psychologii UW]

Logika [dla Psychologii UW] Logika [dla Psychologii UW] Tadeusz Ciecierski taci@uw.edu.pl Uniwersytet Warszawski 24 pa¹dziernika 2011 Tadeusz Ciecierski taci@uw.edu.pl (UniwersytetLogika[dla Warszawski) Psychologii UW] 24 pa¹dziernika

Bardziej szczegółowo

istnienie elementu neutralnego dodawania (zera): 0 K a K a + 0 = a, istnienie elementu neutralnego mno»enia (jedynki): 1 K a K a 1 = a,

istnienie elementu neutralnego dodawania (zera): 0 K a K a + 0 = a, istnienie elementu neutralnego mno»enia (jedynki): 1 K a K a 1 = a, Ciaªo Denicja. Zbiór K z dziaªaniami dodawania + oraz mno»enia (których argumentami s dwa elementy z tego zbioru, a warto±ciami elementy z tego zbioru) nazywamy ciaªem, je±li zawiera co najmniej dwa elementy

Bardziej szczegółowo

Metody numeryczne i statystyka dla in»ynierów

Metody numeryczne i statystyka dla in»ynierów Kierunek: Automatyka i Robotyka, II rok Wprowadzenie PWSZ Gªogów, 2009 Plan wykªadów Wprowadzenie, podanie zagadnie«, poj cie metody numerycznej i algorytmu numerycznego, obszar zainteresowa«i stosowalno±ci

Bardziej szczegółowo

I Rok LOGISTYKI: wykªad 2 Pochodna funkcji. iloraz ró»nicowy x y x

I Rok LOGISTYKI: wykªad 2 Pochodna funkcji. iloraz ró»nicowy x y x I Rok LOGISTYKI: wykªad 2 Pochodna funkcji Niech f jest okre±lona w Q(x 0, δ) i x Q(x 0, δ). Oznaczenia: x = x x 0 y = y y 0 = f(x 0 + x) f(x 0 ) y x = f(x 0 + x) f(x 0 ) iloraz ró»nicowy x y x = tgβ,

Bardziej szczegółowo

c Marcin Sydow Wst p Grafy i Zastosowania Wierzchoªki 8: Kolorowanie Grafów Mapy Kraw dzie Zliczanie Podsumowanie

c Marcin Sydow Wst p Grafy i Zastosowania Wierzchoªki 8: Kolorowanie Grafów Mapy Kraw dzie Zliczanie Podsumowanie 8: Kolorowanie Grafów Spis zagadnie«kolorowanie wierzchoªków Kolorowanie map Kolorowanie kraw dzi Wielomian chromatyczny Zastosowania Problem kolorowania grafów ma wiele odmian (np. kolorowanie wierzchoªków,

Bardziej szczegółowo

Funkcje rekurencyjne. Jerzy Pogonowski. MDTiAR 15xii2015

Funkcje rekurencyjne. Jerzy Pogonowski. MDTiAR 15xii2015 Jerzy Pogonowski Zakªad Logiki i Kognitywistyki UAM www.kognitywistyka.amu.edu.pl http://logic.amu.edu.pl/index.php/dydaktyka pogon@amu.edu.pl MDTiAR 15xii2015 Jerzy Pogonowski (MEG) Funkcje rekurencyjne

Bardziej szczegółowo

Programowanie funkcyjne. Wykªad 13

Programowanie funkcyjne. Wykªad 13 Programowanie funkcyjne. Wykªad 13 Siªa wyrazu rachunku lambda Zdzisªaw Spªawski Zdzisªaw Spªawski: Programowanie funkcyjne. Wykªad 13, Siªa wyrazu rachunku lambda 1 Wst p Warto±ci logiczne Liczby naturalne

Bardziej szczegółowo

Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach

Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Liniowe równania ró»niczkowe n tego rz du o staªych wspóªczynnikach Teoria obowi zuje z wykªadu, dlatego te» zostan tutaj przedstawione tylko podstawowe denicje, twierdzenia i wzory. Denicja 1. Równanie

Bardziej szczegółowo

Granular Computing 9999 pages 15 METODY SZTUCZNEJ INTELIGENCJI - PROJEKTY

Granular Computing 9999 pages 15 METODY SZTUCZNEJ INTELIGENCJI - PROJEKTY Granular Computing 9999 pages 15 METODY SZTUCZNEJ INTELIGENCJI - PROJEKTY PB 2 PB 1 Projekt z wyznaczania reduktów zbioru Liczba osób realizuj cych projekt: 1-2 osoby 1. Wczytanie danych w formatach arf,

