jawnie od odleg lości miedzyelektronowych r ij = r i r j Funkcje falowe w postaci kombinacji liniowej wielu wyznaczników.

Wielkość: px
Rozpocząć pokaz od strony:

Download "jawnie od odleg lości miedzyelektronowych r ij = r i r j Funkcje falowe w postaci kombinacji liniowej wielu wyznaczników."

Transkrypt

1 Notati do wy ladu XII Przy lady metod ab iitio uwzglediaj acych orelacje eletroowa Fucje falowe jawie sorelowae - zależa jawie od odleg lości miedzyeletroowych r ij = r i r j Fucje falowe w postaci ombiacji liiowej wielu wyzacziów. Kostrucja wyzacziów ze spiorbitali obsadzoych w staie podstawowym i spiorbitali iezaj etych (wirtualych) Metody: CI (metoda oddzia lywaia ofiguracji): CISD, CISDT, CISDTQ, FCI MCSCF (wieloofiguracyja metoda SCF) Coupled Cluster (sprz eżoych lasterów): CCSD, CCSDT itd. metody rachuu zaburzeń: MP2, MP4 Przy lady fucji jawie sorelowaych: Fucje Hylleraasa (He, Li): Φ = r 1 r l 2r m 12 e αr 1 βr 2 Fucje Ko losa-woliewicza (H 2 ): Φ = r i 1ar l 2ar i 1b rl 2b r 12 e αr 1a βr 2a α r 1b β r 2b Eergia wiazaia D e uzysaa dla H 2 dowola metoda wariacyja: D e D ex e, gdzie D ex e - do lada wartość eergii wiazaia W 1964 Ko los i Woliewicz uzysali dla H 2 D 0 =4,7474 ev = 36117,3 cm 1 Uzysay w 1960 przez Herzberga (Nobel 1971) i Mofilsa z bardzo do ladych pomiarów spetrosopowych wyi dla H 2 D 0 = 36113,6 ± 0,6 cm 1 Niezgodość z zasada wariacyja?! Ko los i Woliewicz dla H 2 D 0 = 36117,4 cm 1 (lepszy wyi teoretyczy wieszy od miej do ladego - zgodie z zasada wariacyja!) 1970 Herzberg D 0 = 36118,3 cm 1 (wyi esperymetaly z r by l b l edy)

2 Przy lady metod, w tórych fucje falowe maja postać ombiacji liiowej wielu wyzacziów: {φ i }, i = 1,... m - spiorbitale, zaj ete w staie podstawowym od i=1 do i = h (ε h = ε HOMO ), iezajete (wirtuale) dla i > h. Na przy lad, iech h=10 φ 1 (1) φ 1 (2)... φ 1 (10) φ 2 (1) φ 2 (2)... φ 2 (10) φ Φ 0 (1, 2,..., 10) = 1 3 (1) φ 3 (2)... φ 3 (10) φ 10! 4 (1) φ 4 (2)... φ 4 (10) φ 5 (1) φ 5 (2)... φ 5 (10) φ 10 (1) φ 10 (2)... φ 10 (10) Wyzaczii jedorotie wzbudzoe ( jede wirtualy spiorbital zamiast jedego zajetego, p. 11 zamiast 2) φ 1 (1) φ 1 (2)... φ 1 (10) φ 11 (1) φ 11 (2)... φ 11 (10) φ Φ(1, 2,..., 10) = 1 3 (1) φ 3 (2)... φ 3 (10) φ 10! 4 (1) φ 4 (2)... φ 4 (10) φ 5 (1) φ 5 (2)... φ 5 (10) φ 10 (1) φ 10 (2)... φ 10 (10) Wyzaczii dwurotie wzbudzoe ( dwa wirtuale spiorbitale zamiast dwóch zaj etych, p. 11 i 12 zamiast 5 i 10) φ 1 (1) φ 1 (2)... φ 1 (10) φ 2 (1) φ 2 (2)... φ 2 (10) φ Φ(1, 2,..., 10) = 1 3 (1) φ 3 (2)... φ 3 (10) φ 10! 4 (1) φ 4 (2)... φ 4 (10) φ 11 (1) φ 11 (2)... φ 11 (10) φ 12 (1) φ 12 (2)... φ 12 (10) Wyzaczii trójrotie wzbudzoe... 2 (1) (2) (3)

3 Metody oddzia lywaia ofiguracji (CI). CISD - fucja falowa to ombiacja liiowa wyzaczia Φ 0 i wyzacziów jedorotie (S-sigle) i dwurotie (D-double) wzbudzoych CIS - ie daje eergii orelacji (tw. eletroowych Brillouia), ale dość dobre eergie wzbudzeń CISDT (T-triple, trójrotie wzbudzoe), CISDTQ, (Q-quadruple, czterorotie wzbudzoe ) itd. coraz bardziej do lade i coraz bardziej czaso-(i oszto)ch loe FCI -full cofiguratio iteractio (wszystie wyzaczii, jaie moża zbudować dla eletroów stosujac m spiorbitali) W metodach CI - fucja falowa to ombiacja liiowa wyzacziów zbudowaych ze spiorbitali, tóre ie ulegaja zmiaie w czasie obliczeń. Poszuiwae sa wspó lczyii (liczby), przez tóre możoe sa wyzaczii zbudowae z (ca ly czas taich samych) spiorbitali. Metoda MCSCF - Metoda wieloofiguracyjego SCF Fucja falowa to ombiacja liiowa wyzacziów zbudowaych ze spiorbitali, tóre sa reoptymalizowae w czasie obliczeń (zgodie z zasada wariacyja) Metody teorii sprz eżoych lasterów - metody CC (Coupled Cluster) CCSD, CCSDT, CCSDTQ Fucje falowe ostruowae z wyzacziów, ale w iy sposób iż w metodach CI. Metody CC ie sa metodami wariacyjymi. Eergia orelacji obliczoa metodami CC w poprawy sposób (liiowo) zależy od liczby atomów p. w rysztale albo polimerze. Nie jest ta dla eergii orelacji obliczoej metodami CI iymi iż FCI! Metody CC sa osystete rozmiarowo (size-cosistet) E AB = E A + E B, gdy odleg lość mi edzy A i B staje si e ta duża, że wzajeme oddzia lywaie A i B jest zaiedbywale. 3

