Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 16, Mateusz Winkowski, Łukasz Zinkiewicz

Wielkość: px
Rozpocząć pokaz od strony:

Download "Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 16, Mateusz Winkowski, Łukasz Zinkiewicz"

Transkrypt

1 Podstaw Fiki III Optka elementami fiki współcesnej wkład 16, wkład: poka: ćwicenia: Cesław Radewic Mateus Winkowski, Łukas Zinkiewic Radosław Łapkiewic

2 Wkład 15 - prpomnienie prepis Hugensa na propagację fali całka Fresnela-Kirchoffa, całka Sommerfelda asada Babineta dfrakcja Fraunhofera - prbliżenie dalekiego pola - scelina, scelina pod kątem, dwie scelin, otwór kołow prbliżenie Fresnela stref Fresnela płtka strefowa Fresnela

3 Prbliżenie Fraunhofera Formuła Sommerfelda E x 0, 0, = 1 iλ A E(x,, 0) e ikr01 dxd r 01 r 01 A Θ r 0 x 0, 0, r 01 x,, 0 Krok 1: wmieniam r 01 na w mianowniku wrażenia podcałkowego E x 0, 0, = 1 iλ A E(x,, 0)e ikr 01dxd Krok : akładam: δ x x λ i na powierchni otworu astępujem wcinek sfer (carna ciągła linia) pre wcinek płascn (cerwona linia kreskowana) r 01 r 0 sin Θ E x 0, 0, = 1 E(x,, 0)e ik r 0 sin Θ dxd iλ

4 Prbliżenie Fresnela Formuła Sommerfelda E x 0, 0, = 1 E(x,, 0) e ikr01 dxd iλ r 01 r 01 A A x 0, 0, Krok 1: E x 0, 0, = 1 iλ A E(x,, 0)eikr 01 dxd Krok : rowijam pierwiastek kwadr. w ser. Talora: x,, 0 r 01 r 01 = x x = 1 + x x x x Jeśli δ = x x to 8 3 x x λ r 01 + x x i E x 0, 0, 1 iλ eik A E(x,, 0)ei k x x dxd Zastępujem wcinek sfer (carna ciągła) pre paraboloidę obrotową (cerwona prerwana)

5 metoda obrakowa otw. kołow, 1 D otwór kołow, pole na osi ρ m+1 ρ m r 0m+1 r 0m E x,, 0 = E 0 dielim otwór na koncentrcne stref Fresnela i sumujem ich wkład do pola. Zgodnie wkładem 15 prjmujem ρ m = mλ Daje to stałą powierchnię stref πρ m+1 πρ m = πλ Numeracja: strefa o indeksie m jest ogranicona okręgami o indeksach m ora m + 1. Jednoceśnie kolejne stref dają wkład o preciwnm naku e ikρ m+1 = e ikρ m Cli E = E 1 E + E 3 E 4 + l 1 l l 3... E E 0 E Licba stref: Fraunhoffer m D 4λ 1 Fresnel 1 < D 4λ D Bliskie pole D 4λ ~ D πd 4 πλ = D 4λ

6 metoda obrakowa otw. kołow, otwór kołow, pole na osi, trochę dokładniej dielim strefę Fresnela na N wężsch pierścieni ρ m+1 ρ m r 0m r 0m+1 ρ m,l = λ m + l/n, l = 1,,, N co daje mniejsą powierchnię stref πρ m,l+1 πρ m,l = πλ N D E x,, 0 = E 0 M = N = 8 M = 16, N = 8 Ab policć pole pochodące od M wąskich stref korstam formuł Sommerfelda, w której całkę prbliżam dskretną sumą ImE ImE E 0,0, = 1 iλ E(x,, 0) e ikr01 dxd r 01 r 01 1 M πλ E iλ 0 N eikr l = πe M 0 e ilπ N in l=1 l=1 ReE E = 0 ReE

7 metoda obrakowa otw. kołow, 3 E(0,0, ) πe M 0 e ilπ N in l=1 N ImE N ImE E = E 0 ReE E = 0 ReE N lim N l=1 e ilπ N = N π E(0,0, ) E 0 N lim N l=1 e ilπ N = 0 E(0,0, ) 0 ocekujem cklicności

8 metoda obrakowa otw. kołow, 4 otwór kołow, pole na osi, jesce dokładniej D ρ m+1 ρ m r 0m r 0m+1 πρ m,l+1 πρ m,l = πλ N E x,, 0 = E 0 M = N = 8 ImE ImE E(0,0, ) πe M 0 e ilπ N in l=1 lepse prbliżenie uwględniające cos Θ 0 całki Fresnela-Kirchoffa M E(0,0, ) πe 0 in l=1 e i r l lπ N E 0 ReE ReE

9 metoda obrakowa otw. kołow, 5 otwór kołow, pole na osi - od Fraunhoffera do Fresnela Formuła Sommerfelda E x 0, 0, = 1 iλ A E(x,, 0) e ikr01 dxd r 01 r 01 ognisko nr ognisko nr 3 ImE ognisko główne E 0,0, = π iλ E 0 0 D/ ρ +ρ eik +ρ dρ Nowa mienna l = ρ : dl = ρdρ co daje E 0,0, = π iλ E 0 0 D /4 1 +l eik +l dl E 0 ReE Prbliżenie Fraunhofera ρ ρ + λ ognisko nr 3 ognisko nr ognisko główne

10 metoda obrakowa - uwagi nieregularn kstałt presłon trudniejse rachunki E 1 = E 0 I 1 = 4I 0

11 dfrakcja Fresnela na otw. kołowm, 1 dl d E 0

12 dfrakcja Fresnela na otw. kołowm,

13 dfrakcja Fresnela na otw. kołowm, 3

14 Dfrakcja na dsku fala płaska, okrągła preskoda, obserwacja na osi ImE E 0 E E a d ρ m+1 ρ m D r 0m r 0m+1 P 0 E d E a E 0 E x,, 0 = E 0 ReE Wiem, że E 0 = E 0,0, = π iλ E 0 0 ρ + ρ eik +ρ dρ = E 0 e ik plamka Arago Zasada Babineta: ρ 0 +ρ eik +ρ D/ ρ dρ = 0 +ρ eik +ρ dρ + D/ ρ +ρ eik +ρ dρ pole be presł. E 0 pole od apertur Kołowej E a pole od dsku E d

