Wykład 4: Fraktale deterministyczne i stochastyczne

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wykład 4: Fraktale deterministyczne i stochastyczne"

Transkrypt

1 Wykład 4: Fraktale deterministycne i stochastycne Fiyka komputerowa 005 Kataryna Weron, kweron@ift.uni.wroc.pl Co to jest fraktal? Złożona budowa dowolnie mały jego fragment jest równie skomplikowany jak całość. Samopodobieństwo - dowolnie mały jego kawałek, odpowiednio powięksony, prypomina do łudenia cały biór lub jego nacną cęść. Wymiar fraktalny jest licbą niecałkowitą. (c) 003 K&R Weron Klasyfikacja fraktali Fraktale deterministycne geometrycne łożone pomniejsonych kopii całości np. Zbiór Cantora, krywa Kocha algebraicne - iteracja funkcji nieliniowych: biór Mandelbrota, biory Julii, drewo Feigenbauma itd.. Fraktale stochastycne Trajektoria błądenia losowego DLA klaster perkolujący Dywan Sierpińskiego Każdy kwadrat dielimy na diewięć równych cęści i usuwamy środkową krok krok krok 5 (c) 003 K&R Weron 3 (c) 003 K&R Weron 4 Jakie jest pole powierchni dywanu Sierpińskiego? Bok kwadratu równy W pierwsym kroku usuwamy kwadrat o boku /3, tn. o polu /9. W drugim kroku usuwamy 8 kwadratów o długości boku (/3)^. Pole powierchni każdego nich jest równe (/3)^4. Suma pól powierchni kwadratów usuniętych w drugim kroku wynosi 8* (/3)^4. Jakie jest pole powierchni dywanu Sierpińskiego? W k-tym kroku usuwamy 8^(k-) kwadratów o długości boku (/3)^k. Po k krokach suma usuniętych pól: Pole powierchni dywanu = -=0 k L+ 3 k = L k = = k k (c) 003 K&R Weron 5 (c) 003 K&R Weron 6

2 Trójkąt Sierpińskiego Piramida Sierpińskiego Środki boków trójkąta łącymy odcinkami i usuwamy środkowy trójkąt. Łącymy odcinkami środki krawędi cworościanu i usuwamy bryłę, której krawędiami są te odcinki. (c) 003 K&R Weron 7 Płatek śniegu, Koch 904 (c) 003 K&R Weron 8 Zbiór Cantora Każdy bok trójkąta dielimy na try równe cęści i doklejamy do cęści środkowej, tak jak na rysunku, trójkąt równobocny o boku try ray krótsym. N ε /3 4 /9 8 /7 d c = lim log n / log 3n n (c) 003 K&R Weron 9 d c = log / log 3 < (c) 003 K&R Weron 0 Wymiar fraktalny samopodobieństwa Wymiary samopodobieństwa: Dla dowolnego obiektu samopodobnego istnieje wiąek międy współcynnikiem redukcji s (skalą), a licbą cęści n na które obiekt może być podielony: obiekt skala licba elementów wymiar Krywa Kocha (/3)^k 4^k log4/log3 Zbiór Cantora (/3)^k ^k log/log3 Trójkąt (/)^k Sierpińskiego 3^k log3/log n = s D (c) 003 K&R Weron (c) 003 K&R Weron

3 Co to jest wymiar? Skala podwójnie logarytmicna (log-log scale) n = s D kd skala s licba n /8 64=4^4 /4 6=4^ / 4=4^ =4^0 k D 4 = 4 = D = (c) 003 K&R Weron 3 y = a b log y = loga + blog y' = log y, ' = log y' = loga + b' nachylenie prostej (c) 003 K&R Weron 4 Jak mieryć linię bregową? Wybreże linia prosta L N długość (c) 003 K&R Weron 5 (c) 003 K&R Weron 6 Wybreże Irlandii Długość wybreża Irlandii L N długość (c) 003 K&R Weron 7 (c) 003 K&R Weron 8 3

4 log(n) Irlandia w log-log Zlepek DLA też jest fraktalem -.3 Można go skonstruować pre prosty proces stochastycny (popredni wykład) (c) 003 K&R Weron 9 (c) 003 K&R Weron 0 Jaki jest wymiar (fraktalny) DLA? Wymiar pudełkowy (metoda bocounting) Bocounting: Bocounting: Bok: L=/8 Bok: L=/8 Licba pudełek o boku L potrebnych do pokrycia DLA N(L)=? Licba pudełek o boku L potrebnych do pokrycia DLA N(L)= 46 (c) 003 K&R Weron (c) 003 K&R Weron Narysuj to w log-log u Zbiory Julii Wymiar pudełkowy d = - nachylenie prostej Dla każdego punktu 0 (espolone) tworymy ciąg,, 3,... iterując funkcję kwadratową + c Fraktal! d=.7 log(l) Jeżeli ciąg nie ucieka do nieskońconości to punkt 0 należy do bioru więźniów W; Jeżeli ciąg ucieka do nieskońconości to 0 należy do bioru uciekinierów U; Granica międy biorami W i U to biór Julii (c) 003 K&R Weron 3 (c) 003 K&R Weron 4 4