4 Rachue zaburzeń NIE sa zae rozwiazaia rówaia: Ĥψ = E ψ (4) Zae sa (ścis le) rozwiazaia rówaia: Ĥ 0 ψ (0) = E (0) (5) przy czym Ĥ = Ĥ0 + λĥ (6) ˆλH - zaburzeie musi być ma le λ - pomociczy parametr Rachue zaburzeń Rayleigha-Schrödigera Ja zaleźć przybliżoe rozwiazaia rówaia (4)? Rozwiiecie iezaych do ladych rozwiazań ψ i E w szereg poteg λ Podstawieie rozwii eć (7) i (8) do rówaia (4): ψ = ψ (0) + λψ (1) + λ 2 ψ (2) +... (7) E = E (0) + λe (1) + λ 2 E (2) +... (8) i λ i (Ĥ0 + λh )ψ (i) = ij λ i+j E (j) ψ (i) (9) λ - dowole Rówaie (9) spe lioe, jeśli wspó lczyii przy λ i rówe dla dowolego i. Aby rówe by ly wspó lczyii przy λ 0 musi być: (idetycze z rów. (5), a wi ec spe lioe) Ĥ 0 ψ (0) = E (0) (10) 4

5 Aalogiczie, ze wzgledu a warui rówości wspó lczyiów przy λ 1, λ 2,... musza być spe lioe rówaia: Ĥ 0 ψ (1) + Ĥ ψ (0 ) = E (0) ψ (1) + E (1) (11) Ĥ 0 ψ (2) + Ĥ ψ (1 ) = E (0) ψ (2) + E (1) ψ (1) + E (2) (12) Po pomożeiu rówaia sprz eżoego do (10) przez ψ (1) i sca lowaiu otrzymuje si e: ψ (1) Ĥ0 ψ (0) dτ = E (0) ψ (1) ψ (0) dτ (13) Po pomożeiu rówaia (11) przez ψ (0) i sca lowaiu otrzymuje si e: ψ (0) Ĥ 0 ψ (1) dτ + ψ (0) Ĥ ψ (0) dτ = E (0) ψ (0) ψ (1) dτ + E (1) ψ (0) dτ (14) Po odj eciu stroami rówań (13) i (14) i sorzystaiu z tego, że operator Ĥ0 hermitowsi ( ψ (1) Ĥ0 ψ (0) dτ = ψ (0) Ĥ 0 ψ (1) dτ) otrzymuje sie: E (1) = jest ψ (0) Ĥ ψ (0) dτ (15) Pierwsza poprawa do eergii to wartość średia operatora zaburzeia obliczoa dla fucji falowej u ladu iezaburzoego. Wyorzystujac możliwość przedstawieia pierwszej poprawi do fucji falowej ψ (1) w postaci ombiacji liiowej fucji falowych dla u ladu iezaburzoego ψ (0) rówaia (11) i (10), moża otrzymać wyrażeie a pierwsza poprawe do fucji: ψ (1) = (0) ψ Ĥ ψ (0) dτ E (0) E (0) Pomożeie rówaia sprz eżoego do (10) przez ψ (2) rówaia (12) przez ψ (0) oraz ψ (0) (16) i sca lowaie, pomoożeie i sca lowaie, a ast epie odj ecie stroami otrzymaych rówań prowadzi do wyrażeia a druga poprawe do eergii: E (2) = ψ (0) Ĥ ψ (1) dτ (17) Szczegó ly wyprowadzeń (dla chetych) W. Ko los, J.Sadlej Atom i czastecza (Uzupe lieia) 5

6 W metodzie MP2 (Møllera-Plesseta) operator dla u ladu iezaburzoego Ĥ0 Ĥ 0 = N i=1 ˆF (i) (18) jest suma operatorów Foca, ˆF (i), dla wszystich (N) eletroów Ĥ = Ĥ Ĥ0 (19) 6

Uwzględnienie energii korelacji w metodach ab initio - przykłady

Uwzględnienie energii korelacji w metodach ab initio - przykłady Uwzględnienie energii korelacji w metodach ab initio - przykłady Funkcje falowe (i funkcje bazy) jawnie skorelowane - zależa jawnie od odległości międzyelektronowych r ij = r i r j Funkcje falowe w postaci

Bardziej szczegółowo

Korelacja elektronowa. e z rachunku prawdopodobieństwa i statystyki. Zmienne losowe x i y sa. ρ(x, y) = ρ 1 (x) ρ 2 (y)

Korelacja elektronowa. e z rachunku prawdopodobieństwa i statystyki. Zmienne losowe x i y sa. ρ(x, y) = ρ 1 (x) ρ 2 (y) Notatki do wyk ladu XII Korelacja elektronowa Nazwa korelacja elektronowa wywodzi si e z rachunku prawdopodobieństwa i statystyki. Zmienne losowe x i y sa niezależne jeśli ρ(x, y) = ρ 1 (x) ρ 2 (y) Oznacza

Bardziej szczegółowo

Metoda oddzia lywania konfiguracji (CI)

Metoda oddzia lywania konfiguracji (CI) Metoda oddzia lywania konfiguracji (CI) Spinorbitale: obsadzone φ a i wirtualne φ r : ɛ a ɛ HOMO, ɛ r ɛ LUMO ê r a wykonuje podstawienie φ a φ r, np. ê 7 2 φ 1 φ 2 φ 3... φ N = φ 1 φ 7 φ 3... φ N Operator

Bardziej szczegółowo

Teoria funkcjona lu g

Teoria funkcjona lu g Notatki do wyk ladu XII (z 1.01.015) Uwaga! Strony 1-14 sa w wiekszości powtórzeniem stron z Notatek do wyk ladu XI z 15.1.014 Teoria funkcjona lu g estości Density Functional Theory - DFT Czy znajomość

Bardziej szczegółowo

Oddzia lywania miedzycz. jony molekularne lub atomy. edzy A i B:

Oddzia lywania miedzycz. jony molekularne lub atomy. edzy A i B: Notatki do wyk ladu XIII Oddzia lywania miedzycz asteczkowe A i B zamknietopow lokowe czasteczki, jony molekularne lub atomy. Energia oddzia lywania E oddz mi edzy A i B: E oddz = E AB (E A + E B ) ()

Bardziej szczegółowo

Metody obliczeniowe chemii teoretycznej

Metody obliczeniowe chemii teoretycznej Metody obliczeniowe chemii teoretycznej mechanika kwantowa mechanika klasyczna ւ ց WFT DFT MM FFM metody bazuj ace na metody bazuj ace na Mechanika Molekularna funkcji falowej gȩstości elektronowej Wave

Bardziej szczegółowo

tek zauważmy, że podobnie jak w dziedzinie rzeczywistej wprowadzamy dla funkcji zespolonych zmiennej rzeczywistej pochodne wyższych rze

tek zauważmy, że podobnie jak w dziedzinie rzeczywistej wprowadzamy dla funkcji zespolonych zmiennej rzeczywistej pochodne wyższych rze R o z d z i a l III RÓWNANIA RÓŻNICZKOWE LINIOWE WYŻSZYCH RZE DÓW 12. Rówaie różiczowe liiowe -tego rze du Na pocza te zauważmy, że podobie ja w dziedziie rzeczywistej wprowadzamy dla fucji zespoloych

