Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 19, Radosław Chrapkiewicz, Filip Ozimek"

Transkrypt

1 Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 19, wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner

2 Wykład 18 - przypomnienie model Lorentza w ośrodku anizotropowym dwójłomność - opis fenomenologiczny: dwie fale dwójłomność opis matematyczny: fala zwyczajna, fala nadzwyczajna zależny od kierunku współczynnik załamania i jego konsekwencje - dryf

3 wykład 18 - przypomnienie kryształ jednoosiowy, dwie stałe: n o, n e możliwe oba przypadki: n o < n e i n o > n e oś optyczna kryształu oraz wektor falowy wyznaczają płaszczyznę. Rozwiązania r-nia falowego to 2 płaskie fale: zwyczajna, polaryzacja prostopadła po płaszczyzny, współczynnik załamania nie zależy od kierunku propagacji: n o nadzwyczajna, polaryzacja w płaszczyźnie, współczynnik załamania zależy od kierunku propagacji: 1 n 2 (Θ) = sin2 Θ n 2 + cos2 Θ e n 2 o Przypadek szczególny: propagacja prostopadła do osi optycznej: fala zwyczajna: n o fala nadzwyczajna: n e

4 polaryzatory krystaliczne w krysztale dwójłomnym mogą się rozchodzić tylko dwie fale każda o polaryzacji liniowej : zwyczajna i nadzwyczajna a) Wollaston, b) Glan- Foucault, c) Glan-Thompson, d) Glan-Taylor.

5 płytki falowe oś optyczna równoległa do x bądź y fala o polaryzacji równoległej do x ma n = n f. fala wolna: n s fala szybka: n f n s > n f Indeksy: f (ang. fast) s (ang. slow) x z y E in z, t = e i kz ωt E x E y E out z, t = e i kz ωt e iδ s E x E y e iγ uwaga: z nie jest teraz kierunkiem osi optycznej d δ s = n s k 0 d, Γ = k 0 d n f n s Γ = 2m + 1 π, m = 0,1,2 - półfalówka rzędu m Γ = 2m + 1 π, m = 0,1,2 2 - ćwierćfalówka rzędu m

6 polaryzacja światła, wektor Jonesa płaska fala monochromatyczna propagacja w kierunku z: E z, t = E 0x cos kz ωt + φ x E 0y sin kz ωt + φ y V = V x Vy = Re E 0xe i kz ωt+φx E 0y e i kz ωt+φ y to znormalizowany (V x V x + V y V y = 1) wektor Jonesa = ReE 0 e i kz ωt+φ V x Vy cos Θ sin Θ 1 ±i cos Θ sin Θ e iφ liniowa kołowa L eliptyczna

7 światło całkowicie spolaryzowane, 1 y dysponujemy kompletnym przepisem na obie składowe pola E x z, t = E 0x cos kz ωt + φ x E y z, t = E 0y cos kz ωt + φ y E y E E x x

8 światło całkowicie spolaryzowane, 2 y E y dysponujemy kompletnym przepisem na obie składowe pola E x z, t = E 0x cos kz ωt + φ x E y z, t = E 0y cos kz ωt + φ y E E x x Δφ = φ y φ x E E 0 y 0x 3 E E 0 y 0x 1

9 światło całkowicie spolaryzowane, 3 y E y E E x x Polaryzacja zależna od czasu: E x z, t = E 0x cos kz ωt + φ x (t) E y z, t = E 0y cos kz ωt + φ y (t) φ x (t) oraz φ y (t) - funkcje deterministyczne

10 wektor Jonesa, 2 Przestrzeń wektorów Jonesa jest 2D. Możemy wybierać różne bazy, na przykład: baza polaryzacji linowych: V x = 1 0 baza polaryzacji kołowych: V P = 1 i V y = 0 1 V L = 0 i Dla dowolnego wektora V V = V x V x + V y V y i podobnie V = V P V P + V L V L zmiana bazy V P = 1 VL 2 V x V y = i 1 i 1 1 i i V x V y V P VL