5 Powtórka licb espolonych Co to nacy pomnożyć dwie licby espolone? = + iy = y v r u r ep( iϕ ) y 3 r r ψ α=+ψ = r ep( iϕ) = r ep( iψ ) i( ϕ + ψ ) = = rr e 3 (c) 003 K&R Weron 5 (c) 003 K&R Weron 6 Dynamika prekstałcenia ^ n+ = n +c y Uc Moduł 0,8 0,64 0,4096 0,678 0,08 0,0008 argument (stopnie) Moduł argument (stopnie) 43439, 9 (c) 003 K&R Weron Moduł,5,5 5,06 5,63 656,9 argument (stopnie) Wc Zbiór Julii dla c=0 (okrąg) Prykład: c= 0,5 +0,5i Co to nacy nieskońconość? Breg jest araem biorem Julii i fraktalem. (c) 003 K&R Weron 9 Punkt ucieknie do nieskońconości jeżeli kolejna iteracja prekrocy r(c)=ma( c,). Pierwse prybliżenie bioru uciekinierów U to dysk o promieniu r(c). Kolejne prybliżenie dadą punkty, które po pierwsej iteracji uciekną poa obsar o promieniu r(c). Itd. (c) 003 K&R Weron 30 5

6 Jak ważny jest cas? Jak ważny jest cas - prykład Załóżmy, że 0,..., 00 leżą w odległości mniejsej niż od punktu pocątkowego. Cy ciąg nigdy nie ucieknie do nieskońconości? Niestety nie wiemy! Musimy wybrać maksymalną licbę iteracji N. Decyja: więksa dokładność i dłżsy cas. N = 0; N = 50. (c) 003 K&R Weron 3 (c) 003 K&R Weron 3 Prykłady biorów Julii Zbiór Mandelbrota c = -0.5 c = i c = i c = i c = i c = i c = i c = i c = i (c) 003 K&R Weron 33 Zbiór tych c, dla których biory Julii są spójne. Dla każdego c, acynamy 0 = 0 i generujemy ciąg,, 3,... iterując n -> n + c = n+ Jeżeli ciąg nie ucieka do nieskońconosci, wtedy c należy do bioru Mandelbrota M. Uwagi dotycące kryterium uciecki do nieskońconośi są takie same jak pry biorach Julii. (c) 003 K&R Weron 34 Zajryj w głąb bioru Mandelbrota Analogi bioru Mandelbrota dla wyżsych potęg (c) 003 K&R Weron 35 (c) 003 K&R Weron 36 6

Fraktale deterministyczne i stochastyczne. Katarzyna Weron Katedra Fizyki Teoretycznej

Fraktale deterministyczne i stochastyczne. Katarzyna Weron Katedra Fizyki Teoretycznej Fraktale deterministyczne i stochastyczne Katarzyna Weron Katedra Fizyki Teoretycznej Szare i Zielone Scena z Fausta Goethego (1749-1832), Mefistofeles do doktora (2038-2039): Wszelka, mój bracie, teoria

Bardziej szczegółowo

Fraktale - wprowadzenie

Fraktale - wprowadzenie Fraktale - wprowadenie Próba definici fraktala Jak określamy biory naywane fraktalami? Prykłady procedur konstrukci fraktali W aki sposób b diała aą algorytmy generaci nabardie nanych fraktali? Jakie własnow

Bardziej szczegółowo

FRAKTALE I SAMOPODOBIEŃSTWO

FRAKTALE I SAMOPODOBIEŃSTWO FRAKTALE I SAMOPODOBIEŃSTWO Mariusz Gromada marzec 2003 mariusz.gromada@wp.pl http://multifraktal.net 1 Wstęp Fraktalem nazywamy każdy zbiór, dla którego wymiar Hausdorffa-Besicovitcha (tzw. wymiar fraktalny)

Bardziej szczegółowo

Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona.

Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona. Wykład - LICZBY ZESPOLONE Algebra licb espolonych, repreentacja algebraicna i geometrycna, geometria licb espolonych. Moduł, argument, postać trygonometrycna, wór de Moivre a.' Zbiór Licb Zespolonych Niech

Bardziej szczegółowo

FRAKTALE. nie tworzą się z przypadku. Są tworzone naturalnie przez otaczającą nas przyrodę, bądź za pomocą

FRAKTALE. nie tworzą się z przypadku. Są tworzone naturalnie przez otaczającą nas przyrodę, bądź za pomocą Małgorzata Mielniczuk FRAKTALE Poniższy referat będzie traktować o fraktalach, majestatycznych wzorach, których kręte linie nie tworzą się z przypadku. Są tworzone naturalnie przez otaczającą nas przyrodę,

Bardziej szczegółowo

Fraktale wokół nas. Leszek Rudak Uniwersytet Warszawski. informatyka +

Fraktale wokół nas. Leszek Rudak Uniwersytet Warszawski. informatyka + Fraktale wokół nas Leszek Rudak Uniwersytet Warszawski informatyka + 1 Podobieństwo figur informatyka + 2 Figury podobne Figury są podobne gdy proporcjonalnie zwiększając lub zmniejszając jedną z nich

Bardziej szczegółowo

Ekoenergetyka Matematyka 1. Wykład 1.

Ekoenergetyka Matematyka 1. Wykład 1. Ekoenergetyka Matematyka 1. Wykład 1. Literatura do wykładu M. Gewert, Z. Skocylas, Analia matematycna 1; T. Jurlewic, Z. Skocylas, Algebra liniowa 1; Stankiewic, Zadania matematyki wyżsej dla wyżsych

Bardziej szczegółowo

Podręcznik. Przykład 1: Wyborcy

Podręcznik. Przykład 1: Wyborcy MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 5892 424 http://www.neuroinf.pl/members/danek/swps/ Iwo Białynicki-Birula Iwona Białynicka-Birula

Bardziej szczegółowo

Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego

Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego Wstęp Rekurencja jest to wywołanie podprogramu (procedury) samej przez siebie. W logo zapis rekurencji będzie wyglądał następująco: oto nazwa_funkcji czynności_wykonywane_przez_procedurę nazwa_funkcji