Bardziej szczegółowo

RACHUNEK ZABURZEŃ. Monika Musiał

RACHUNEK ZABURZEŃ. Monika Musiał RACHUNEK ZABURZEŃ Monika Musiał Rachunek zaburzeń jest podstawową obok metody wariacyjnej techniką obliczeniową stosowaną do rozwiązywania równania Schrödingera. Idea metody zaburzeniowej sprowadza się

Bardziej szczegółowo

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Stan czastki określa funkcja falowa Ψ zależna od wspó lrzȩdnych określaj acych po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Wartości funkcji

Bardziej szczegółowo

Analiza I.1, zima wzorcowe rozwiązania

Analiza I.1, zima wzorcowe rozwiązania Aaliza I., zima 07 - wzorcowe rozwiązaia Marci Kotowsi 5 listopada 07 Zadaie. Udowodij, że dla ażdego aturalego liczba 7 + dzieli się przez 6. Dowód. Tezę udowodimy za pomocą iducji matematyczej. Najpierw

Bardziej szczegółowo

Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011

Dwumian Newtona. Agnieszka Dąbrowska i Maciej Nieszporski 8 stycznia 2011 Dwumia Newtoa Agiesza Dąbrowsa i Maciej Nieszporsi 8 styczia Wstęp Wzory srócoego możeia, tóre pozaliśmy w gimazjum (x + y x + y (x + y x + xy + y (x + y 3 x 3 + 3x y + 3xy + y 3 x 3 + y 3 + 3xy(x + y

Bardziej szczegółowo

METODY POSTHARTREE-FOCKOWSKIE MONIKA MUSIA L

METODY POSTHARTREE-FOCKOWSKIE MONIKA MUSIA L METODY POSTHARTREE-FOCKOWSKIE MONIKA MUSIA L Jednym z ważniejszych zadań chemii kwantowej jest opracowywanie nowych metod obliczeniowych umożliwiaj acych bardzo dok ladne wyznaczanie e- nergii korelacji

Bardziej szczegółowo

Podstawowe metody i przybliżenia: metoda wariacyjna, rachunek zaburzeń

Podstawowe metody i przybliżenia: metoda wariacyjna, rachunek zaburzeń Wyk lad 6 Podstawowe metody i przybliżenia: metoda wariacyjna, rachunek zaburzeń Uk lady modelowe czastka swobodna czastka na barierze potencja lu czastka w pudle oscylator harmoniczny oscylator Morse

Bardziej szczegółowo

APROKSYMACJA I INTERPOLACJA. funkcja f jest zbyt skomplikowana; użycie f w dalszej analizie problemu jest trudne

APROKSYMACJA I INTERPOLACJA. funkcja f jest zbyt skomplikowana; użycie f w dalszej analizie problemu jest trudne APROKSYMACJA I INTERPOLACJA Przybliżeie fucji f(x) przez ią fucję g(x) fucja f jest zbyt sompliowaa; użycie f w dalszej aalizie problemu jest trude fucja f jest zaa tylo tabelaryczie; wymagaa jest zajomość

Bardziej szczegółowo

JEDNOSTKI ATOMOWE =1, m e =1, e=1, ; 1 E 2 h = 4, J. Energia atomu wodoru lub jonu wodoropodobnego w jednostkach atomowych:

JEDNOSTKI ATOMOWE =1, m e =1, e=1, ; 1 E 2 h = 4, J. Energia atomu wodoru lub jonu wodoropodobnego w jednostkach atomowych: do wyk ladu z 1.10.13 Atom wodoru i jon wodoropodobny Ze - ladunek jadra, e - ladunek elektronu, µ - masa zredukowana µ = mem j m e+m j ( µ m e ) M j - masa jadra, m e - masa elektronu, ε 0 - przenikalność

Bardziej szczegółowo

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił 3.7.. Reducja dowolego uładu sił do sił i par sił Dowolm uładem sił będiem awać uład sił o liiach diałaia dowolie romiescoch w prestrei. tm pucie ajmiem się sprowadeiem (reducją) taiego uładu sił do ajprostsej

Bardziej szczegółowo

Korelacja elektronowa

Korelacja elektronowa Korelacja elektronowa oraz metody jej uwzgl edniania oparte na funkcji falowej Mariusz Radoń 04.04.2017 11.04.2017 Wymiana i korelacja kulombowska W metodzie HF Elektrony o jednakowych spinach nie moga

Bardziej szczegółowo

LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY

LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY LICZBY, RÓWNANIA, NIERÓWNOŚCI; DOWÓD INDUKCYJNY Zgodie z dążeiami filozofii pitagorejsiej matematyzacja abstracyjego myśleia powia być dooywaa przy pomocy liczb. Soro ta, to liczby ależy tworzyć w miarę

Bardziej szczegółowo

Metoda Hartree-Focka (Hartree ego-focka)

Metoda Hartree-Focka (Hartree ego-focka) Notatki do wyk ladu V Metoda Hartree-Focka (Hartree ego-focka) Metoda wariacyjna, w której przyjmuje sie, że przybliżona funkcja falowa, opisujaca stan uk ladu n-elektronowego ma postać wyznacznika Slatera,

Bardziej szczegółowo

Rozwój i zastosowanie wieloreferencyjnych metod sprzężonych klasterów w opisie stanów podstawowych i wzbudzonych układów atomowych i molekularnych

Rozwój i zastosowanie wieloreferencyjnych metod sprzężonych klasterów w opisie stanów podstawowych i wzbudzonych układów atomowych i molekularnych Rozwój i zastosowanie wieloreferencyjnych metod sprzężonych klasterów w opisie stanów podstawowych i wzbudzonych układów atomowych i molekularnych Justyna Cembrzyńska Zakład Mechaniki Kwantowej Uniwersytet

Bardziej szczegółowo

Struktura elektronowa czasteczek. przybliżenie Borna-Oppenheimera. równania Schrödingera dla elektronów przy ustalonym po lożeniu jader

Struktura elektronowa czasteczek. przybliżenie Borna-Oppenheimera. równania Schrödingera dla elektronów przy ustalonym po lożeniu jader Notatki do wyk ladu VII Struktura elektronowa czasteczek przybliżenie Borna-Oppenheimera rozwiazanie równania Schrödingera dla elektronów przy ustalonym po lożeniu jader przybliżenie jednoelektronowe metoda

Bardziej szczegółowo

Temat 17. Model elektronów prawie swobodnych.