Bardziej szczegółowo

*** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów

*** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów *** Teoria popytu konsumenta *** I. Pole preferencji konsumenta 1. Przestrze«towarów 2. Relacja preferencji konsumenta 3. Optymalny koszyk towarów I.1 Przestrze«towarów Podstawowe poj cia Rynek towarów

Bardziej szczegółowo

Matematyka 15h dla studiów doktoranckich na kierunku Informatyka

Matematyka 15h dla studiów doktoranckich na kierunku Informatyka Matematyka 15h dla studiów doktoranckich na kierunku Informatyka Marcin Korze«Zachodniopomorski Uniwersytet Technologiczny, Wydziaª Informatyki, Katedra Metod Sztucznej Inteligencji i Matematyki Stosowanej

Bardziej szczegółowo

Kompresja punktów na krzywych eliptycznych

Kompresja punktów na krzywych eliptycznych R. Dryªo (IMPAN) Kompresja na krzywych eliptycznych KBBS 2015 1 / 21 Kompresja punktów na krzywych eliptycznych Robert Dryªo IMPAN II Konferencja Naukowo Przemysªowa KBBS Zielona Góra, 17-18 marzec 2015

Bardziej szczegółowo

Materiaªy dydaktyczne 1. Funkcje tworz ce. Czesªaw Bagi«ski

Materiaªy dydaktyczne 1. Funkcje tworz ce. Czesªaw Bagi«ski Materiaªy dydaktyczne Funkcje tworz ce Czesªaw Bagi«ski Szereg formalny o wspóªczynnikach rzeczywistych a 0, a, a 2,..., to mówi c maªo precyzyjnie, wyra»enie postaci A(x a n x n. Nie wdaj c si w formalizmy

Bardziej szczegółowo

Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 6

Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 6 Modele liniowe i mieszane na przykªadzie analizy danych biologicznych - Wykªad 6 Tomasz Suchocki Uniwersytet Przyrodniczy we Wrocªawiu Katedra Genetyki i Ogólnej Hodowli Zwierz t Plan wykªadu Model mieszany

Bardziej szczegółowo

Równowano modeli oblicze

Równowano modeli oblicze Równowano modeli oblicze Interpretacja rachunku 1 2 Twierdzenie Gödla o pełnoci Interpretacja jzyka FOL W 1931 K. Gödel udowodnił, e Jeeli formuła jest prawdziwa, to istnieje dowód tej formuły. Problem

Bardziej szczegółowo

Statystyka matematyczna - ZSTA LMO

Statystyka matematyczna - ZSTA LMO Statystyka matematyczna - ZSTA LMO Šukasz Smaga Wydziaª Matematyki i Informatyki Uniwersytet im. Adama Mickiewicza w Poznaniu Wykªad 1 Šukasz Smaga (WMI UAM) ZSTA LMO Wykªad 1 1 / 28 Kontakt Dr Šukasz

Bardziej szczegółowo

1 Bª dy i arytmetyka zmiennopozycyjna

1 Bª dy i arytmetyka zmiennopozycyjna 1 Bª dy i arytmetyka zmiennopozycyjna Liczby w pami ci komputera przedstawiamy w ukªadzie dwójkowym w postaci zmiennopozycyjnej Oznacza to,»e s one postaci ±m c, 01 m < 1, c min c c max, (1) gdzie m nazywamy

Bardziej szczegółowo

CAŠKOWANIE METODAMI MONTE CARLO Janusz Adamowski

CAŠKOWANIE METODAMI MONTE CARLO Janusz Adamowski III. CAŠKOWAIE METODAMI MOTE CARLO Janusz Adamowski 1 1 azwa metody Podstawowym zastosowaniem w zyce metody Monte Carlo (MC) jest opis zªo-»onych ukªadów zycznych o du»ej liczbie stopni swobody. Opis zªo»onych

Bardziej szczegółowo

Waldemar Sieg. Topologia dziedziny a rozkªady pewnych funkcji pierwszej klasy Baire'a na sumy i ró»nice funkcji o domkni tym wykresie