Bardziej szczegółowo

W takim modelu prawdopodobieństwo konfiguracji OR wynosi. 0, 21 lub , 79. 6

W takim modelu prawdopodobieństwo konfiguracji OR wynosi. 0, 21 lub , 79. 6 achunek prawdopodobieństwa MP6 Wydiał Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab.. Jurlewic Prykłady do listy : Prestreń probabilistycna. Prawdopodobieństwo klasycne. Prawdopodobieństwo

Bardziej szczegółowo

Obrazy rekurencyjne. Zastosowanie rekurencji w algorytmice. AUTOR: Martin Śniegoń

Obrazy rekurencyjne. Zastosowanie rekurencji w algorytmice. AUTOR: Martin Śniegoń Obrazy rekurencyjne Zastosowanie rekurencji w algorytmice AUTOR: Martin Śniegoń Zdolność procedury/funkcji do wywoływania samej siebie Podstawowa i jedna z najważniejszych technik programistycznych Umożliwia

Bardziej szczegółowo

Obliczenia inspirowane Naturą

Obliczenia inspirowane Naturą Obliczenia inspirowane Naturą Wykład 06 Geometria fraktalna Jarosław Miszczak IITiS PAN Gliwice 20/10/2016 1 / 43 1 Określenie nieformalne 2 Zbiór Mandelbrota 3 Określenie nieformalne pudełkowy Inne definicje

Bardziej szczegółowo

Zadania domowe. Ćwiczenie 2. Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL

Zadania domowe. Ćwiczenie 2. Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL Zadania domowe Ćwiczenie 2 Rysowanie obiektów 2-D przy pomocy tworów pierwotnych biblioteki graficznej OpenGL Zadanie 2.1 Fraktal plazmowy (Plasma fractal) Kwadrat należy pokryć prostokątną siatką 2 n

Bardziej szczegółowo

Fraktale. i Rachunek Prawdopodobieństwa

Fraktale. i Rachunek Prawdopodobieństwa Fraktale i Rachunek Prawdopodobieństwa Przyjrzyjmy się poniższemu rysunkowi, przedstawiającemu coś,, co kształtem tem przypomina drzewo o bardzo regularnej strukturze W jaki sposób b najłatwiej atwiej

Bardziej szczegółowo

Modele i symulacje - Scratch i Excel

Modele i symulacje - Scratch i Excel Instytut Matematyki Uniwersytet Gdański Literatura P. Szlagowski, Programowanie wizualne scratch 2.0 SCRATCH jest językiem programowania, w którym możesz stworzyć własne interaktywne historyjki, animacje,

Bardziej szczegółowo

samopodobnym nieskończenie subtelny

samopodobnym nieskończenie subtelny Fraktale Co to jest fraktal? Według definicji potocznej fraktal jest obiektem samopodobnym tzn. takim, którego części są podobne do całości lub nieskończenie subtelny czyli taki, który ukazuje subtelne

Bardziej szczegółowo

A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)!

A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)! Wstęp do rachunku prawdopodobieństwa i statystyki matematycnej MAP037 wykład dr hab. A. Jurlewic WPPT Fiyka, Fiyka Technicna, I rok, II semestr Prykłady - Lista nr : Prestreń probabilistycna. Prawdopodobieństwo

Bardziej szczegółowo

START. Wprowadź (v, t) S:=v*t. Wyprowadź (S) KONIEC

START. Wprowadź (v, t) S:=v*t. Wyprowadź (S) KONIEC GRUPA I Co to jest algorytm, a czym jest program komputerowy? Algorytm: uporządkowany i uściślony sposób rozwiązywania problemu, zawierający szczegółowy opis wykonywanych czynności. Program komputerowy:

Bardziej szczegółowo

Plan prezentacji. Cechy charakterystyczne fraktali Zastosowanie fraktali Wymiar fraktalny D. Iteracyjny system funkcji (IFS)

Plan prezentacji. Cechy charakterystyczne fraktali Zastosowanie fraktali Wymiar fraktalny D. Iteracyjny system funkcji (IFS) Fraktale Plan prezentacji Wprowadzenie Cechy charakterystyczne fraktali Zastosowanie fraktali Wymiar fraktalny D Klasyczne fraktale Iteracyjny system funkcji (IFS) L-system Zbiory Julii i Mandelbrota Ruchy

Bardziej szczegółowo

Fraktale w matematyce

Fraktale w matematyce Zeszyty Koła Naukowego Młodych sekcja matematyczno naukowo - techniczna Fraktale w matematyce Zeszyt I 009/00r. Spis treści:. Definicja fraktala. Przykłady fraktali 4. Zbiór Cantora.4. Dywan Sierpińskiego.

Bardziej szczegółowo

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE . Oblicyć: ZADANIA Z FUNKCJI ANALITYCZNYCH a) ( 7i) ( 9i); b) (5 i)( + i); c) 4+3i ; LICZBY ZESPOLONE d) 3i 3i ; e) pierwiastki kwadratowe 8 + i.. Narysować biór tych licb espolonych, które spełniają warunek:

Bardziej szczegółowo

Sierpiński Carpet Project. W ZSTiL Zespół Szkół Technicznych i Licealnych

Sierpiński Carpet Project. W ZSTiL Zespół Szkół Technicznych i Licealnych Sierpiński Carpet Project W ZSTiL Zespół Szkół Technicznych i Licealnych Co to jest fraktal? Fraktale są obiektami matematycznymi, których podstawowa struktura powtarza się przy różnych powiększeniach.