Temat 17. Model elektronów prawie swobodnych. Temat 7. Model elektroów prawie swobodych. 7.. Braki modelu elektroów swobodych Model elektroów swobodych pozwala dość dobrze opisać p. ciepło właściwe, przewodość cieplą i rozszerzalość cieplą. Model

Bardziej szczegółowo

Wyższe momenty zmiennej losowej

Wyższe momenty zmiennej losowej Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h( dla dysretej zm. losowej oraz ucji h( dla ciągłej zm. losowej: m E P m E ( d Deiicja: Mometem cetralym µ rzędu dla

Bardziej szczegółowo

n k n k ( ) k ) P r s r s m n m n r s r s x y x y M. Przybycień Rachunek prawdopodobieństwa i statystyka

n k n k ( ) k ) P r s r s m n m n r s r s x y x y M. Przybycień Rachunek prawdopodobieństwa i statystyka Wyższe momety zmieej losowej Deiicja: Mometem m rzędu azywamy wartość oczeiwaą ucji h() dla dysretej zm. losowej oraz ucji h() dla ciągłej zm. losowej: m E P m E ( ) d Deiicja: Mometem cetralym µ rzędu

Bardziej szczegółowo

Notatki do wyk ladu IV (z ) Metoda Hartree-Focka (Hartree ego-focka)

Notatki do wyk ladu IV (z ) Metoda Hartree-Focka (Hartree ego-focka) Notatki do wyk ladu IV (z 1.11.01) Metoda Hartree-Focka (Hartree ego-focka) Metoda wariacyjna, w której przyjmuje sie, że przybliżona funkcja falowa opisujac a stan uk ladu n-elektronowego ma postać wyznacznika

Bardziej szczegółowo

METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI)

METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI) METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI) lub ĤΨ i = E i Ψ i Ψ i = K r=0 c riφ r ĤΨ = EΨ Ψ = c o Φ o + ia ca i Φ a i + ijab cab ij Φ ab ij + ijkabc cabc ijk Φ abc ijk + Funkcje Φ r (Φij..

Bardziej szczegółowo

Monika Musia l. METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI) (ujȩcie wyznacznikowe)

Monika Musia l. METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI) (ujȩcie wyznacznikowe) Monika Musia l METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI) (ujȩcie wyznacznikowe) ĤΨ i = E i Ψ i W metodzie mieszania konfiguracji wariacyjna funkcja falowa, jest liniow a kombinacj a

Bardziej szczegółowo

Parametryzacja rozwiązań układu równań

Parametryzacja rozwiązań układu równań Parametryzacja rozwiązań układu rówań Przykład: ozwiąż układy rówań: / 2 2 6 2 5 2 6 2 5 //( / / 2 2 9 2 2 4 4 2 ) / 4 2 2 5 2 4 2 2 Korzystając z postaci schodkowej (środkowa macierz) i stosując podstawiaie

Bardziej szczegółowo

METODA SPRZȨŻONYCH KLASTERÓW METODA MIESZANIA KONFIGURACJI. Monika Musia l

METODA SPRZȨŻONYCH KLASTERÓW METODA MIESZANIA KONFIGURACJI. Monika Musia l METODA SPRZȨŻONYCH KLASTERÓW METODA MIESZANIA KONFIGURACJI Monika Musia l Jednym z ważniejszych zadań chemii kwantowej jest opracowywanie nowych metod obliczeniowych umożliwiaj acych bardzo dok ladne wyznaczanie

Bardziej szczegółowo

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x)

po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Stan czastki określa funkcja falowa Ψ zależna od wspó lrzȩdnych określaj acych po lożenie cz astki i od czasu (t). Dla cz astki, która może poruszać siȩ tylko w jednym wymiarze (tu x) Wartości funkcji

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji ( ) : m f x = Ax ( A) { Ax x } = Defiicja: Zakresem macierzy A Œ âm azywamy

Bardziej szczegółowo

Wyk lad 8 Zasadnicze twierdzenie algebry. Poj. ecie pierścienia

Wyk lad 8 Zasadnicze twierdzenie algebry. Poj. ecie pierścienia Wy lad 8 Zasadicze twierdzeie algebry. Poj ecie pierścieia 1 Zasadicze twierdzeie algebry i jego dowód Defiicja 8.1. f: C C postaci Wielomiaem o wspó lczyiach zespoloych azywamy fucj e f(x) = a x + a 1

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Liczby zespolone

Zadania z algebry liniowej - sem. I Liczby zespolone Zadaia z algebry liiowej - sem. I Liczby zespoloe Defiicja 1. Parę uporządkowaą liczb rzeczywistych x, y azywamy liczbą zespoloą i ozaczamy z = x, y. Zbiór wszystkich liczb zespoloych ozaczamy przez C

Bardziej szczegółowo

u t 1 v u(x,t) - odkształcenie, v - prędkość rozchodzenia się odkształceń (charakterystyczna dla danego ośrodka) Drgania sieci krystalicznej FONONY

u t 1 v u(x,t) - odkształcenie, v - prędkość rozchodzenia się odkształceń (charakterystyczna dla danego ośrodka) Drgania sieci krystalicznej FONONY Drgaia sieci krystaliczej FONONY 1. model klasyczy (iekwatowy) a) model ośrodka ciągłego (model Debye a) - przypadek jedowymiarowy - drgaia struy drgaia mogą być podłuże (guma, sprężya) i dwie prostopadłe

Bardziej szczegółowo

PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,,

PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,, PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA Ruch cząstki ieograiczoy z klasyczego puktu widzeia W tym przypadku V = cost, przejmiemy V ( x ) = 0, cząstka porusza się wzdłuż osi x. Rozwiązujemy

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

Analiza I.1, zima globalna lista zadań

Analiza I.1, zima globalna lista zadań Aaliza I., zima 207 - globala lista zadań Marci Kotowsi 8 styczia 208 Podstawy Zadaie. Udowodij, że dla ażdego aturalego liczby 7 2 + oraz 7 2 dzielą się przez 6. Zadaie 2. Rozstrzygij, czy poiższe liczby

Bardziej szczegółowo

I. Podzielność liczb całkowitych

I. Podzielność liczb całkowitych I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc

Bardziej szczegółowo

Podprzestrzenie macierzowe

Podprzestrzenie macierzowe Podprzestrzeie macierzowe Defiicja: Zakresem macierzy AŒ mâ azywamy podprzestrzeń R(A) przestrzei m geerowaą przez zakres fukcji : m f x = Ax RAAx x Defiicja: Zakresem macierzy A Œ âm azywamy podprzestrzeń

Bardziej szczegółowo

Notatki do wyk ladu V (z ) Metoda Hartree-Focka (Hartree ego-focka)

Notatki do wyk ladu V (z ) Metoda Hartree-Focka (Hartree ego-focka) Notatki do wyk ladu V (z 03.11.014) Metoda Hartree-Focka (Hartree ego-focka) Metoda wariacyjna, w której przyjmuje sie, że przybliżona funkcja falowa, opisujaca stan uk ladu n-elektronowego ma postać wyznacznika