15 Dfrakcja na dsku i pierścieniu asłonięte 3 pierwse stref Fresnela odsłonięte stref 4-8

16 Pltka strefowa Fresnela ra jesce

17 metoda obrakowa - scelina m prkład scelina, obserwacja na krawędi E x 0, 0, = 1 iλ r0m ImE E(x,, 0) e ikr01 dxd r 01 r 01 P 0 dielim scelinę na stref Fresnela m = mλ r 0m = m + o powierchni malejącej indeksem m δ m = m+1 m = m+1 m m+1 + m = λ m+1+ m Możem wpisać sumę składowch pola ale nie umiem jej policć l max E = 1 l+1 δ l l=1 podiał na wąskie paski l 4 E ReE E

18 metoda obrakowa - półpłascna odkrtą półpłascnę dielim na stref Fresnela 1 r 0 r 01 r 0m 0 r om r 00 = m λ r 00 = 0 + r 0m = m 0 + m = r 00 P 0,, 0 0 Dla 0 = 0 serokość stref to δ m = λ m+1+ m Podiał na wężse paski ImE E ReE Natężenie dla 0 = 0 licm asad Babineta: E = E 0 / co daje I = I 0 /4... E x0, 0, El l 1 E 0

19 Prbliżenie Fresnela ukł. kartej., 1 Formuła Sommerfelda E x 0, 0, = 1 iλ A E(x,, 0) e ikr01 dxd r 01 r 01 (, ) x 0 0 x 0 ( x, ) x 0 Krok 1: E x 0, 0, = 1 iλ A E(x,, 0)eikr 01 dxd Krok : rowijam pierwiastek kwadr. w ser. Talora: r 01 = x x = 1 + x x x x x x Jeśli x x λ to r 01 + x x i E x 0, 0, = 1 iλ A E(x,, 0)e i k x x dxd

20 Prbliżenie Fresnela ukł. kartej., otwór prostokątn E x,, 0 = E 0 rect x D x rect D E x 0, 0, = eik iλ A E(x,, 0)e i k x x dxd Załóżm stałą amplitudę na otwore E x,, 0 = E 0 Podwójna całka da się sprowadić do ilocnu dwóch całek: jedna po x a druga po ( x, ) x 0 ( x, ) 0 0 x 0 onacam U x = D x / 1 λ Dx/ e ik x x 0 dx = 1 x e e iπν dν xb D x / D x / gdie ν = λ x x 0, x b = λ D x x 0, x e = λ D x x 0 Mam wted: U x = 1 x e e iπν dν 1 x b e iπν dν 0 0 Korstam a tożsamości Eulera e iη = cos η + i sin η żeb wprowadić całki funkcji recwistch (całki Fresnela) s πν C s = 0 cos dν S s = 0 s sin πν i apisać dν U x = 1 C x e C x b + i S x e S x b

21 Prbliżenie Fresnela ukł. kartej., 3 podobnie U = D / 1 λ D/ e ik 0 d = 1 x e e iπν dν xb gdie ν = λ 0, b = λ D, e = λ + U = 1 C e C b + i S e S b ostatecnie, pole E x 0, 0, = E 0e ik i U x U = = E 0e ik i C x e C x b + i S x e S x b C e C b + i S e S b a natężenie E x 0, 0, = I 0 4 C x e C x b + i S x e S x b C e C b + i S e S b

22 Spirala Cornu s Prpomnienie: całki Fresnela S s C s = 0 s cos πν S s = 0 s sin πν dν dν s 0 C s Ss () Cs () s s dl = dc + ds = cos dl = ds πν + sin πν ds = ds

23 Dfrakcja Fresnela półpłascna, 1 E x,, 0 = E 0 step() I 0, = I 0 C C b + S S b b = λ 0 x0, 0,

24 Dfrakcja Fresnela scelina, 1 x scelina E x,, 0 = E 0 rect D I 0, = I 0 C e C b + S e S b x 0 b = λ D + 0, e = λ D 0 ( x, ) S s D C s Prpomnienie dl = ds długość snurka e b = λ D pocątek snurka b = λ D + 0

25 Dfrakcja Fresnela scelina, 3 długość snurka e b = λ D pocątek snurka b = λ D + 0 S s 1 C s Roważm scelinę o serokości takiej, że e b = 1 D = λ 1. Środek scelin snurek ułożon smetrcnie (1). Punkt obserwacji na granic cienia geometrcnego () 3. Punkt obserwacji w cieniu geometrcnm (3) pole maleje monotonicnie odległością od scelin Fraunhofer: im sersa scelina tm więcej osclacji amplituda osclacji najwięksa pr krawędiach D λ 1 e b = λ D 1

26 natężenie na osi Dfrakcja Fresnela scelina, 3 długość snurka e b = λ D : 0 0 S s 3 Obserwacja na osi 0 = 0; mieniam serokość scelin 1 C s (1) D = λ () D = λ (3) D = 3 1 D 0

27 Dfrakcja Fresnela scelina, 4 x scelina E x,, 0 = E 0 rect D x 0 ( x, ) D

28 Dfrakcja Fresnela - drut E x,, 0 = E 0 rect D Babinet: E 0 = E drut + E scelina E drut = E 0 E scelina x 0 ( x, ) 0 0 x 0 E drut E scelina E 0 E 0 Jasn prążek na osi smetrii

29 Dfrakcja Fresnela otwór prostokątn otwór prostokątn E x,, 0 = E 0 rect x D x rect I x 0, 0, = I 0 D 4 C x e C x b + S x e S x b C e C b + S e S b x b = λ D x + x 0, x e = λ D x x 0 x 0 b = λ D + 0, e = λ D 0 ( x, ) ( x, ) 0 0 x 0 S s C s

30 Dfrakcja Fresnela otwór prostokątn

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 16, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 16, Radosław Chrapkiewicz, Filip Ozimek Podstaw Fiki IV Optka elementami fiki współcesnej wkład 16, 16.04.01 wkład: poka: ćwicenia: Cesław Radewic Radosław Chrapkiewic, Filip Oimek Ernest Grodner Wkład 15 - prpomnienie prepis Hugensa na propagację

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 15, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 15, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 5, 3.04.0 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 4 - przypomnienie interferencja

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 17, 0.04.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 16 - przypomnienie dyfrakcja

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 17, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 17, 01.12.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 16 - przypomnienie

Bardziej szczegółowo

WSTĘP DO OPTYKI FOURIEROWSKIEJ

WSTĘP DO OPTYKI FOURIEROWSKIEJ 1100-4BW1, rok akademicki 018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Wykład 4 Przestrzeń swobodna jako filtr częstości przestrzennych Załóżmy, że znamy rozkład pola na fale monochromatyczne

Bardziej szczegółowo

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ).