Bardziej szczegółowo

SPRAWDZIAN NR Zaznacz poprawne dokończenie zdania. 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych skonstruuj kąt o

SPRAWDZIAN NR Zaznacz poprawne dokończenie zdania. 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych skonstruuj kąt o SPRAWDZIAN NR 1 ANNA KLAUZA IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Średnica koła jest o 4 cm dłuższa od promienia. Pole tego koła jest równe 2. Narysuj dowolny kąt rozwarty ABC, a następnie przy pomocy dwusiecznych

Bardziej szczegółowo

Funkcje zespolone. 2 Elementarne funkcje zespolone zmiennej zespolonej

Funkcje zespolone. 2 Elementarne funkcje zespolone zmiennej zespolonej Wyiał Matematyki Stosowanej Zestaw adań nr 8 Akademia Górnico-Hutnica w Krakowie WFiIS, informatyka stosowana, II rok Elżbieta Adamus grudnia 206r. Funkcje espolone Ciągi i seregi licb espolonych Zadanie.

Bardziej szczegółowo

Zbiór Cantora. Diabelskie schody.

Zbiór Cantora. Diabelskie schody. Zbiór Cantora. Diabelskie schody. Autor: Norbert Miękina Zespół Szkół nr 3 im. ks. prof. Józefa Tischnera ul. Krakowska 20 32-700 Bochnia tel. 14 612-27-79 Opiekun: mgr Barbara Góra 1 W matematyce sztuka

Bardziej szczegółowo

Rys. 1. Kalafior podzielony na coraz mniejsze bardzo podobne do siebie fragmenty

Rys. 1. Kalafior podzielony na coraz mniejsze bardzo podobne do siebie fragmenty 18 FOTON 111, Zima 2010 Fraktale Studenci: Marcin Figiel, Tomasz Sabała Pod opieką prof. dr. hab. Macieja A. Nowaka Instytut Fizyki UJ 1. Abstrakt i motywacja Fraktale to obiekty matematyczne spotykane

Bardziej szczegółowo

Krzywa uniwersalna Sierpińskiego

Krzywa uniwersalna Sierpińskiego Krzywa uniwersalna Sierpińskiego Małgorzata Blaszke Karol Grzyb Streszczenie W niniejszej pracy omówimy krzywą uniwersalną Sierpińskiego, zwaną również dywanem Sierpińskiego. Pokażemy klasyczną metodę

Bardziej szczegółowo

Algebra WYKŁAD 2 ALGEBRA 1

Algebra WYKŁAD 2 ALGEBRA 1 Algebra WYKŁAD ALGEBRA Lcbę espoloną możemy predstawć w postac gde a b ab ( ) rcos sn r moduł lcby espolonej, argument lcby espolonej. Defncja Predstawene Lcby espolone r cos sn naywamy postacą trygonometrycną

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM. Rok szkolny 2015/16

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM. Rok szkolny 2015/16 WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM Rok skolny 2015/16 POZIOMY WYMAGAŃ EDUKACYJNYCH: (2) - ocena dopscająca (2); (3) - ocena dostatecna (3); (4) - ocena dobra (4);

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie V Matematyka z plusem

Wymagania edukacyjne z matematyki w klasie V Matematyka z plusem Wymagania edukacyjne matematyki w klasie V Matematyka plusem Poiomy wymagań edukacyjnych K koniecny ocena dopuscająca P podstawowy ocena dostatecna R roserający ocena dobra D dopełniający ocena bardo dobra

Bardziej szczegółowo

Voter model on Sierpiński fractals Model głosujący na fraktalach Sierpińskiego

Voter model on Sierpiński fractals Model głosujący na fraktalach Sierpińskiego Voter model on Sierpiński fractals Model głosujący na fraktalach Sierpińskiego Krzysztof Suchecki Janusz A. Hołyst Wydział Fizyki Politechniki Warszawskiej Plan Model głosujący : definicja i własności

Bardziej szczegółowo

ARKUSZ X

ARKUSZ X www.galileusz.com.pl ARKUSZ X W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Liczba 3 2 jest równa A) 5 2 B) 6 2 C) 6 2 D) 2 Zadanie 2. (0-1 pkt) Kurtka zimowa

Bardziej szczegółowo

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2). 1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego

Bardziej szczegółowo

Fraktale. Jerzy Pogonowski. Funkcje rekurencyjne. Zakład Logiki Stosowanej UAM

Fraktale. Jerzy Pogonowski. Funkcje rekurencyjne. Zakład Logiki Stosowanej UAM Fraktale Jerzy Pogonowski Zakład Logiki Stosowanej UAM www.logic.amu.edu.pl pogon@amu.edu.pl Funkcje rekurencyjne Jerzy Pogonowski (MEG) Fraktale Funkcje rekurencyjne 1 / 56 Wprowadzenie Plan na dziś:

Bardziej szczegółowo

Symulacje komputerowe w fizyce Fraktale

Symulacje komputerowe w fizyce Fraktale Symulacje komputerowe w fizyce Fraktale Jakub Tworzydło Katedra Teorii Materii Skondensowanej Instytut Fizyki Teoretycznej telefon: (022)5532-919, pokój 5.19 Jakub.Tworzydlo@fuw.edu.pl 13 i 15/11/2017

Bardziej szczegółowo

Rys.1. Obraz Pollocka. Eyes heat.

Rys.1. Obraz Pollocka. Eyes heat. Co wspólnego ze sztuką ma reaktor chemiczny? W lutowym numerze Świata Nauki z 2003 roku ukazał się ciekawy artykułu Richarda P. Taylora, profesora fizyki Uniwersytetu Stanu Oregon [1], dotyczący matematyczno

Bardziej szczegółowo

VIII Skalmierzycki Konkurs Interdyscyplinarny Z matematyka w XXI wieku

VIII Skalmierzycki Konkurs Interdyscyplinarny Z matematyka w XXI wieku Zadanie 3 Zad. 1 Skreśli licby, które są jednoceśnie podielne pre 2 i 3. Odcytaj litery, które najdją się pod skreślonymi licbami, tworą one bardo ważne słowa, o których wsyscy powinni pamiętać na co dień.