Bardziej szczegółowo

WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3

WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 WYK LAD 5: GEOMETRIA ANALITYCZNA W R 3, PROSTA I P LASZCZYZNA W PRZESTRZENI R 3 Definicja 1 Przestrzenia R 3 nazywamy zbiór uporzadkowanych trójek (x, y, z), czyli R 3 = {(x, y, z) : x, y, z R} Przestrzeń

Bardziej szczegółowo

Repetytorium z Matematyki Elementarnej Wersja Olimpijska

Repetytorium z Matematyki Elementarnej Wersja Olimpijska Repetytorium z Matematyi Elemetarej Wersja Olimpijsa Podae tutaj zadaia rozwiązywae były w jedej z grup ćwiczeiowych Są w więszości ieco trudiejsze od pozostałych zadań przygotowaych w ramach przedmiotu

Bardziej szczegółowo

Normy wektorów i macierzy

Normy wektorów i macierzy Rozdzia l 3 Normy wektorów i macierzy W tym rozdziale zak ladamy, że K C. 3.1 Ogólna definicja normy Niech ψ : K m,n [0, + ) b edzie przekszta lceniem spe lniaj acym warunki: (i) A K m,n ψ(a) = 0 A = 0,

Bardziej szczegółowo

W lasności elektryczne moleku l

W lasności elektryczne moleku l W lasności elektryczne moleku l Hamiltonian dla czasteczki w jednorodnym polu elektrycznym E ma postać: Ĥ(E) = Ĥ + E ˆµ x gdzie zak ladamy, że pole jest zorientowane wzd luż osi x a ˆµ x jest operatorem

Bardziej szczegółowo

Metody obliczeniowe chemii kwantowej oparte na funkcji falowej. Dla uk ladu N elektronów i K j ader atomowych hamiltonian przyjmuje postać:

Metody obliczeniowe chemii kwantowej oparte na funkcji falowej. Dla uk ladu N elektronów i K j ader atomowych hamiltonian przyjmuje postać: Metody obliczeniowe chemii kwantowej oparte na funkcji falowej Równanie Schrödingera: ĤΨ = EΨ Dla uk ladu N elektronów i K j ader atomowych hamiltonian przyjmuje postać: Ĥ = h 2 K α=1 1 2M α 2 α h2 2m

Bardziej szczegółowo

Twierdzenie Cayleya-Hamiltona

Twierdzenie Cayleya-Hamiltona Twierdzeie Cayleya-Hamiltoa Twierdzeie (Cayleya-Hamiltoa): Każda macierz kwadratowa spełia swoje włase rówaie charakterystycze. D: Chcemy pokazać, że jeśli wielomiaem charakterystyczym macierzy A jest

Bardziej szczegółowo

Korelacja elektronowa w metodzie elongacji

Korelacja elektronowa w metodzie elongacji March 28, 2006 1 2 3 4 5 6 Waskie gard la metody jednowyznacznikowe wyznaczanie ca lek dwuelektronowych potrzebnych do budowy macierzy Focka: formalnie O(N 4 ), asymptotycznie O(N 2 ) diagonalizacja macierzy

Bardziej szczegółowo

f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n

f '. Funkcja h jest ciągła. Załóżmy, że ciąg (z n ) n 0, z n+1 = h(z n ) jest dobrze określony, tzn. n 0 f ' ( z n Metoda Newtoa i rówaie z = 1 Załóżmy, że fucja f :C C ma ciągłą pochodą. Dla (prawie) ażdej liczby zespoloej z 0 tworzymy ciąg (1) (z ) 0, z 1 = z f ( z ), ciąg te f ' (z ) będziemy azywać orbitą liczby

Bardziej szczegółowo

Dolne oszacowania wartości rekordowych

Dolne oszacowania wartości rekordowych Dole oszacowaia wartości rekordowych Agieszka Gorocy Uiwersytet Miko laja Koperika, Toruń Tomasz Rychlik Uiwersytet Miko laja Koperika, IM PAN, Toruń XXXV Koferecja Statystyka Matematycza, Wis la. 8 grudia

Bardziej szczegółowo

Liczby Stirlinga I rodzaju - definicja i własności

Liczby Stirlinga I rodzaju - definicja i własności Liczby Stiriga I rodzaju - defiicja i własości Liczby Stiriga I rodzaju ozaczae symboem s(, ) moża defiiować jao współczyii w rozwiięciu x s(, )x, 0 (1) 0 gdzie x x(x 1)... (x + 1), 1 x 0 1. (2) Zostały

Bardziej szczegółowo

Teoria funkcjona lu g

Teoria funkcjona lu g Notatki do wyk ladu XI Teoria funkcjona lu g estości Density Functional Theory - DFT Czy znajomość funkcji falowej jest niezb edna? Ψ(1,, 3,..., N) dla uk ladu N-elektronowego zależy od 4N zmiennych (dla

Bardziej szczegółowo

Symbol termu: edu (sumy ca lkowitego orbitalnego momentu edu i ca lkowitego spinu) Przyk lad: 2 P 3. kwantowa

Symbol termu: edu (sumy ca lkowitego orbitalnego momentu edu i ca lkowitego spinu) Przyk lad: 2 P 3. kwantowa Notatki do wyk ladu VI (z 18.11.2013) Symbol termu: 2S+1 L (1) L -liczba kwantowa ca lkowitego orbitalnego momentu pedu Duże litery S, P, D, F, itd. dla L=0, 1, 2, 3, itd. 2S+1 - multipletowość; S - liczba

Bardziej szczegółowo

Kontakt,informacja i konsultacje. I Zasada Termodynamiki. Energia wewnętrzna

Kontakt,informacja i konsultacje. I Zasada Termodynamiki. Energia wewnętrzna Kotat,iformacja i osultacje Chemia A ; poój 37 elefo: 347-2769 E-mail: wojte@chem.pg.gda.pl tablica ogłoszeń Katedry Chemii Fizyczej http://www.pg.gda.pl/chem/dydatya/ lub http://www.pg.gda.pl/chem/katedry/fizycza

Bardziej szczegółowo

Elementy rach. macierzowego Materiały pomocnicze do MES Strona 1 z 7. Elementy rachunku macierzowego

Elementy rach. macierzowego Materiały pomocnicze do MES Strona 1 z 7. Elementy rachunku macierzowego Elemety rach macierzowego Materiały pomocicze do MES Stroa z 7 Elemety rachuku macierzowego Przedstawioe poiżej iformacje staowią krótkie przypomieie elemetów rachuku macierzowego iezbęde dla zrozumieia