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ). Materiał ddaktcne Geodeja geometrcna Marcin Ligas, Katedra Geomatki, Wdiał Geodeji Górnicej i Inżnierii Środowiska UKŁADY WSPÓŁZĘDNYCH NA KULI Pierwsm prbliżeniem kstałtu Ziemi (ocwiście po latach płaskich

Bardziej szczegółowo

J. Szantyr - Wykład 4 Napór hydrostatyczny Napór hydrostatyczny na ściany płaskie

J. Szantyr - Wykład 4 Napór hydrostatyczny Napór hydrostatyczny na ściany płaskie J. antr - Wkład Napór hdrostatcn Napór hdrostatcn na ścian płaskie Napór elementarn: d n( p pa ) d nρgd Napór całkowit: ρg nd ρgn d gdie: C Napór hdrostatcn na ścianę płaską predstawia układ elementarnch

Bardziej szczegółowo

Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji

Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,

Bardziej szczegółowo

Przykłady do zadania 1.1 : Obliczyć dane całki podwójne po wskazanych prostokątach. π 4. (a) sin(x + y) dxdy, R = π 4, π ] [ dy = sin(x + y)dy = dx =

Przykłady do zadania 1.1 : Obliczyć dane całki podwójne po wskazanych prostokątach. π 4. (a) sin(x + y) dxdy, R = π 4, π ] [ dy = sin(x + y)dy = dx = achunek prawdopodobieństwa MAP6 Wdział Elektroniki, rok akad. 8/9, sem. letni Wkładowca: dr hab. A. Jurlewicz Przkład do list : Całki podwójne Przkład do zadania. : Obliczć dane całki podwójne po wskazanch

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 5, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 5, Radosław Chrapkiewicz, Filip Ozimek Podstaw Fizki IV Optka z elementami fizki współczesnej wkład 5, 27.02.2012 wkład: pokaz: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wkład 4 - przpomnienie dielektrki

Bardziej szczegółowo

Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 2. Dyfrakcja światła w polu bliskim i dalekim

Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 2. Dyfrakcja światła w polu bliskim i dalekim Laboratorium optycznego przetwarzania informacji i holografii Ćwiczenie. Dyfrakcja światła w polu bliskim i dalekim Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdańska Gdańsk

Bardziej szczegółowo

Propagacja w przestrzeni swobodnej (dyfrakcja)

Propagacja w przestrzeni swobodnej (dyfrakcja) Fotonika Wykład 7 - Sposoby wyznaczania obrazu dyfrakcyjnego - Przykłady obrazów dyfrakcyjnych w polu dalekim obliczonych przy użyciu dyskretnej transformaty Fouriera - Elementy dyfrakcyjne Propagacja

Bardziej szczegółowo

Płaska fala monochromatyczna

Płaska fala monochromatyczna Płaska fala onochroatcna Fala płaska propagująca się w owoln kierunku s P s s - fragent coła fali płaskiej propagującej się w kierunku efiniowan pre wersor s O r,, prawoskrętn ukła współręnch kartejańskich

Bardziej szczegółowo

G:\AA_Wyklad 2000\FIN\DOC\FRAUN1.doc. "Drgania i fale" ii rok FizykaBC. Dyfrakcja: Skalarna teoria dyfrakcji: ia λ

G:\AA_Wyklad 2000\FIN\DOC\FRAUN1.doc. Drgania i fale ii rok FizykaBC. Dyfrakcja: Skalarna teoria dyfrakcji: ia λ Dyfrakcja: Skalarna teoria dyfrakcji: U iω t [ e ] ( t) Re U ( ) ;. c t U ( ; t) oraz [ + ] U ( ) k. U ia s ( ) A e ik r ( rs + r ) cos( n, ) cos( n, s ) ds s r. Dyfrakcja Fresnela (a) a dyfrakcja Fraunhofera

Bardziej szczegółowo

Różne reżimy dyfrakcji

Różne reżimy dyfrakcji Fotonika Wykład 7 - Sposoby wyznaczania obrazu dyfrakcyjnego - Przykłady obrazów dyfrakcyjnych w polu dalekim obliczonych przy użyciu dyskretnej transformaty Fouriera - Elementy dyfrakcyjne Różne reżimy

Bardziej szczegółowo

lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów

lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów 9. CAŁKA POWÓJNA 9.. Całka podwójna w prostokącie Niech P będzie prostokątem opisanm na płaszczźnie OXY nierównościami: a < < b, c < < d, a f(,) funkcją określoną i ograniczoną w tm prostokącie. Prostokąt

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 12, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 12, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 1, 3.03.01 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek rnest Grodner Wykład 11 - przypomnienie superpozycja

Bardziej szczegółowo

ANALIZA KONSTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY

ANALIZA KONSTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY Cw3_biornik.doc ANALIZA KONTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY 1. W P R O W A D Z E N I E Ciało utworone pre dwie akrwione powierchnie nawane jest powłoką, jeśli preciętna odlełość pomięd

Bardziej szczegółowo

Dyfrakcja. Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia

Dyfrakcja. Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia Dyfrakcja 1 Dyfrakcja Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia uginanie na szczelinie uginanie na krawędziach przedmiotów

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 12, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 12, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład, 0..07 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład - przypomnienie superpozycja

Bardziej szczegółowo

Pochodna kierunkowa i gradient Równania parametryczne prostej przechodzącej przez punkt i skierowanej wzdłuż jednostkowego wektora mają postać:

Pochodna kierunkowa i gradient Równania parametryczne prostej przechodzącej przez punkt i skierowanej wzdłuż jednostkowego wektora mają postać: ochodna kierunkowa i gradient Równania parametrcne prostej prechodącej pre punkt i skierowanej wdłuż jednostkowego wektora mają postać: Oblicam pochodną kierunkową u ( u, u ) 1 + su + su 1 (, ) d d d ˆ

Bardziej szczegółowo

23. CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA

23. CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA . CAŁKA POWIERZCHNIOWA NIEZORIENTOWANA Płat powiechniow o ównaniach paametcnch: ( ) ( ) ( ) () gdie oba jet obaem eglanm nawam płatem gładkim (płatem eglanm) gd w każdm pnkcie tego płata itnieje płacna

Bardziej szczegółowo

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE . Oblicyć: ZADANIA Z FUNKCJI ANALITYCZNYCH a) ( 7i) ( 9i); b) (5 i)( + i); c) 4+3i ; LICZBY ZESPOLONE d) 3i 3i ; e) pierwiastki kwadratowe 8 + i.. Narysować biór tych licb espolonych, które spełniają warunek:

Bardziej szczegółowo

WYBRANE ZAGADNIENIA DYFRAKCJI FRESNELA

WYBRANE ZAGADNIENIA DYFRAKCJI FRESNELA WYBRANE ZAGADNIENIA DYFRAKCJI FRESNELA prof. dr hab. inż. Krzysztof Patorski Omawiane zagadnienia z zakresu dyfrakcji Fresnela obejmują: dyfrakcję na obiektach o symetrii obrotowej ze szczególnym uwzględnieniem

Bardziej szczegółowo

Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji

Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Fotonika Wykład 6: Reprezentacja informacji w układzie optycznym; układy liniowe w optyce; podstawy teorii dyfrakcji Plan: pojęcie sygnału w optyce układy liniowe filtry liniowe, transformata Fouriera,

Bardziej szczegółowo

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 2. CAŁKA PODWÓJNA Całka podwójna po prostokącie

Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem. 2. CAŁKA PODWÓJNA Całka podwójna po prostokącie Wykłady z Matematyki stosowanej w inżynierii środowiska, II sem..1. Całka podwójna po prostokącie.. CAŁKA POWÓJNA.. Całka podwójna po obszarach normalnych..3. Całka podwójna po obszarach regularnych..4.

Bardziej szczegółowo

Przykład 6.3. Uogólnione prawo Hooke a

Przykład 6.3. Uogólnione prawo Hooke a Prkład 6 Uogónione prawo Hooke a Zwiąki międ odkstałceniami i naprężeniami w prpadku ciała iotropowego opisuje uogónione prawo Hooke a: ] ] ] a Rowiąując równania a wgędem naprężeń otrmujem wiąki: b W

Bardziej szczegółowo

4.2.1. Środek ciężkości bryły jednorodnej

4.2.1. Środek ciężkości bryły jednorodnej 4..1. Środek ciężkości rł jednorodnej Brłą jednorodną nawam ciało materialne, w którm masa jest romiescona równomiernie w całej jego ojętości. Dla takic ciał arówno gęstość, jak i ciężar właściw są wielkościami

Bardziej szczegółowo

Płaska fala monochromatyczna

Płaska fala monochromatyczna Płaska fala onochroatcna Fala płaska propagująca się w owoln kierunku s Σ P s s Σ - fragent coła fali płaskiej propagującej się w kierunku efiniowan pre wersor s O r,, prawoskrętn ukła współręnch kartejańskich

Bardziej szczegółowo

Promieniowanie dipolowe

Promieniowanie dipolowe Promieniowanie dipolowe Potencjały opóźnione φ i A dla promieniowanie punktowego dipola elektrycznego wygodnie jest wyrażać przez wektor Hertza Z φ = ϵ 0 Z, spełniający niejednorodne równanie falowe A

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 19, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 19, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 9, 08.2.207 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 8 - przypomnienie

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 19, 27.04.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 18 - przypomnienie

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 14, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 14, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fiyki IV Optyka elementami fiyki współcesnej wykład 4, 30.03.0 wykład: pokay: ćwicenia: Cesław Radewic Radosław Chrapkiewic, Filip Oimek Ernest Grodner Wykład 3 - prypomnienie płasko-równoległy

Bardziej szczegółowo

ĘŚCIOWO KOHERENTNYM. τ), gdzie Γ(r 1. oznacza centralną częstotliwość promieniowania quasi-monochromatycznego.

ĘŚCIOWO KOHERENTNYM. τ), gdzie Γ(r 1. oznacza centralną częstotliwość promieniowania quasi-monochromatycznego. OBRAZOWANIE W OŚWIETLENIU CZĘŚ ĘŚCIOWO KOHERENTNYM 1. Propagacja światła a częś ęściowo koherentnego prof. dr hab. inŝ. Krzysztof Patorski Krzysztof PoniŜej zajmiemy się propagacją promieniowania quasi-monochromatycznego,

Bardziej szczegółowo

PODSTAWY DYFRAKCJI WYBRANE ZAGADNIENIA DYFRAKCJI FRAUNHOFERA Krzysztof

PODSTAWY DYFRAKCJI WYBRANE ZAGADNIENIA DYFRAKCJI FRAUNHOFERA Krzysztof PODSTAWY DYFRAKCJI WYBRANE ZAGADNIENIA DYFRAKCJI FRAUNHOFERA prof. dr hab. inż. Krzysztof Patorski Krzysztof Niniejsza część wykładu obejmuje wprowadzenie do dyfrakcji, opis matematyczny z wykorzystaniem

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 006 Instytut Fizyki Uniwersytetu Szczecińskiego Równania (3.7), pomimo swojej prostoty, nie posiadają poza nielicznymi przypadkami ścisłych rozwiązań,

Bardziej szczegółowo

Geometria analityczna w przestrzeni. Kierunek. Długość. Zwrot

Geometria analityczna w przestrzeni. Kierunek. Długość. Zwrot - podstawowe pojęcia Geometria analitcna w prestreni Wektorem acepionm w prestreni R 3 nawam uporądkowaną parę punktów A ora B i onacam go pre AB. Punkt A nawam jego pocątkiem, a punkt B - jego końcem.