Bardziej szczegółowo

7. PLANIMETRIA.GEOMETRIA ANALITYCZNA

7. PLANIMETRIA.GEOMETRIA ANALITYCZNA 7. PLANIMETRIA.GEOMETRIA ANALITYCZNA ZADANIA ZAMKNIĘTE 1. Okrąg o równaniu : A) nie przecina osi, B) nie przecina osi, C) przechodzi przez początek układu współrzędnych, D) przechodzi przez punkt. 2. Stosunek

Bardziej szczegółowo

Systemy Lindenmayera (L-systemy)

Systemy Lindenmayera (L-systemy) Systemy Lindenmayera (L-systemy) L-systemy Zastosowania: Generowanie fraktali Modelowanie roślin L-systemy Fraktale (łac. fractus złamany, cząstkowy) cechy samopodobieństwa Krzywa Kocha (płatek śniegu)

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ klasa 2b

LUBELSKA PRÓBA PRZED MATURĄ klasa 2b MATEMATYKA materiał ćwiczeniowy CZERWIEC 0 Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 4 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach od do są podane

Bardziej szczegółowo

raktale są wśród nas Zuzanna Cyunel klasa 5 Szkoła Podstawowa nr 95 ul. Wileńska Kraków Kraków 2012

raktale są wśród nas Zuzanna Cyunel klasa 5 Szkoła Podstawowa nr 95 ul. Wileńska Kraków Kraków 2012 F raktale są wśród nas Zuzanna Cyunel klasa 5 Szkoła Podstawowa nr 95 ul. Wileńska 9 31-413 Kraków Abstrakt W swojej pracy definiuję pojęcie fraktal, opisuję jego podział i historię. W pracy zawarłam liczne

Bardziej szczegółowo

3. Zapas stabilności układów regulacji 3.1. Wprowadzenie

3. Zapas stabilności układów regulacji 3.1. Wprowadzenie 3. Zapas stabilności układów regulacji 3.. Wprowadenie Dla scharakteryowania apasu stabilności roważymy stabilny układ regulacji o nanym schemacie blokowym: Ws () Gs () Ys () Hs () Rys. 3.. Schemat blokowy

Bardziej szczegółowo

PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI DLA KLAS DRUGICH POZIOM PODSTAWOWY

PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI DLA KLAS DRUGICH POZIOM PODSTAWOWY 5 KOD UZUPEŁNIA ZDAJĄCY PESEL PODKARPACKI SPRAWDZIAN PRZEDMATURALNY Z MATEMATYKI DLA KLAS DRUGICH POZIOM PODSTAWOWY DATA: 30 MAJA 2017 R. GODZINA ROZPOCZĘCIA: 9:000 CZAS PRACY: 170 MINUT LICZBA PUNKTÓW

Bardziej szczegółowo

Modele i symulacje - Scratch i Excel

Modele i symulacje - Scratch i Excel Instytut Matematyki Uniwersytet Gdański Literatura P. Szlagowski, Programowanie wizualne scratch 2.0 SCRATCH jest językiem programowania, w którym możesz stworzyć własne interaktywne historyjki, animacje,

Bardziej szczegółowo

Symulacje komputerowe w fizyce Fraktale

Symulacje komputerowe w fizyce Fraktale Symulacje komputerowe w fizyce Fraktale Jakub Tworzydło Katedra Teorii Materii Skondensowanej Instytut Fizyki Teoretycznej telefon: (022)5532-919, pokój 5.19 Jakub.Tworzydlo@fuw.edu.pl 15/11/2016 Pasteura,

Bardziej szczegółowo

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2019 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 209 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 7 maja 209 r.

Bardziej szczegółowo

Modelowanie i obliczenia techniczne. Modelowanie matematyczne Metody modelowania

Modelowanie i obliczenia techniczne. Modelowanie matematyczne Metody modelowania Modelowanie i oblicenia technicne Modelowanie matematycne Metody modelowania Modelowanie matematycne procesów w systemach technicnych Model może ostać tworony dla całego system lb dla poscególnych elementów

Bardziej szczegółowo

Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów

Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Obóz Naukowy Olimpiady Matematycznej Gimnazjalistów Liga zadaniowa 2012/2013 Seria X (kwiecień 2013) rozwiązania zadań 46. Na szachownicy 75 75 umieszczono 120 kwadratów 3 3 tak, że każdy pokrywa 9 pól.

Bardziej szczegółowo

MODELOWANIE RZECZYWISTOŚCI

MODELOWANIE RZECZYWISTOŚCI MODELOWANIE RZECZYWISTOŚCI Daniel Wójcik Instytut Biologii Doświadczalnej PAN d.wojcik@nencki.gov.pl tel. 022 5892 424 http://www.neuroinf.pl/members/danek/swps/ Podręcznik Iwo Białynicki-Birula Iwona

Bardziej szczegółowo

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018.

Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 2017/2018. Zadania przygotowawcze do konkursu o tytuł NAJLEPSZEGO MATEMATYKA KLAS PIERWSZYCH I DRUGICH POWIATU BOCHEŃSKIEGO rok szk. 017/018 19 grudnia 017 1 1 Klasy pierwsze - poziom podstawowy 1. Dane są zbiory

Bardziej szczegółowo

PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach.

PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach. CZOŁOWE OWE PRZEKŁADNIE STOŻKOWE PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE WALCOWE (równoległe) STOŻKOWE (kątowe) HIPERBOIDALNE ŚLIMAKOWE o ebach prostych o ębach prostych walcowe walcowe o ębach śrubowych o

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Gra w chaos i sekwencje DNA

Gra w chaos i sekwencje DNA Jest to tekst związany z odczytem wygłoszonym na XLIX Szkole Matematyki Poglądowej, Wyjątki, Nadarzyn, sierpień 2012. Gra w chaos i sekwencje DNA Magdalena NOWAK, Kielce Nasza opowieść rozgrywa się w krainie

Bardziej szczegółowo

A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla

A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla Zadanie 1 Liczba jest równa A. B. C. 10 D. Odpowiedź B. Zadanie 2 Liczba jest równa A. 3 B. 2 C. D. Odpowiedź D. Zadanie 3. Liczba jest równa Odpowiedź D. Zadanie 4. Liczba osobników pewnego zagrożonego

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM ROZSZERZONY 25 LUTEGO 2017 CZAS PRACY: 180 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 15! jest podzielna

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia

Bardziej szczegółowo

Planimetria VII. Wymagania egzaminacyjne:

Planimetria VII. Wymagania egzaminacyjne: Wymagania egzaminacyjne: a) korzysta ze związków między kątem środkowym, kątem wpisanym i kątem między styczną a cięciwą okręgu, b) wykorzystuje własności figur podobnych w zadaniach, w tym umieszczonych

Bardziej szczegółowo

Geometrie Wszechświata. 5. Czwarty wymiar materiały do ćwiczeń

Geometrie Wszechświata. 5. Czwarty wymiar materiały do ćwiczeń Geometrie Wszechświata. 5. Czwarty wymiar materiały do ćwiczeń Projekt Matematyka dla ciekawych świata spisał: Michał Korch 30 marzec 2017 Prezentacja multimedialna do wykładu. 1 Zadania łatwe 1. Narysuj

Bardziej szczegółowo

Geometria. Zadanie 1. Liczba przekątnych pięciokąta foremnego jest równa A. 4 B. 5 C. 6 D. 7

Geometria. Zadanie 1. Liczba przekątnych pięciokąta foremnego jest równa A. 4 B. 5 C. 6 D. 7 Geometria Zadanie 1. Liczba przekątnych pięciokąta foremnego jest równa A. 4 B. 5 C. 6 D. 7 W tym przypadku możemy wykonać szkic pięciokąta i policzyć przekątne: Zadanie. Promień okręgu opisanego na kwadracie

Bardziej szczegółowo

MATEMATYKA ZBIÓR ZADAŃ MATURALNYCH. Lata Poziom podstawowy. Uzupełnienie Zadania z sesji poprawkowej z sierpnia 2019 r.

MATEMATYKA ZBIÓR ZADAŃ MATURALNYCH. Lata Poziom podstawowy. Uzupełnienie Zadania z sesji poprawkowej z sierpnia 2019 r. MATEMATYKA ZBIÓR ZADAŃ MATURALNYH Lata 010 019 Poziom podstawowy Uzupełnienie 019 Zadania z sesji poprawkowej z sierpnia 019 r. Opracował Ryszard Pagacz Spis treści Zadania maturalne.........................................................

Bardziej szczegółowo

WPROWADZENIE W GEOMETRIĘ GEOMETRIA W SZKOLE PODSTAWOWEJ

WPROWADZENIE W GEOMETRIĘ GEOMETRIA W SZKOLE PODSTAWOWEJ 1 WPROWADZENIE W GEOMETRIĘ GEOMETRIA W SZKOLE PODSTAWOWEJ 2 PIERWSZE KROKI W GEOMETRII Opracowała: Anna Nakoneczny Myślę, że my nigdy do dzisiejszego czasu nie żyliśmy w takim geometrycznym okresie. Wszystko

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2013

LUBELSKA PRÓBA PRZED MATURĄ 2013 LUBELSKA PRÓBA PRZED MATURĄ 03 MATEMATYKA - poziom podstawowy STYCZEŃ 03 Instrukcja dla zdającego Czas pracy: 70 minut. Sprawdź, czy arkusz zawiera 4 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu

Bardziej szczegółowo

Filip Piękniewski 10:50:29 1 /56. Fraktale i Chaos Filip Piękniewski 2004

Filip Piękniewski 10:50:29 1 /56. Fraktale i Chaos Filip Piękniewski 2004 FRAKTALE i CHAOS czyli czemu nie można zmierzyć powierzchni trawnika? Filip Piękniewski 1 /56 10:50:29 Mierzymy trawnik Traktujemy trawnik jako gładką powierzchnię. Mierzymy wzdłuż jednego i drugiego boku.

Bardziej szczegółowo

PRZESTRZEŃ WEKTOROWA (LINIOWA)

PRZESTRZEŃ WEKTOROWA (LINIOWA) PRZESTRZEŃ WEKTOROWA (LINIOWA) Def. 1 (X, K,, ) X, K - ciało : X X X ( to diałanie wewnętrne w biore X) : K X X ( to diałanie ewnętrne w biore X) Strukturę (X, K,, ) naywamy prestrenią wektorową : 1) Struktura

Bardziej szczegółowo

ZADANIE 1. ZADANIE 2 Wyznacz współrzędne punktu P, który dzieli odcinek o końcach A = (29, 15) i B = (45, 13) w stosunku AP : PB = 1 : 3.