Bardziej szczegółowo

Uklady modelowe III - rotator, atom wodoru

Uklady modelowe III - rotator, atom wodoru Wyk lad 5 Uklady modelowe III - rotator, atom wodoru Model Separacja ruchu środka masy R = m 1r 1 + m 2 r 2 m 1 + m 2 Ĥ = Ĥ tr (R) + Ĥ rot (r) Ĥ tr 2 (R) = 2(m 1 + m 2 ) R [ Ψ E tr (R; t) = exp i (k R

Bardziej szczegółowo

Czastka swobodna Bariera potencja lu Pud lo jednowymiarowe FEMO Pud la wielowymiarowe. Wyk lad 3. Uk lady modelowe I

Czastka swobodna Bariera potencja lu Pud lo jednowymiarowe FEMO Pud la wielowymiarowe. Wyk lad 3. Uk lady modelowe I Wyk lad 3 Uk lady modelowe I Hamiltonian, równania Schrödingera hamiltonian Ĥ(x) = ˆT (x) = 2 d 2 2m dx 2 równanie Schrödingera zależne od czasu stany stacjonarne 2 2 Ψ(x, t) Ψ(x, t) 2m x 2 = i t dψ E

Bardziej szczegółowo

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik Pierwiastki z liczby zespoloej Autorzy: Agieszka Kowalik 09 Pierwiastki z liczby zespoloej Autor: Agieszka Kowalik DEFINICJA Defiicja : Pierwiastek z liczby zespoloej Niech będzie liczbą aturalą. Pierwiastkiem

Bardziej szczegółowo

MACIERZE STOCHASTYCZNE

MACIERZE STOCHASTYCZNE MACIERZE STOCHASTYCZNE p ij - prawdopodobieństwo przejścia od stau i do stau j w jedym (dowolym) kroku, [p ij ]- macierz prawdopodobieństw przejść (w jedym kroku), Własości macierzy prawdopodobieństw przejść:

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINOWYCH

UKŁADY RÓWNAŃ LINOWYCH Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a

Bardziej szczegółowo

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem:

Relacje rekurencyjne. będzie następująco zdefiniowanym ciągiem: Relacje rekurecyje Defiicja: Niech =,,,... będzie astępująco zdefiiowaym ciągiem: () = r, = r,..., k = rk, gdzie r, r,..., r k są skalarami, () dla k, = a + a +... + ak k, gdzie a, a,..., ak są skalarami.

Bardziej szczegółowo

Uk lady modelowe II - oscylator

Uk lady modelowe II - oscylator Wyk lad 4 Uk lady modelowe II - oscylator Model Prawo Hooke a F = m d 2 x = kx = dv dt2 dx Potencja l Równanie ruchu V = 1 2 kx2 d 2 x dt 2 + k m x = 0 Obraz klasyczny Rozwiazania k x = A sin t = A sin

Bardziej szczegółowo

Wyk lad 2 W lasności cia la liczb zespolonych

Wyk lad 2 W lasności cia la liczb zespolonych Wyk lad W lasości cia la liczb zespoloych 1 Modu l, sprz eżeie, cz eść rzeczywista i cz eść urojoa Niech a, b bed a liczbami rzeczywistymi i iech z = a bi. (1) Przypomijmy, że liczba sprzeżo a do z jest

Bardziej szczegółowo

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1

2 n < 2n + 2 n. 2 n = 2. 2 n 2 +3n+2 > 2 0 = 1 = 2. n+2 n 1 n+1 = 2. n+1 Tekst a iebiesko jest kometarzem lub treścią zadaia. Zadaie 1. Zbadaj mootoiczość i ograiczoość ciągów. a = + 3 + 1 Ciąg jest mootoiczie rosący i ieograiczoy poieważ różica kolejych wyrazów jest dodatia.

Bardziej szczegółowo

Dodatek 10. Kwantowa teoria przewodnictwa I

Dodatek 10. Kwantowa teoria przewodnictwa I Dodate 10 Kwatowa teoria przewodictwa I Teoria lascza iała astępujące aaet: (1) zierzoe wartości średiej drogi swobodej oazał się o ila rzędów wielości więsze iż oczeiwae () teoria ie dawała poprawc zależości

Bardziej szczegółowo

Hierarchia baz gaussowskich (5)

Hierarchia baz gaussowskich (5) Hierarchia baz gaussowskich (5) Bazy split-valence czyli VDZ, VTZ, etc. (np. bazy Pople a 6-31G, 6-311G, etc) Bazy split-valence spolaryzowane VDZP, VTZP, etc. Bazy bazy Dunninga (konsystentne korelacyjnie)

Bardziej szczegółowo

I kolokwium z Analizy Matematycznej

I kolokwium z Analizy Matematycznej I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4

Bardziej szczegółowo

IV Uniwersytecka Sobota Matematyczna 14 kwietnia Funkcje tworzące w kombinatoryce

IV Uniwersytecka Sobota Matematyczna 14 kwietnia Funkcje tworzące w kombinatoryce IV Uiwersyteca Sobota Matematycza 4 wietia 208 Fucje tworzące w ombiatoryce Dla ciągu a 0 a a 2... defiiujemy fucję tworzącą: G(x) = a x = a 0 + a x + a 2 x 2 + a 3 x 3 + =0. Zajdź fucje tworzące dla poiższych

Bardziej szczegółowo

Stany atomu wieloelektronowego o określonej energii. być przypisywane elektrony w tym stanie atomu.

Stany atomu wieloelektronowego o określonej energii. być przypisywane elektrony w tym stanie atomu. Notatki do wyk ladu VI Stany atomu wieloelektronowego o określonej energii. Konfiguracja elektronowa atomu - zbiór spinorbitali, wykorzystywanych do konstrukcji funkcji falowej dla danego stanu atomu;

Bardziej szczegółowo

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy

Wykład 7. Przestrzenie metryczne zwarte. x jest ciągiem Cauchy ego i posiada podciąg zbieżny. Na mocy Wyład 7 Przestrzeie metrycze zwarte Defiicja 8 (przestrzei zwartej i zbioru zwartego Przestrzeń metryczą ( ρ X azywamy zwartą jeśli ażdy ciąg elemetów tej przestrzei posiada podciąg zbieży (do putu tej

Bardziej szczegółowo

Notatki do wyk ladu IV (z 27.10.2014)

Notatki do wyk ladu IV (z 27.10.2014) Dla orbitalnego momentu p edu (L): Notatki do wyk ladu IV (z 7.10.014) ˆL ψ nlm = l(l + 1) ψ nlm (1) ˆL z ψ nlm = m ψ nlm () l + 1 możliwych wartości rzutu L z na wyróżniony kierunek w przestrzeni (l -liczba

Bardziej szczegółowo

CAŁKA NIEOZNACZONA. F (x) = f(x) dx.