11 wektor Jonesa, 3 obrót układu odniesienia x = r cos φ α = cos α r cos φ + sin α sin φ y = r sin φ α = sin α r cos φ + cos α sin φ y y ' czyli x = cos α x + sin α y x' y = sin α x + cos α y x cos α sin α R α = sin α cos α obrót układu odniesienia nie zmienia polaryzacji światła Weźmy, przykładowo, polaryzację liniową: cosα sin α sin α cos α cos Θ sin Θ = cos α cos Θ + sin α sin Θ sin α cos Θ + cos α sin Θ = cos Θ α sin Θ α lub kołową: cosα sin α sin α cos α i = 1 2 cos α + i sin α sin α + i cos α = eiα 2 1 i

12 macierze Jonesa, 1 Lemat: każdej operacji zmieniającej stan polaryzacji światła (całkowicie spolaryzowanego) możemy przypisać macierz Jonesa 2x2 Wyjściowy wektor Jonesa to iloczyn macierzy Jonesa i wektora wejściowego Przykład 1: jednorodny ośrodek ze współ. załamania n. Propagacja na drodze d E z + d, t = E z, t e ikd = e ikd E x(z, t) E y (z, t) = 1 0 eikd 0 1 E x (z, t) E y (z, t) V = W d V, W d = Przykład 2: polaryzator, oś równoległa do x E in = E x E, E out = E x = 1 0 E x y E y V = W Px V, W Px =

13 macierze Jonesa, 2 Przykład 3: płytka falowa, opóźnienie Γ, oś szybka równoległa do osi x y z E z + d, t = eik fd E x (z, t) e ik sd E y (z, t) = eik fd e iγ E x (z, t) E y (z, t) k f = n fω c, k s = n sω c, Γ = k s k f d d x V out = W Γ V in, W Γ = e iγ oś szybka płytki falowej półfalówka W π = ćwierćfalówka W π/2 = i Uwaga: macierz Jonesa elementu polaryzacyjnego podajemy w wybranym układzie odniesienia; w innym układzie odniesienia ta macierz jest, na ogół, inna.

14 macierze Jonesa, 3 Muliplikatywność macierzy Jonesa x... z V in W W 1 2 WN 1 WN V out W = W N W N 1 W 2 W 1 V out = WV in

15 macierze Jonesa, 4 Przykład 4: płytka falowa, opóźnienie Γ, oś szybka pod kątem α do osi x y GENERALNA RECEPTA: Przejście do układu odniesienia płytki falowej Macierz płytki falowej d x z Powrót do układu laboratoryjnego W Γα = W α W Γ W α = cos α sin α sin α cos α 1 0 cos α sin α 0 e iγ sin α cos α = cos2 α + e iγ sin 2 α sin α cos α 1 e iγ sin α cos α 1 e iγ sin 2 α + e iγ cos 2 α oś szybka płytki falowej

16 macierze Jonesa, 5 Przykład 4 c.d. y W Γα = cos2 α + e iγ sin 2 α sin α cos α 1 e iγ sin α cos α 1 e iγ sin 2 α + e iγ cos 2 α płytka półfalowa: e iγ = 1 oś szybka płytki falowej d x z V out = W Γπ V in = 1. Liniowa polaryzacja wejściowa ( x) V out = W Γπ 1 0 cos 2α sin 2α sin 2α cos 2α V in cos 2α sin 2α = sin 2α cos 2α cos 2α = sin 2α obrót płaszczyzny polaryzacji o kąt 2α Kołowa polaryzacja wejściowa; układ odniesienia nieistotny 1 1 V out = W π 2 ±i zmiana skrętności = ±i = i

17 macierze Jonesa, 6 Przykład: płytka falowa pomiędzy polaryzatorami e i 1 Przykład: półfalówka obracająca się pomiędzy polaryzatorami V out = W Py W Γπ V in = 0 0 cos2α sin 2α sin 2α cos 2α 0 = 1 sin 2α T = I out I in kontrola (modulacja) natężenia wiązki = sin 2 2α