ZADANIE 1. ZADANIE 2 Wyznacz współrzędne punktu P, który dzieli odcinek o końcach A = (29, 15) i B = (45, 13) w stosunku AP : PB = 1 : 3. ZNIE 1 Podstawa ostrosłupa jest trójkat. Krawędź jest wysokościa ostrosłupa (zobacz rysunek). Oblicz objętość ostrosłupa, jeśli wiadomo, że = 12, = 6, = = 13. ZNIE 2 Wyznacz współrzędne punktu P, który

Bardziej szczegółowo

wymagania programowe z matematyki kl. III gimnazjum

wymagania programowe z matematyki kl. III gimnazjum wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny

Bardziej szczegółowo

Własności multifraktalne serii czasowych

Własności multifraktalne serii czasowych Własności multifraktalne serii czasowych D. Instytut Fizyki Teoretycznej i Astrofizyki Uniwersytet Gdański Luty/Marzec 2009 nieformalnie... Skalowanie: rozumie się jako brak charakterystycznej skali czasowej

Bardziej szczegółowo

Struktury fraktalne jako źródło inspiracji w kształtowaniu formy architektonicznej

Struktury fraktalne jako źródło inspiracji w kształtowaniu formy architektonicznej Politechnika Wrocławska Wydział Architektury Zakład Geometrii Wykreślnej i Perspektywy Malarskiej Praca doktorska Struktury fraktalne jako źródło inspiracji w kształtowaniu formy architektonicznej Piotr

Bardziej szczegółowo

PLANIMETRIA - TRÓJKATY (2) ZDANIA ŁATWE

PLANIMETRIA - TRÓJKATY (2) ZDANIA ŁATWE PLANIMETRIA - TRÓJKATY (2) ZDANIA ŁATWE ZADANIE 1 Jeżeli wysokość trójkata równobocznego wynosi 2, to długość jego boku jest równa A) 6 B) 4 3 3 C) 2 3 D) 4 3 ZADANIE 2 Pole trójkata o bokach a = 4 cm

Bardziej szczegółowo

ZESPÓŁ SZKÓŁ W OBRZYCKU

ZESPÓŁ SZKÓŁ W OBRZYCKU Matematyka na czasie Program nauczania matematyki w gimnazjum ZGODNY Z PODSTAWĄ PROGRAMOWĄ I z dn. 23 grudnia 2008 r. Autorzy: Agnieszka Kamińska, Dorota Ponczek ZESPÓŁ SZKÓŁ W OBRZYCKU Wymagania edukacyjne

Bardziej szczegółowo

Mathematica jako narz dzie badawcze Cz ± pi ta. Fraktale

Mathematica jako narz dzie badawcze Cz ± pi ta. Fraktale Mathematica jako narz dzie badawcze Cz ± pi ta. Fraktale Czy koªa s pi kne? Mo»na udowodni wiele teorii na ich temat, wiele ich cech jest interesuj cych, ale»eby koªo miaªo by pi kne? Jest nudne, wsz dzie

Bardziej szczegółowo

ARKUSZ II

ARKUSZ II www.galileusz.com.pl ARKUSZ II W każdym z zadań 1.-24. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D)

Bardziej szczegółowo

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę

Bardziej szczegółowo

na postać kanoniczną, podaj współrzędne wierzchołka paraboli i określ czy jej ramiona są skierowane w górę czy w dół.

na postać kanoniczną, podaj współrzędne wierzchołka paraboli i określ czy jej ramiona są skierowane w górę czy w dół. Zadania na poprawkę dla sa f x x 1x na postać kanoniczną, podaj współrzędne wierzchołka paraboli i określ czy jej ramiona są skierowane w górę czy w dół. 1. Zamień postać ogólną funkcji kwadratowej 5.

Bardziej szczegółowo

GEOMETRIA ELEMENTARNA

GEOMETRIA ELEMENTARNA Bardo, 7 11 XII A. D. 2016 I Uniwersytecki Obóz Olimpiady Matematycznej GEOMETRIA ELEMENTARNA materiały przygotował Antoni Kamiński na podstawie zbiorów zadań: Przygotowanie do olimpiad matematycznych

Bardziej szczegółowo

Dydaktyka matematyki, IV etap edukacyjny (ćwiczenia) Ćwiczenia nr 7 Semestr zimowy 2018/2019

Dydaktyka matematyki, IV etap edukacyjny (ćwiczenia) Ćwiczenia nr 7 Semestr zimowy 2018/2019 Dydaktyka matematyki, IV etap edukacyjny (ćwiczenia) Ćwiczenia nr 7 Semestr zimowy 2018/2019 Zadanie z wykładu i ćwiczeń Dany jest ciąg rekurencyjny: x 1 = 1, x n+1 = x n 2 + 1 x n dla n 1. Ograniczoność.

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 49988 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 70 MINUT Zadania zamknięte ZADANIE ( PKT) Odległość punktu A =

Bardziej szczegółowo

wymagania programowe z matematyki kl. II gimnazjum

wymagania programowe z matematyki kl. II gimnazjum wymagania programowe z matematyki kl. II gimnazjum Umie obliczyć potęgę liczby wymiernej o wykładniku naturalnym. 1. Arytmetyka występują potęgi o wykładniku naturalnym. Umie zapisać i porównać duże liczby

Bardziej szczegółowo

MATURA probna listopad 2010

MATURA probna listopad 2010 MATURA probna listopad 00 ZADANIA ZAMKNIĘTE W zadaniach od. do 5. wybierz i zaznacz poprawną odpowiedź. Zadanie. ( pkt) - 4 $ 4 Liczba 0 jest równa 4-0, 5 A. B. C. D. 4 Zadanie. ( pkt) Liczba log 6 - log

Bardziej szczegółowo

3. Zapas stabilności układów regulacji 3.1. Wprowadzenie

3. Zapas stabilności układów regulacji 3.1. Wprowadzenie 3. Zapas stabilności układów regulacji 3.. Wprowadenie Dla scharakteryowania apasu stabilności roważymy stabilny układ regulacji o nanym schemacie blokowym: Ws () Gs () Ys () Hs () Rys. 3.. Schemat blokowy

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 7 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY 7 MAJA Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 01 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę Instrukcja dla zdającego EGZAMIN MATURALNY Z MATEMATYKI