Waldemar Sieg. Topologia dziedziny a rozkªady pewnych funkcji pierwszej klasy Baire'a na sumy i ró»nice funkcji o domkni tym wykresie Uniwersytet im. Adama Mickiewicza w Poznaniu Wydziaª Matematyki i Informatyki Waldemar Sieg Topologia dziedziny a rozkªady pewnych funkcji pierwszej klasy Baire'a na sumy i ró»nice funkcji o domkni tym

Bardziej szczegółowo

WST P DO MATEMATYKI WSPÓŠCZESNEJ. Grzegorz Szkibiel. Jesie«2004/05

WST P DO MATEMATYKI WSPÓŠCZESNEJ. Grzegorz Szkibiel. Jesie«2004/05 WST P DO MATEMATYKI WSPÓŠCZESNEJ Grzegorz Szkibiel Jesie«2004/05 Spis tre±ci 1 Elementy rachunku funkcyjnego 4 1.1 Elementy rachunku zda«..................... 4 1.2 Kwantykatory jako funktory zdaniotwórcze..........

Bardziej szczegółowo

Cz ± I. Analiza Matematyczna I

Cz ± I. Analiza Matematyczna I Cz ± I Analiza Matematyczna I ROZDZIAŠ Wst p.. Logika B dziemy rozwa»a zdania, o których mo»emy zawsze stwierdzi, czy s prawdziwe, czy faªszywe. Z punktu widzenia logiki istotne jest wyª cznie to, czy

Bardziej szczegółowo

. 0 0... 1 0. 0 0 0 0 1 gdzie wektory α i tworz baz ortonormaln przestrzeni E n

. 0 0... 1 0. 0 0 0 0 1 gdzie wektory α i tworz baz ortonormaln przestrzeni E n GAL II 2013-2014 A. Strojnowski str.45 Wykªad 20 Denicja 20.1 Przeksztaªcenie aniczne f : H H anicznej przestrzeni euklidesowej nazywamy izometri gdy przeksztaªcenie pochodne f : T (H) T (H) jest izometri

Bardziej szczegółowo

KLASYCZNE ZDANIA KATEGORYCZNE. ogólne - orzekaj co± o wszystkich desygnatach podmiotu szczegóªowe - orzekaj co± o niektórych desygnatach podmiotu

KLASYCZNE ZDANIA KATEGORYCZNE. ogólne - orzekaj co± o wszystkich desygnatach podmiotu szczegóªowe - orzekaj co± o niektórych desygnatach podmiotu ➏ Filozoa z elementami logiki Na podstawie wykªadów dra Mariusza Urba«skiego Sylogistyka Przypomnij sobie: stosunki mi dzy zakresami nazw KLASYCZNE ZDANIA KATEGORYCZNE Trzy znaczenia sªowa jest trzy rodzaje

Bardziej szczegółowo

Algorytmy i struktury danych

Algorytmy i struktury danych Algorytmy i struktury danych Wykªad III wyszukiwanie c.d. Paweª Rembelski PJWSTK 16 pa¹dziernika 2009 Paweª Rembelski (PJWSTK) Algorytmy i struktury danych 16 pa¹dziernika 2009 1 / 46 1 Podziaª wzgl dem

Bardziej szczegółowo

Wykªady z analizy matematycznej dla studentów informatyki Politechniki Lubelskiej. A. Bobrowski

Wykªady z analizy matematycznej dla studentów informatyki Politechniki Lubelskiej. A. Bobrowski Wykªady z analizy matematycznej dla studentów informatyki Politechniki Lubelskiej A. Bobrowski Spis tre±ci Teoria zbie»no±ci ci gów liczbowych strona 6. Gªówne zagadnienia 6.2 Granice sko«czone i niesko«czone

Bardziej szczegółowo

Analiza matematyczna dla informatyków Notatki z wykªadu. Maciej Paluszy«ski

Analiza matematyczna dla informatyków Notatki z wykªadu. Maciej Paluszy«ski Analiza matematyczna dla informatyków Notatki z wykªadu Maciej Paluszy«ski 7 grudnia 2007 Liczby rzeczywiste i zespolone Liczby rzeczywiste Nie b dziemy szczegóªowo zajmowa si konstrukcj zbioru liczb rzeczywistych.