CAŁKA NIEOZNACZONA. F (x) = f(x) dx. CAŁKA NIEOZNACZONA Mówimy, że fukcja F () jest fukcją pierwotą dla fukcji f() w pewym ustaloym przedziale - gdy w kadym pukcie zachodzi F () = f(). Fukcję pierwotą często azywamy całką ieozaczoą i zapisujemy

Bardziej szczegółowo

Teoria funkcjona lu g Density Functional Theory (DFT)

Teoria funkcjona lu g Density Functional Theory (DFT) Teoria funkcjona lu g estości Density Functional Theory (DFT) Cz eść slajdów tego wyk ladu pochodzi z wyk ladu wyg loszonego przez dra Lukasza Rajchela w Interdyscyplinarnym Centrum Modelowania Matematycznego

Bardziej szczegółowo

201. a 1 a 2 a 3...a n a 2 1 +a 2 2 +a a 2 n n a 4 1 +a 4 2 +a a 4 n n. a1 + a 2 + a a n 204.

201. a 1 a 2 a 3...a n a 2 1 +a 2 2 +a a 2 n n a 4 1 +a 4 2 +a a 4 n n. a1 + a 2 + a a n 204. Liczby rzeczywiste dodatie a 1, a 2, a 3,...a spełiają waruek a 1 +a 2 +a 3 +...+a =. Wpisać w kratkę zak lub i udowodić podaą ierówość bez korzystaia z gotowych twierdzeń (moża korzystać z wcześiejszych

Bardziej szczegółowo

i elektronów w czasteczkach (laboratoryjnym) operator Hamiltona dla czasteczki dwuatomowej (jadra 2M b a i b; m -masa elektronu e 2 r ij

i elektronów w czasteczkach (laboratoryjnym) operator Hamiltona dla czasteczki dwuatomowej (jadra 2M b a i b; m -masa elektronu e 2 r ij Notatki do wyk ladu IX Rozdzielenie ruchu jader i elektronów w czasteczkach W dowolnym uk ladzie wspó lrzednych (laboratoryjnym) operator Hamiltona dla czasteczki dwuatomowej (jadra a i b)ma postać: Ĥ

Bardziej szczegółowo

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności Edward Stachowski O trzech elemetarych ierówościach i ich zastosowaiach przy dowodzeiu iych ierówości Przy dowodzeiu ierówości stosujemy elemetare przejścia rówoważe, przeprowadzamy rozumowaie typu: jeżeli

Bardziej szczegółowo

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii

O pewnych zastosowaniach rachunku różniczkowego funkcji dwóch zmiennych w ekonomii O pewych zastosowaiach rachuku różiczkowego fukcji dwóch zmieych w ekoomii 1 Wielkość wytwarzaego dochodu arodowego D zależa jest od wielkości produkcyjego majątku trwałego M i akładów pracy żywej Z Fukcję

Bardziej szczegółowo

( ) WŁASNOŚCI MACIERZY

( ) WŁASNOŚCI MACIERZY .Kowalski własości macierzy WŁSNOŚC MCERZY Własości iloczyu i traspozycji a) możeie macierzy jest łącze, tz. (C) ()C, dlatego zapis C jest jedozaczy, b) możeie macierzy jest rozdziele względem dodawaia,

Bardziej szczegółowo

STRUKTURA ELEKTRONOWA CZA STECZEK: METODA ORBITALI MOLEKULARNYCH (MO) Ćwiczenia. Monika Musia l

STRUKTURA ELEKTRONOWA CZA STECZEK: METODA ORBITALI MOLEKULARNYCH (MO) Ćwiczenia. Monika Musia l STRUKTURA ELEKTRONOWA CZA STECZEK: METODA ORBITALI MOLEKULARNYCH (MO) Ćwiczenia Monika Musia l Uk lad zamkniȩtopow lokowy: N elektronów; N 2 elektronowa: Ψ = 1 N! orbitali. Funkcja falowa N- φ 1 (1)α(1)

Bardziej szczegółowo

Schrödingera. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok

Schrödingera. Dr inż. Zbigniew Szklarski. Katedra Elektroniki, paw. C-1, pok Wykład 0: Rówaie Schrödigera Dr iż. Zbigiew Szklarski Kaedra Elekroiki paw. C- pok.3 szkla@agh.edu.pl hp://layer.uci.agh.edu.pl/z.szklarski/ Rówaie Schrödigera jedo z podsawowych rówań ierelaywisyczej

Bardziej szczegółowo

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2.

X i. X = 1 n. i=1. wartość tej statystyki nazywana jest wartością średnią empiryczną i oznaczamy ją symbolem x, przy czym x = 1. (X i X) 2. Zagadieia estymacji Puktem wyjścia badaia statystyczego jest wylosowaie z całej populacji pewej skończoej liczby elemetów i zbadaie ich ze względu a zmieą losową cechę X Uzyskae w te sposób wartości x,

Bardziej szczegółowo

Wykład 8: Zmienne losowe dyskretne. Rozkłady Bernoulliego (dwumianowy), Pascala, Poissona. Przybliżenie Poissona rozkładu dwumianowego.

Wykład 8: Zmienne losowe dyskretne. Rozkłady Bernoulliego (dwumianowy), Pascala, Poissona. Przybliżenie Poissona rozkładu dwumianowego. Rachue rawdoodobieństwa MAP064 Wydział Eletroii, ro aad. 008/09, sem. leti Wyładowca: dr hab. A. Jurlewicz Wyład 8: Zmiee losowe dysrete. Rozłady Beroulliego (dwumiaowy), Pascala, Poissoa. Przybliżeie

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17 Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo

Bardziej szczegółowo

Równowaga reakcji chemicznej

Równowaga reakcji chemicznej Rówowaga reakcji chemiczej Sta i stała rówowagi reakcji chemiczej (K) Reakcje dysocjacji Stopień dysocjacji Prawo rozcieńczeń Ostwalda utodysocjacja wody p roztworów p roztworów. p roztworów mocych elektrolitów

Bardziej szczegółowo

Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym.