18 macierze Jonesa, 7 Przykład 4 c.d. płytka ćwierćfalowa: e iγ = i y kołowa polaryzacja wejściowa V out = = 1 0 i 2 ±i romb Fresnela wykład 5 z d x kołowa liniowa po kątem +/- 45º do osi szybkiej płytki liniowa po katem +/- 45º do osi szybkiej płytki kołowa oś szybka płytki falowej

19 macierz koherencji Światło spolaryzowane: dokładnie wiemy jak wygląda E(t). Światło niespolaryzowane: wektor pola elektrycznego fali jest wielkością losową nie ma przepisu na E x (t) oraz E y (t). Posługujemy się funkcjami korelacji. Światło częściowo spolaryzowane macierz koherencji: J = E xe x E x E y E x E y E y E y symbol oznacza uśrednianie (?) Stopień polaryzacji: 4detJ P = 1 2 J xx + J yy detj wyznacznik macierzy J światło niespolaryzowane: J = J xx 0 0 J xx detj = J xx 2 P = 1 4J xx 2 2J xx 2 = 0 światło całkowicie spolaryzowane: E z, t = E 0 e i kz ωt cos Θ sin Θ e iφ 2 J = E cos 2 Θ sin Θ cos Θ e iφ 0 sin Θ cos Θ e iφ sin 2 Θ detj = 0 P = 1

20 wektor Stokesa definicja wektora Stokesa S 0 = J xx + J yy S 1 = J xx J yy S 2 = J xy + J yx S 3 = i J xy J yx światło całkowicie spolaryzowane 2 J = E cos 2 Θ sin Θ cos Θ e iφ 0 sin Θ cos Θ e iφ sin 2 Θ S 0 = E 0 2 S 1 = E 0 2 cos 2Θ S 2 = E 0 2 sin 2Θ cos φ S 3 = E 0 2 sin 2Θ sin φ światło niespolaryzowane S 0 = 2J xx S 1 = S 2 = S 3 = 0 znormalizowany wektor Stokesa s i = S i S 0, i = 1,2,3

21 sfera Poincare, 1 światło spolaryzowane: s 1 = cos 2Θ s 2 = sin 2Θ cos φ s 3 = sin 2Θ sin φ rachunki dają: s 1 2 +s s 3 2 = 1 czyli równanie sfery (sfera Poincare) biegun północny s 1 = s 2 = 0 Θ = π 4 V = i oraz φ = π/4 = V P punkt (1,0,0) s 2 = s 3 = 0 Θ = 0 V = 1 0 = V x topografia sfery Poincare: bieguny kołowa równik liniowa pomiędzy - eliptyczna

22 obroty sfery Poincare płytka falowa o opóźnieniu Γ: V = 1 0 cos Θ 0 e iγ sin Θ e iφ = cos Θ sin Θ e i(φ+γ) obrót wokół osi s 1 o kąt Γ obrót układu odniesienia o kąt α. Rachunek zrobimy dla liniowej polaryzacji wejściowej: V cos α sin α cos Θ cos Θ α = = sin α cos α sin Θ sin Θ α czyli obrót wokół osi s 3 o kąt 2α. Jest to ogólne prawo działające dla dowolnej polaryzacji V = cos Θ sin Θ e iφ

23 obroty sfery Poincare - test Test: pozioma liniowa polaryzacja na wejściu półfalówka pod kątem 45º 1. zmiana układu odniesienia obrót układu o kąt 45º= obrót sfery wokół s 3 o kąt -90º 2. płytka półfalowa = obrót sfery wokół osi s 1 o 180º 3. powrót do oryginalnego układu odniesienia = obrót sfery wokół s 3 o kąt 90º

24 sfera Poincare, 2 Twierdzenie: dowolną polaryzację eliptyczną można przeprowadzić w polaryzację liniową przy pomocy jednej ćwierćfalówki. dowód zastosowanie światłowodowy kontroler polaryzacji 4 2 4