Bardziej szczegółowo

Funkcja kwadratowa, wielomiany oraz funkcje wymierne

Funkcja kwadratowa, wielomiany oraz funkcje wymierne Funkcja kwadratowa, wielomiany oraz funkcje wymierne Šukasz Dawidowski Nocne powtórki maturalne 28 kwietnia 2014 r. Troch teorii Funkcj f : R R dan wzorem: f (x) = ax 2 + bx + c gdzie a 0 nazywamy funkcj

Bardziej szczegółowo

Wstęp do Matematyki (4)

Wstęp do Matematyki (4) Wstęp do Matematyki (4) Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Liczby kardynalne Jerzy Pogonowski (MEG) Wstęp do Matematyki (4) Liczby kardynalne 1 / 33 Wprowadzenie

Bardziej szczegółowo

Maksymalna liczba punktów do zdobycia: 80. Zadanie 1: a) 6 punktów, b) 3 punkty, Zadanie 2: a) 6 punktów, b) 4 punkty,

Maksymalna liczba punktów do zdobycia: 80. Zadanie 1: a) 6 punktów, b) 3 punkty, Zadanie 2: a) 6 punktów, b) 4 punkty, VII Wojewódzki Konkurs Matematyczny "W ±wiecie Matematyki" im. Prof. Wªodzimierza Krysickiego Etap drugi - 17 lutego 2015 r. Maksymalna liczba punktów do zdobycia: 80. 1. Drugi etap Konkursu skªada si

Bardziej szczegółowo

p q, czyli p2 = 2q 2 gdzie p, q s wzgl dnie pierwsze. Mamy w takiej sytuacji trzy mo»liwo±ci: 2 = i) obie liczby p, q s nieparzyste;

p q, czyli p2 = 2q 2 gdzie p, q s wzgl dnie pierwsze. Mamy w takiej sytuacji trzy mo»liwo±ci: 2 = i) obie liczby p, q s nieparzyste; Liczby rzeczywiste. Dlaczego nie wystarczaj liczby wymierne Analiza zajmuje si problemami, w których pojawia si przej±cie graniczne. Przykªadami takich problemów w matematyce b d¹ zyce mog by :. Poj cie

Bardziej szczegółowo

Elementarna statystyka Test Istotno±ci (Tests of Signicance)

Elementarna statystyka Test Istotno±ci (Tests of Signicance) Elementarna statystyka Test Istotno±ci (Tests of Signicance) Alexander Bendikov Uniwersytet Wrocªawski 16 kwietnia 2016 Elementarna statystyka Test Istotno±ci (Tests of Signicance) 16 kwietnia 2016 1 /

Bardziej szczegółowo

Sprawy organizacyjne

Sprawy organizacyjne Sprawy organizacyjne Literatura Wykªad b dzie w zasadzie samowystarczalny. Oto kilka pozycji przydatnej literatury uzupeªniaj cej wszystkie pozycje zostaªy wydane przez PWN): Andrzej Birkholc, Analiza

Bardziej szczegółowo

Adam Kanigowski nr albumu: 233182

Adam Kanigowski nr albumu: 233182 Uniwersytet Mikoªaja Kopernika Wydziaª Matematyki i Informatyki Katedra Nieliniowej Analizy Matematycznej i Topologii Adam Kanigowski nr albumu: 233182 Praca Magisterska na kierunku matematyka Twierdzenia

Bardziej szczegółowo

Tablice wzorów z probabilistyki

Tablice wzorów z probabilistyki Akademia Górniczo - Hutnicza im. Stanisªawa Staszica Wydziaª Elektrotechniki, Automatyki, Informatyki i In»ynierii Biomedycznej Kierunek: Automatyka i robotyka Tablice wzorów z probabilistyki Prowadz cy:

Bardziej szczegółowo

Technologie Informacyjne

Technologie Informacyjne Technologie Informacyjne Wykªad 5 Paweª Witkowski MIM UW Wiosna 2012 P. Witkowski (MIM UW) Technologie Informacyjne Wiosna 2012 1 / 1 WYSZUKAJ.PIONOWO WYSZUKAJ.PIONOWO(kryterium wyszukiwania; macierz;

Bardziej szczegółowo

GRUPA PODSTAWOWA I X. GRZEGORZ ZBOROWSKI

GRUPA PODSTAWOWA I X. GRZEGORZ ZBOROWSKI GRUPA PODSTAWOWA GRZEGORZ ZBOROWSKI 1. Definicja i podstawowe poj cia Pierwszym krokiem do zdeniowania grupy podstawowej b dzie poj cie drogi w przestrzeni topologicznej, czyli mówi c nie±ci±le, krzywej

Bardziej szczegółowo