Bardziej szczegółowo

Rys. 1 Pole dyfrakcyjne obiektu wejściowego. Rys. 2 Obiekt quasi-periodyczny.

Rys. 1 Pole dyfrakcyjne obiektu wejściowego. Rys. 2 Obiekt quasi-periodyczny. Ćwiczenie 7 Samoobrazowanie obiektów periodycznych Wprowadzenie teoretyczne Jeśli płaski obiekt optyczny np. przezrocze z czarno-białym wzorem (dokładniej mówiąc z przeźroczysto-nieprzeźroczystym wzorem)

Bardziej szczegółowo

Fizyka Laserów wykład 5. Czesław Radzewicz

Fizyka Laserów wykład 5. Czesław Radzewicz Fizyka Laserów wykład 5 Czesław Radzewicz rezonatory optyczne, optyczne wnęki rezonansowe rezonatory otwarte: Fabry-Perot E t E 0 R 0.99 T 1 0 E r R R R 0. R 0.9 E t = TE 0 e iδφ R 0.5 R 0.9 E t Gires-Tournois

Bardziej szczegółowo

Pole magnetyczne magnesu w kształcie kuli

Pole magnetyczne magnesu w kształcie kuli napisał Michał Wierzbicki Pole magnetyczne magnesu w kształcie kuli Rozważmy kulę o promieniu R, wykonaną z materiału ferromagnetycznego o stałej magnetyzacji M = const, skierowanej wzdłuż osi z. Gęstość

Bardziej szczegółowo

RACHUNEK CAŁKOWY FUNKCJI DWÓCH ZMIENNYCH

RACHUNEK CAŁKOWY FUNKCJI DWÓCH ZMIENNYCH RACHUNEK CAŁKOWY FUNKCJI WÓCH ZMIENNYCH einicja całki podwójnej po prostokącie einicja Podziałem prostokąta R ={ : a b c d} inaczej: R = [a b] [c d] nazwam zbiór Pn złożon z prostokątów R R... Rn które

Bardziej szczegółowo

cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321

cz.2 Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.321 Wkład 8: Brła stwna c. Dr inż. Zbigniew Sklarski Katedra Elektroniki, paw. C-, pok.3 skla@agh.edu.pl http://laer.uci.agh.edu.pl/z.sklarski/ 05.04.08 Wdiał nformatki, Elektroniki i Telekomunikacji - Teleinformatka

Bardziej szczegółowo

Całka oznaczona zastosowania (wykład 9; ) Definicja całki oznaczonej dla funkcji ciagłej

Całka oznaczona zastosowania (wykład 9; ) Definicja całki oznaczonej dla funkcji ciagłej Całka oznaczona zastosowania (wykład 9;26.11.7) Definicja całki oznaczonej dla funkcji ciagłej Definicja 1 Załózmy, że funkcja f jest ciagła na przedziale [a, b]. Całkę oznaczona z funkcji ci b a f(x)dx

Bardziej szczegółowo

R Z N C. p11. a!b! = b (a b)!b! d n dx n [xn sin x] = x n(n k) (sin x) (n) = n(n 1) (n k + 1) sin(x + kπ. n(n 1) (n k + 1) sin(x + lπ 2 )

R Z N C. p11. a!b! = b (a b)!b! d n dx n [xn sin x] = x n(n k) (sin x) (n) = n(n 1) (n k + 1) sin(x + kπ. n(n 1) (n k + 1) sin(x + lπ 2 ) 5 Z N p ) a a + b)! b ) a!b! a a! b a b)!b! p n n k nn k) n ) n k) d n d n [n sin ] n nn k) sin ) n) k n nn ) n k + ) sin + lπ ) k d n d n [n sin ] n k ) n n ) n k) sin ) k) k n k ) n nn ) n k + ) sin

Bardziej szczegółowo

WSTĘP DO OPTYKI FOURIEROWSKIEJ

WSTĘP DO OPTYKI FOURIEROWSKIEJ 1100-4BW12, rok akademicki 2018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Dyfrakcja zasada Babineta + = Ekrany E 1 E 2 0 Pole na ekranie E 1 + E 2 = 0 E 1 = E 2 To samo tylko w przeciw

Bardziej szczegółowo

J. Szantyr - Wykład 7 Ruch ogólny elementu płynu

J. Szantyr - Wykład 7 Ruch ogólny elementu płynu J. Santr - Wkład 7 Rch ogóln element płn Rch ogóln ciała stwnego można predstawić jako smę premiescenia liniowego i obrot. Ponieważ płn nie mają stwności postaciowej, w rch płn dochodi dodatkowo do odkstałcenia

Bardziej szczegółowo

PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE

PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE prof. dr hab. inż. Krzysztof Patorski Przedmiotem tej części wykładu są podstawowe transformacje fazowe

Bardziej szczegółowo

EGZAMIN Z ANALIZY II R

EGZAMIN Z ANALIZY II R EGZAMIN Z ANALIZY II R Instrukcja obsługi Za każde zadanie można dostać 4 punkty Rozwiązanie każdego zadania należy napisać na osobnej kartce starannie i czytelnie W nagłówku rozwiązania należy umieścić

Bardziej szczegółowo

7 Twierdzenie Fubiniego

7 Twierdzenie Fubiniego M. Beśka, Wstęp do teorii miary, wykład 7 19 7 Twierdzenie Fubiniego 7.1 Miary produktowe Niech i będą niepustymi zbiorami. Przez oznaczmy produkt kartezjański i tj. zbiór = { (x, y : x y }. Niech E oraz

Bardziej szczegółowo

Metody Obliczeniowe Mikrooptyki i Fotoniki. - Dyfrakcja różne reżimy - Obliczanie elementów dyfrakcyjnych