25 Sfera Poincare, 3 Twierdzenie: dowolną polaryzację eliptyczną można przeprowadzić w inną dowolnie zadana polaryzację eliptyczną przy pomocy jednej płytki falowej. zastosowanie kompensator polaryzacji Babinet Babinet - Soleil

26 analizator stanu polaryzacji I 6 I 5 = E x E y E y E x = S 3 /i I 4 I 3 = E x E y + E y E x = S 2 I 2 I 1 = E x E x E y E y = S 1 KS niepolaryzująca kostka światłodzieląca P - polaryzator /2 - półfalówka /4 - ćwierćfalówka 1-6 -fotodiody

Polaryzatory/analizatory

Polaryzatory/analizatory Polaryzatory/analizatory Polaryzator eliptyczny element układu optycznego lub układ optyczny, za którym światło jest spolaryzowane eliptycznie i o parametrach ściśle określonych przez polaryzator zazwyczaj

Bardziej szczegółowo

Metody Optyczne w Technice. Wykład 8 Polarymetria

Metody Optyczne w Technice. Wykład 8 Polarymetria Metody Optyczne w Technice Wykład 8 Polarymetria Fala elektromagnetyczna div D div B 0 D E rot rot E H B t D t J B J H E Fala elektromagnetyczna 2 2 E H 2 t 2 E 2 t H 2 v n 1 0 0 c n 0 Fala elektromagnetyczna

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE WSEiZ W WARSZAWIE WYDZIAŁ.. LABORATORIUM FIZYCZNE Ćw. nr 8 BADANIE ŚWIATŁA SPOLARYZOWANEGO: SPRAWDZANIE PRAWA MALUSA Warszawa 29 1. Wstęp Wiemy, że fale świetlne stanowią niewielki wycinek widma fal elektromagnetycznych

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 9, Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 9, Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 9, 12.03.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 8 - przypomnienie

Bardziej szczegółowo

Polaryzacja chromatyczna

Polaryzacja chromatyczna FOTON 11, Lato 013 5 Polaryzacja chromatyczna Jerzy Ginter Uniwersytet Warszawski Zjawisko Zwykle nie zdajemy sobie sprawy, że bardzo wiele przezroczystych ciał w naszym otoczeniu jest zbudowanych z substancji

Bardziej szczegółowo

40. Międzynarodowa Olimpiada Fizyczna Meksyk, lipca 2009 r. DWÓJŁOMNOŚĆ MIKI

40. Międzynarodowa Olimpiada Fizyczna Meksyk, lipca 2009 r. DWÓJŁOMNOŚĆ MIKI ZADANIE DOŚWIADCZALNE 2 DWÓJŁOMNOŚĆ MIKI W tym doświadczeniu zmierzysz dwójłomność miki (kryształu szeroko używanego w optycznych elementach polaryzujących). WYPOSAŻENIE Oprócz elementów 1), 2) i 3) powinieneś

Bardziej szczegółowo

Ćwiczenie 373. Wyznaczanie stężenia roztworu cukru za pomocą polarymetru. Długość rurki, l [dm] Zdolność skręcająca a. Stężenie roztworu II d.

Ćwiczenie 373. Wyznaczanie stężenia roztworu cukru za pomocą polarymetru. Długość rurki, l [dm] Zdolność skręcająca a. Stężenie roztworu II d. Nazwisko Data Nr na liście Imię Wydział Dzień tyg Godzina Ćwiczenie 373 Wyznaczanie stężenia roztworu cukru za pomocą polarymetru Stężenie roztworu I d [g/dm 3 ] Rodzaj cieczy Położenie analizatora [w

Bardziej szczegółowo

Agata Saternus piątek Dwójłomność kryształów, dwójłomność światłowodów, dwójłomność próżni (z ang. vacuum birefringence)

Agata Saternus piątek Dwójłomność kryształów, dwójłomność światłowodów, dwójłomność próżni (z ang. vacuum birefringence) Agata Saternus piątek 9.07.011 Dwójłomność kryształów, dwójłomność światłowodów, dwójłomność próżni (z ang. vacuum birefringence) Dwójłomność odkrył Rasmus Bartholin w 1669 roku, dwójłomność kryształu