Rozdzia l 11. Przestrzenie Euklidesowe Definicja, iloczyn skalarny i norma. iloczynem skalarnym. Rozdzia l 11 Przestrzenie Euklidesowe 11.1 Definicja, iloczyn skalarny i norma Definicja 11.1 Przestrzenia Euklidesowa nazywamy par e { X K,ϕ }, gdzie X K jest przestrzenia liniowa nad K, a ϕ forma dwuliniowa

Bardziej szczegółowo

Funkcja generująca rozkład (p-two)

Funkcja generująca rozkład (p-two) Fucja geerująca rozład (p-wo Defiicja: Fucją geerującą rozład (prawdopodobieńswo (FGP dla zmieej losowej przyjmującej warości całowie ieujeme, azywamy: [ ] g E P Twierdzeie: (o jedozaczości Jeśli i są

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów

KADD Metoda najmniejszych kwadratów Metoda ajmiejszych kwadratów Pomiary bezpośredie o rówej dokładości o różej dokładości średia ważoa Pomiary pośredie Zapis macierzowy Dopasowaie prostej Dopasowaie wielomiau dowolego stopia Dopasowaie

Bardziej szczegółowo

zadań z pierwszej klasówki, 10 listopada 2016 r. zestaw A 2a n 9 = 3(a n 2) 2a n 9 = 3 (a n ) jest i ograniczony. Jest wiec a n 12 2a n 9 = g 12

zadań z pierwszej klasówki, 10 listopada 2016 r. zestaw A 2a n 9 = 3(a n 2) 2a n 9 = 3 (a n ) jest i ograniczony. Jest wiec a n 12 2a n 9 = g 12 Rozwiazaia zadań z pierwszej klasówki, 0 listopada 06 r zestaw A Ciag a ) jest zaday rekuryjie: a a, a + a a 9, a R, a

Bardziej szczegółowo

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej

3. Regresja liniowa Założenia dotyczące modelu regresji liniowej 3. Regresja liiowa 3.. Założeia dotyczące modelu regresji liiowej Aby moża było wykorzystać model regresji liiowej, muszą być spełioe astępujące założeia:. Relacja pomiędzy zmieą objaśiaą a zmieymi objaśiającymi

Bardziej szczegółowo

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: ATOM WODORU Atom wodoru Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: U = 4πε Opis kwantowy: wykorzystując zasadę odpowiedniości

Bardziej szczegółowo

stany ekscytonowo-fononowe w kryszta lech oligotiofenów

stany ekscytonowo-fononowe w kryszta lech oligotiofenów Wst ep Niezwiazane stany ekscytonowo-fononowe w kryszta lech oligotiofenów Zak lad Chemii Teoretycznej 24 październik 2007 Wst ep Dlaczego oligotiofeny? Oligotiofeny Zwiazki chemiczne zbudowane z po l

Bardziej szczegółowo

Twierdzenie 15.3 (o postaci elementów rozszerzenia ciała o zbiór). Niech F będzie ciałem oraz A F pewnym zbiorem. Niech L<F.

Twierdzenie 15.3 (o postaci elementów rozszerzenia ciała o zbiór). Niech F będzie ciałem oraz A F pewnym zbiorem. Niech L<F. 15. Wyład 15: Podciała, podciała geerowae przez zbiór, rozszerzeia ciał. Charaterystya pierścieia i ciała, ciała proste i lasyfiacja ciał prostych. 15.1. Podciała, podciała geerowae przez zbiór, rozszerzeia

Bardziej szczegółowo

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak

Rekursja 2. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak Rekursja Materiały pomocicze do wykładu wykładowca: dr Magdalea Kacprzak Rozwiązywaie rówań rekurecyjych Jedorode liiowe rówaia rekurecyje Twierdzeie Niech k będzie ustaloą liczbą aturalą dodatią i iech

Bardziej szczegółowo

Z-TRANSFORMACJA Spis treści

Z-TRANSFORMACJA Spis treści Z-TRANSFORMACJA Spi treści. Deiicja. Pryłady traormat 3. Właości -traormacji 4. Zwiąe -traormacji traormacją Fouriera 5. Z-traormacja ygału dwuwymiarowego Deiicja -traormacji Z-traormata jet eregiem Laureta

Bardziej szczegółowo

Wyk lad 1 Podstawowe techniki zliczania

Wyk lad 1 Podstawowe techniki zliczania Wy lad 1 Podstawowe techii zliczaia Wariacje bez powtórzeń Defiicja 1. Niech i bed a liczbami aturalymi taimi, że. Niech A bedzie dowolym zbiorem elemetowym. Każdy ciag różowartościowy a 1,..., a d lugości

Bardziej szczegółowo

Twierdzenia o funkcjach ciągłych

Twierdzenia o funkcjach ciągłych Automatya i Robotya Aaliza Wyład 5 dr Adam Ćmiel cmiel@aghedupl Twierdzeia o ucjach ciągłych Tw (Weierstrassa Jeżeli ucja : R [ R jest ciągła a [, to ograiczoa i : ( sup ( i ( i ( [, Dowód Ograiczoość

Bardziej szczegółowo

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych

Wokół testu Studenta 1. Wprowadzenie Rozkłady prawdopodobieństwa występujące w testowaniu hipotez dotyczących rozkładów normalnych Wokół testu Studeta Wprowadzeie Rozkłady prawdopodobieństwa występujące w testowaiu hipotez dotyczących rozkładów ormalych Rozkład ormaly N(µ, σ, µ R, σ > 0 gęstość: f(x σ (x µ π e σ Niech a R \ {0}, b

Bardziej szczegółowo

Wzór Taylora. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski

Wzór Taylora. Matematyka Studium doktoranckie KAE SGH Semestr letni 2008/2009 R. Łochowski Wzór Taylora Szeregi potęgowe Matematyka Studium doktorackie KAE SGH Semestr leti 8/9 R. Łochowski Graica fukcji w pukcie Niech f: R D R, R oraz istieje ciąg puktów D, Fukcja f ma w pukcie graicę dowolego

Bardziej szczegółowo

7. OBLICZENIA WIELKOŚCI ZWARCIOWYCH ZA POMOCĄ KOMPUTERÓW

7. OBLICZENIA WIELKOŚCI ZWARCIOWYCH ZA POMOCĄ KOMPUTERÓW A. Kaici: warcia w sieciach eletroeergetyczych 7. OBCNA WKOŚC WARCOWCH A POOCĄ KOPUTRÓW 7.. astosowaie metody potecjałów węzłowych do obliczaia zwarć przy założeiu jedaowych sił eletromotoryczych geeratorów

Bardziej szczegółowo

Roy Jay Glauber, ojciec optyki kwantowej - Nagroda Nobla 2005 Polskie Towarzystwo Fizyczne Oddział Łódzki, 19 grudnia 2005 r.

Roy Jay Glauber, ojciec optyki kwantowej - Nagroda Nobla 2005 Polskie Towarzystwo Fizyczne Oddział Łódzki, 19 grudnia 2005 r. Roy Jay Glauber, ojciec optyki kwatowej - Nagroda Nobla 005 Polskie Towarzystwo Fizycze Oddział Łódzki, 19 grudia 005 r. Jarosław Bauer Katedra Fizyki Teoretyczej Uiwersytetu Łódzkiego Ul. Pomorska 149/153,

Bardziej szczegółowo