Metody Obliczeniowe Mikrooptyki i Fotoniki. - Dyfrakcja różne reżimy - Obliczanie elementów dyfrakcyjnych Metody Obliczeniowe Mikrooptyki i Fotoniki - Dyfrakcja różne reżimy - Obliczanie elementów dyfrakcyjnych Elementy dyfrakcyjne - idea d1 Wiązka padająca Ψ i ( x,y ) DOE (diffractive optical element) d Oczekiwany

Bardziej szczegółowo

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo

Ruch kulisty bryły. Kąty Eulera. Precesja regularna

Ruch kulisty bryły. Kąty Eulera. Precesja regularna Ruch kulist brł. Kąt Eulera. Precesja regularna Ruchem kulistm nawam ruch, w casie którego jeden punktów brł jest stale nieruchom. Ruch kulist jest obrotem dookoła chwilowej osi obrotu (oś ta mienia swoje

Bardziej szczegółowo

Wykład VI Dalekie pole

Wykład VI Dalekie pole Wykład VI Dalekie pole Schemat przypomnienie Musimy znać rozkład fali padającej u pad (x,y) w płaszczyźnie układu optycznego Musimy znać funkcję transmitancji układu optycznego t(x,y) Określamy falę właśnie

Bardziej szczegółowo

Całka podwójna po prostokącie

Całka podwójna po prostokącie Całka podwójna po prostokącie Rozważmy prostokąt = {(x, y) R : a x b, c y d}, gdzie a, b, c, d R, oraz funkcję dwóch zmiennych f : R ograniczoną w tym prostokącie. rostokąt dzielimy na n prostokątów i

Bardziej szczegółowo

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1

Całki krzywoliniowe. SNM - Elementy analizy wektorowej - 1 SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

Analiza Matematyczna Praca domowa

Analiza Matematyczna Praca domowa Analiza Matematyczna Praca domowa J. de Lucas Zadanie 1. Pokazać, że dla wszystkich n naturalnych ( n ) exp kx k dx 1 dx n = 1 n (e k 1). (0,1) n k=1 n! k=1 Zadanie. Obliczyć dla dowolnego n. (0,1) n (x

Bardziej szczegółowo

Całkowanie przez podstawianie i dwa zadania

Całkowanie przez podstawianie i dwa zadania Całkowanie przez podstawianie i dwa zadania Antoni Kościelski Funkcje dwóch zmiennch i podstawianie Dla funkcji dwóch zmiennch zachodzi następując wzór na całkowanie przez podstawianie: f(x(a, b), (a,

Bardziej szczegółowo

Ćwiczenie 5. Rys. 1 Geometria zapisu Fresnela.

Ćwiczenie 5. Rys. 1 Geometria zapisu Fresnela. Ćwiczenie 5 Strefy Fresnela Wprowadzenie teoretyczne Wyobraźmy sobie, że fala płaska o długości, propagująca się wzdłuż osi OZ ma na płaszczyźnie OXY amplitudę A. Rys. 1 Geometria zapisu Fresnela. Z równania

Bardziej szczegółowo

3. WSPÓŁCZYNNIK ŚCINANIA (KOREKCYJNY)

3. WSPÓŁCZYNNIK ŚCINANIA (KOREKCYJNY) Cęść 1. WSPÓŁCZYNNIK ŚCINANIA (KOEKCYJNY) 1.. WSPÓŁCZYNNIK ŚCINANIA (KOEKCYJNY).1. Wstęp Współcynnik κ naywany współcynnikiem ścinania jest wielkością ewymiarową, ależną od kstałtu prekroju. Występuje

Bardziej szczegółowo

Wykład 17: Optyka falowa cz.1.

Wykład 17: Optyka falowa cz.1. Wykład 17: Optyka falowa cz.1. Dr inż. Zbigniew Szklarski Katedra Elektroniki, paw. C-1, pok.31 szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ 1 Zasada Huyghensa Christian Huygens 1678 r. pierwsza

Bardziej szczegółowo

Wykład 27 Dyfrakcja Fresnela i Fraunhofera

Wykład 27 Dyfrakcja Fresnela i Fraunhofera Wykład 7 Dyfrakcja Fresnela i Fraunhofera Zjawisko dyfrakcji (ugięcia) światła odkrył Grimaldi (XVII w). Polega ono na uginaniu się promieni świetlnych przechodzących w pobliżu przeszkody (np. brzeg szczeliny).

Bardziej szczegółowo

ODWZOROWANIE W OŚWIETLENIU KOHERENTNYM

ODWZOROWANIE W OŚWIETLENIU KOHERENTNYM ODWZOROWANIE W OŚWIETLENIU KOHERENTNYM prof. dr hab. inż. Krzysztof Patorski Przedmiotem tej części wykładu jest model matematyczny procesu formowania obrazu przez pojedynczy układ optyczny w oświetleniu

Bardziej szczegółowo

,..., u x n. , 2 u x 2 1

,..., u x n. , 2 u x 2 1 . Równania różnickowe cąstkowe Definicja. Równaniem różnickowm cąstkowm (rrc) nawam równanie różnickowe, w którm wstępuje funkcja niewiadoma dwóch lub więcej miennch i jej pochodne cąstkowe. Ogólna postać

Bardziej szczegółowo

OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę

OPTYKA FALOWA. W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę OPTYKA FALOWA W zjawiskach takich jak interferencja, dyfrakcja i polaryzacja światło wykazuje naturę falową. W roku 8 Thomas Young wykonał doświadczenie, które pozwoliło wyznaczyć długość fali światła.

Bardziej szczegółowo

Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................

Bardziej szczegółowo

falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi

falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

PROMIENIOWANIE CIAŁA DOSKONALE CZARNEGO

PROMIENIOWANIE CIAŁA DOSKONALE CZARNEGO PROMIENIOWANIE CIAŁA DOSKONALE CZARNEGO wyprowadzenie bez mechaniki kwantowej. Opracował mgr inż. Herbert S. Mączko Celem jest wyznaczenie objętościowej gęstości energii ρ T promieniowania w równoległościennej,

Bardziej szczegółowo

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12

Matematyka I. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12 Matematyka I Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr zimowy 2018/2019 Wykład 12 Egzamin Termin: 28.01, godz. 10.15-11.45, sala 309 3 pytania teoretyczne 2 zadania wybór pytań i wybór zadań

Bardziej szczegółowo

Moment pędu fali elektromagnetycznej

Moment pędu fali elektromagnetycznej napisał Michał Wierzbicki Moment pędu fali elektromagnetycznej Definicja momentu pędu pola elektromagnetycznego Gęstość momentu pędu pola J w elektrodynamice definuje się za pomocą wzoru: J = r P = ɛ 0

Bardziej szczegółowo

Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego.

Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego. Ćwiczenie 6 Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego. Interferometr Macha-Zehndera Interferometr Macha-Zehndera jest często wykorzystywany

Bardziej szczegółowo

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie

Strumień Prawo Gaussa Rozkład ładunku Płaszczyzna Płaszczyzny Prawo Gaussa i jego zastosowanie Problemy elektrodynamiki. Prawo Gaussa i jego zastosowanie przy obliczaniu pól ładunku rozłożonego w sposób ciągły. I LO im. Stefana Żeromskiego w Lęborku 19 marca 2012 Nowe spojrzenie na prawo Coulomba

Bardziej szczegółowo

Funkcje Analityczne, ćwiczenia i prace domowe

Funkcje Analityczne, ćwiczenia i prace domowe Funkcje Analityczne, ćwiczenia i prace domowe P. Wojtaszczyk 29 maja 22 Ten plik będzie progresywnie modyfikowany. Będzie on zawierał. Zadanie omówione na ćwiczeniach 2. Zadania ćwiczebne do samodzielnego

Bardziej szczegółowo

Zjawisko interferencji fal

Zjawisko interferencji fal Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

1 Układy równań liniowych

1 Układy równań liniowych 1 Układy równań liniowych 1. Rozwiązać układy równań liniowych metodą eliminacji Gaussa x + 2y z = 4 y 2z = 4x y + z = 0 x y + z = 0 2y + 5z = 1 6x 4y z = 1 x + y t = 1 x + y z = 0 y + z + t = 1 x + +

Bardziej szczegółowo

Pręt nr 2 N 3,1416² ,1. Wyniki wymiarowania stali wg PN-EN 1993 (Stal1993_2d v. 1.3 licencja) Zadanie: P_OFFER Przekrój: 8 - Złożony

Pręt nr 2 N 3,1416² ,1. Wyniki wymiarowania stali wg PN-EN 1993 (Stal1993_2d v. 1.3 licencja) Zadanie: P_OFFER Przekrój: 8 - Złożony Pręt nr Wniki wmiarowania stali wg P-E 993 (Stal993_d v..3 licencja) Zadanie: P_OER Prekrój: 8 - Złożon Z Y 39 83 Wmiar prekroju: h6,0 s438,7 Charakterstka geometrcna prekroju: Ig4490, Ig34953,6 83,00

Bardziej szczegółowo

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017

Optyka. Wykład V Krzysztof Golec-Biernat. Fale elektromagnetyczne. Uniwersytet Rzeszowski, 8 listopada 2017 Optyka Wykład V Krzysztof Golec-Biernat Fale elektromagnetyczne Uniwersytet Rzeszowski, 8 listopada 2017 Wykład V Krzysztof Golec-Biernat Optyka 1 / 17 Plan Swobodne równania Maxwella Fale elektromagnetyczne

Bardziej szczegółowo

Powierzchnie stopnia drugiego

Powierzchnie stopnia drugiego Algebra WYKŁAD 3 Powierchnie sopnia drugiego Deinicja Powierchnią sopnia drugiego kwadrką nawam biór punków presreni rójwmiarowej, spełniającch równanie A B C D E F G H I K gdie A, B,, K są sałmi i prnajmniej

Bardziej szczegółowo

Laboratorium TECHNIKI LASEROWEJ. Ćwiczenie 6. Pomiar wymiarów małych obiektów w oparciu o zjawisko dyfrakcji w polu dalekim

Laboratorium TECHNIKI LASEROWEJ. Ćwiczenie 6. Pomiar wymiarów małych obiektów w oparciu o zjawisko dyfrakcji w polu dalekim Laboratorium TECHNIKI LASEROWEJ Ćwiczenie 6. Pomiar wymiarów małych obiektów w oparciu o zjawisko dyfrakcji Katedra Metrologii i Optoelektroniki WETI Politechnika Gdańska Gdańsk 2018 1. Wstęp. Zjawisko

Bardziej szczegółowo

W przypadku przepływu potencjalnego y u z. nieściśliwego równanie zachowania masy przekształca się w równanie Laplace a: = + + t

W przypadku przepływu potencjalnego y u z. nieściśliwego równanie zachowania masy przekształca się w równanie Laplace a: = + + t J. Szantr Wkład nr 3 Przepłw potencjalne 1 Jeżeli przepłw płn jest bezwirow, czli wszędzie lb prawie wszędzie w pol przepłw jest rot 0 to oznacza, że istnieje fnkcja skalarna ϕ,, z, t), taka że gradϕ.

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Wykłady 11 i 12: Całka oznaczona

Wykłady 11 i 12: Całka oznaczona Wykłady 11 i 12: Całka oznaczona dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy; rok akademicki 2016/2017 Pole trójkata parabolicznego Problem. Chcemy obliczyć

Bardziej szczegółowo

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA 1100-1BO15, rok akademicki 2018/19 OPTYKA GEOMETRYCZNA I INSTRUMENTALNA dr hab. Rafał Kasztelanic Wykład 6 Optyka promieni 2 www.zemax.com Diafragmy Pęk promieni świetlnych, przechodzący przez układ optyczny

Bardziej szczegółowo

napór cieczy - wypadkowy ( hydrostatyczny )

napór cieczy - wypadkowy ( hydrostatyczny ) 5. apór hdrostatcn i równowaga ciał płwającch Płn najdując się w stanie równowagi oddiałwuje na ścian ogranicające ropatrwaną jego objętość i sił te nawane są naporami hdrostatcnmi. Omawiana problematka

Bardziej szczegółowo

Dyfrakcja światła na otworze kołowym, czyli po co fizykowi całkowanie numeryczne?