Bardziej szczegółowo

2 cos α 4. 2 h) g) tgx. i) ctgx

2 cos α 4. 2 h) g) tgx. i) ctgx ZESTAW I - FUNKCJE TRYGONOMETRYCZNE - powtórzenie. Znajdź wartości pozostałych funkcji trygonometrycznych, jeśli: sin α b). Oblicz wartość wyrażenia: tg ctg 77 = b) sin 0 (cos ) = c) sin = d) [( sin 0

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu

Bardziej szczegółowo

Przygotowanie do poprawki klasa 1li

Przygotowanie do poprawki klasa 1li Zadanie Rozwiąż równanie x 6 5 x 4 Przygotowanie do poprawki klasa li Zadanie Rozwiąż nierówność x 4 x 5 Zadanie Oblicz: a) 9 b) 6 5 c) 64 4 d) 6 0 e) 8 f) 7 5 6 Zadanie 4 Zapisz podane liczby bez znaku

Bardziej szczegółowo

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2018 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY

NOWA FORMUŁA EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MMA 2018 UZUPEŁNIA ZDAJĄCY. miejsce na naklejkę UZUPEŁNIA ZESPÓŁ NADZORUJĄCY Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 018 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY DATA: 7 maja 018 r.

Bardziej szczegółowo

Przykładowe zadania z matematyki na poziomie podstawowym. Zadanie 1. (0 1) Liczba A. 3. Zadanie 2. (0 1) Liczba log 24 jest równa

Przykładowe zadania z matematyki na poziomie podstawowym. Zadanie 1. (0 1) Liczba A. 3. Zadanie 2. (0 1) Liczba log 24 jest równa Przykładowe zadania z rozwiązaniami: poziom podstawowy 1. Przykładowe zadania z matematyki na poziomie podstawowym Zadanie 1. (0 1) Liczba 8 3 3 2 3 9 jest równa A. 3 3 B. 32 3 9 C. 3 D. 5 3 Zadanie 2.

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZMIN MTURLNY Z MTEMTYKI ZESTW PRZYGOTOWNY PRZEZ SERWIS WWW.ZDNI.INFO POZIOM PODSTWOWY 24 MRC 2018 CZS PRCY: 170 MINUT 1 Zadania zamknięte ZDNIE 1 (1 PKT) Niech a = 2, b = 1 i c = 3. Wartość wyrażenia

Bardziej szczegółowo

OCENA FRAKTALNA POWIERZCHNI KRZEPNIĘCIA

OCENA FRAKTALNA POWIERZCHNI KRZEPNIĘCIA 1/10 Archives of Foundry, Year 2003, Volume 3, 10 Archiwum Odlewnictwa, Rok 2003, Rocznik 3, Nr 10 PAN Katowice PL ISSN 1642-5308 OCENA FRAKTALNA POWIERZCHNI KRZEPNIĘCIA M. MAREK 1 Politechnika Częstochowska

Bardziej szczegółowo

Zad. 8(3pkt) Na podstawie definicji wykaż, że funkcja y=

Zad. 8(3pkt) Na podstawie definicji wykaż, że funkcja y= Funkcje, funkcja liniowa, funkcja kwadratowa powt. kl. 3d Zad. 1 (5pkt.) Dana jest funkcja f(x)=. Narysuj wykres funkcji g(x)= -f(x). Rozwiąż nierówność g(x). Podaj liczbę rozwiązań równania g(x)=m w zależności

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 147380 WYGENEROWANY AUTOMATYCZNIE W SERWISIE ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) W trójkacie prostokatnym

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

Akademik Anatolij T. Fomienko, profesor matematyki, Rosja, Moskwa, Uniwersytet Moskiewski, grafika przedstawia ciąg liczb losowych, gdzie każda z

Akademik Anatolij T. Fomienko, profesor matematyki, Rosja, Moskwa, Uniwersytet Moskiewski, grafika przedstawia ciąg liczb losowych, gdzie każda z Akademik Anatolij T. Fomienko, profesor matematyki, Rosja, Moskwa, Uniwersytet Moskiewski, grafika przedstawia ciąg liczb losowych, gdzie każda z nich jest umownie zakodowana swoim geometrycznym obrazem

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 1 KWIETNIA 017 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Suma sześciu kolejnych

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW PRZYGOTOWANY PRZEZ SERWIS WWW.ZADANIA.INFO POZIOM PODSTAWOWY 5 MARCA 016 CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Liczba 3 4 3 + 3 9 jest

Bardziej szczegółowo

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE

Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania na poszczególne oceny w klasie II gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania konieczne K dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, powinien je

Bardziej szczegółowo

Stereometria bryły. Wielościany. Wielościany foremne

Stereometria bryły. Wielościany. Wielościany foremne Stereometria bryły Stereometria - geometria przestrzeni trójwymiarowej. Przedmiotem jej badań są własności brył oraz przekształcenia izometryczne i afiniczne przestrzeni. Przyjęte oznaczenia: - Pole powierzchni

Bardziej szczegółowo

Wprowadzenie do rysowania w 3D. Praca w środowisku 3D

Wprowadzenie do rysowania w 3D. Praca w środowisku 3D Wprowadzenie do rysowania w 3D 13 Praca w środowisku 3D Pierwszym krokiem niezbędnym do rozpoczęcia pracy w środowisku 3D programu AutoCad 2010 jest wybór odpowiedniego obszaru roboczego. Można tego dokonać

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 176405 WYGENEROWANY AUTOMATYCZNIE W SERWISIE ZADANIA.INFO POZIOM ROZSZERZONY CZAS PRACY: 180 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Granica lim x 2

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI Instrukcja

Bardziej szczegółowo

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie

Bardziej szczegółowo