Dyfrakcja światła na otworze kołowym, czyli po co fizykowi całkowanie numeryczne? FOTON 117, Lato 01 35 Dyfrakcja światła na otworze kołowym, czyli po co fizykowi całkowanie numeryczne? Jerzy Ginter Uniwersytet Warszawski Postawienie problemu Światło ma naturę falową, ulega więc dyfrakcji.

Bardziej szczegółowo

Całkowanie numeryczne

Całkowanie numeryczne Całkowanie numeryczne Nie zawsze możliwe jest wyznaczenie analitycznego wzoru będącego wynikiem całkowania danej funkcji f(x). Praktycznie zawsze możne jednak wyznaczyć całkę oznaczoną funkcji przy podanych

Bardziej szczegółowo

Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM

Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 11 Promieniowanie 3 11.1 Promieniowanie dipolowe............... 3 11

Bardziej szczegółowo

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] -częstotliwość.

Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem. S 0 amplituda odkształcenia. f [Hz] -częstotliwość. Akusto-optyka Fala akustyczna jest falą mechaniczną Oscylator wprowadza lokalne odkształcenie s ośrodka propagujące się zgodnie z równaniem ( x, t) S cos( Ωt qx) s Częstotliwość kołowa Ω πf Długość fali

Bardziej szczegółowo

G:\AA_Wyklad 2000\FIN\DOC\Fale wodnem.doc. Drgania i fale III rok Fizyki BC. Model: - długi kanał o prostokątnym przekroju i głębokości h,

G:\AA_Wyklad 2000\FIN\DOC\Fale wodnem.doc. Drgania i fale III rok Fizyki BC. Model: - długi kanał o prostokątnym przekroju i głębokości h, 13-1-00 G:\AA_Wklad 000\FIN\DOC\Fale Fale wodne: Drgania i fale III rok Fiki BC Model: - długi kanał o prostokątnm prekroju i głębokości h, - ruch fali wdłuż, nieależn od x, wchlenia wdłuż, - woda nieściśliwa

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 1 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Paweł Kowalczyk, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16

Bardziej szczegółowo

v = v i e i v 1 ] T v =

v = v i e i v 1 ] T v = v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v n U v v v +q 3q +q +q b c d XY X +q Y 3q r +q = r 3q = r +q = r +q = r 3q = r +q = E = E +q + E 3q + E +q = k q r+q 3 + k 3q r 3q 3 b V = kq

Bardziej szczegółowo

Wydajność konwersji energii słonecznej:

Wydajność konwersji energii słonecznej: Wykład II E we Wydajność konwersji energii słonecznej: η = E wy E we η całkowite = η absorpcja η kreacja η dryft/dyf η separ η zbierania E wy Jednostki fotometryczne i energetyczne promieniowania elektromagnetycznego

Bardziej szczegółowo

ROZWIĄZANIA I ODPOWIEDZI

ROZWIĄZANIA I ODPOWIEDZI ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. =1+cos a) = =2cos( sin) = = sin2 = ln += =sin2 = ln 1+cos +. b) sin(+3)= =+3 = 3 =( 3) = sin= =( 6+9) sin= sin 6 sin+9sin. Obliczamy teraz pierwszą całkę: sin= ()=

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 11, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 11, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 11, 19.03.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 10 - przypomnienie

Bardziej szczegółowo

PRAWIDŁOWE ODPOWIEDZI I PUNKTACJA

PRAWIDŁOWE ODPOWIEDZI I PUNKTACJA MAŁOPOLSKI KONKURS MATEMATYCZNY Rok skoln 08/09 ETAP REJONOWY 0 grudnia 08 roku PRAWIDŁOWE ODPOWIEDZI I PUNKTACJA adanie odpowiedź punkt B 3 C 3 3 A 3 4 B 3 5 E 3 6 B 3 7 E 3 8 C 3 9 D 3 0 A 3 7 adania

Bardziej szczegółowo

y(t) = y 0 + R sin t, t R. z(t) = h 2π t

y(t) = y 0 + R sin t, t R. z(t) = h 2π t SNM - Elementy analizy wektorowej - 1 Całki krzywoliniowe Definicja (funkcja wektorowa jednej zmiennej) Funkcją wektorową jednej zmiennej nazywamy odwzorowanie r : I R 3, gdzie I oznacza przedział na prostej,

Bardziej szczegółowo

POTENCJALNE POLE SIŁ. ,F z 2 V. x = x y, F y. , F x z F z. y F y

POTENCJALNE POLE SIŁ. ,F z 2 V. x = x y, F y. , F x z F z. y F y POTENCJALNE POLE SIŁ POLE SKALARNE Polem skalarnm V(r) nawam funkcję prpisującą każdemu punktowi w prestreni licbę recwistą (skalar): V (r): r=(,, ) V (r) POLE WEKTOROWE SIŁ Polem wektorowm sił F(r) nawam

Bardziej szczegółowo

WŁASNOŚCI FAL (c.d.)

WŁASNOŚCI FAL (c.d.) RUCH FALOWY Własności i rodzaje fal. Prędkość rozchodzenia się fal. Fala harmoniczna płaska. Fala stojąca. Zasada Huygensa. Dyfrakcja fal. Obraz dyfrakcyjny. Kryterium Rayleigha. Interferencja fal. Doświadczenie

Bardziej szczegółowo

Równania Maxwella. Wstęp E B H J D

Równania Maxwella. Wstęp E B H J D Równania Maxwella E B t, H J D t, D, B 0 Równania materiałowe B 0 H M, D 0 E P, J E, gdzie: 0 przenikalność elektryczną próżni ( 0 8854 10 1 As/Vm), 0 przenikalność magetyczną próżni ( 0 4 10 7 Vs/Am),

Bardziej szczegółowo

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 11, Mateusz Winkowski, Łukasz Zinkiewicz

Podstawy Fizyki III Optyka z elementami fizyki współczesnej. wykład 11, Mateusz Winkowski, Łukasz Zinkiewicz Podstawy Fizyki III Optyka z elementami fizyki współczesnej wykład 11, 09.11.2017 wykład: pokazy: ćwiczenia: Czesław Radzewicz Mateusz Winkowski, Łukasz Zinkiewicz Radosław Łapkiewicz Wykład 10 - przypomnienie

Bardziej szczegółowo