Bardziej szczegółowo

Wyznaczanie współczynnika załamania światła

Wyznaczanie współczynnika załamania światła Ćwiczenie O2 Wyznaczanie współczynnika załamania światła O2.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie współczynnika załamania światła dla przeźroczystych, płaskorównoległych płytek wykonanych z

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 5 Temat: Interferometr Michelsona 7.. Cel i zakres ćwiczenia 7 INTERFEROMETR MICHELSONA Celem ćwiczenia jest zapoznanie się z budową i

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

Wykład FIZYKA II 8. Optyka falowa Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/ Nakładanie się fal nazywamy ogólnie superpozycją. Nakładanie

Bardziej szczegółowo

ĆWICZENIE 47 POLARYZACJA. Wstęp.

ĆWICZENIE 47 POLARYZACJA. Wstęp. ĆWICZENIE 47 POLARYZACJA Wstęp. Światło naturalne występujące w przyrodzie na ogół jest niespolaryzowane. Wynika to między innymi z mechanizmu powstawania promieniowania. Cząsteczki, atomy emitujące światło

Bardziej szczegółowo

FACULTY OF ADVANCED TECHNOLOGIES AND CHEMISTRY. Wprowadzenie Podstawowe prawa Przetwarzanie sygnału obróbka optyczna obróbka elektroniczna

FACULTY OF ADVANCED TECHNOLOGIES AND CHEMISTRY. Wprowadzenie Podstawowe prawa Przetwarzanie sygnału obróbka optyczna obróbka elektroniczna Interferometry światłowodowe Wprowadzenie Podstawowe prawa Przetwarzanie sygnału obróbka optyczna obróbka elektroniczna Wprowadzenie Układy te stanowią nową klasę czujników, gdzie podstawowy mechanizm

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Ć W I C Z E N I E N R O-11

Ć W I C Z E N I E N R O-11 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PROCESOWEJ, MATERIAŁOWEJ I FIZYKI STOSOWANEJ POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-11 WYZNACZANIE STAŁEJ VERDETA I. Zagadnienia do przestudiowania

Bardziej szczegółowo

Równania różniczkowe liniowe rzędu pierwszego

Równania różniczkowe liniowe rzędu pierwszego Katedra Matematyki i Ekonomii Matematycznej SGH 21 kwietnia 2016 Wstęp Definicja Równanie różniczkowe + p (x) y = q (x) (1) nazywamy równaniem różniczkowym liniowym pierwszego rzędu. Jeśli q (x) 0, to

Bardziej szczegółowo

Światłowodowe elementy polaryzacyjne

Światłowodowe elementy polaryzacyjne Światłowodowe elementy polaryzacyjne elementy wykorzystujące własności przenoszenia polaryzacji w światłowodach jednorodnych i dwójłomnych polaryzatory izolatory optyczne depolaryzatory kompensatory i

Bardziej szczegółowo

Egzamin / zaliczenie na ocenę*

Egzamin / zaliczenie na ocenę* Zał. nr 4 do ZW 33/01 WYDZIAŁ PPT KARTA PRZEDMIOTU Nazwa w języku polskim: Podstawy optyki fizycznej i instrumentalnej Nazwa w języku angielskim Fundamentals of Physical and Instrumental Optics Kierunek

Bardziej szczegółowo

ZJAWISKO SKRĘCENIA PŁASZCZYZNY POLARYZACJI ŚWIATŁA

ZJAWISKO SKRĘCENIA PŁASZCZYZNY POLARYZACJI ŚWIATŁA Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki I P Irma Śledzińska Andrzej Kubiaczyk 28 ZJAWISKO SKRĘCENIA PŁASZCZYZNY POLARYZACJI ŚWIATŁA 1. Podstawy fizyczne W zjawisku dyfrakcji, interferencji

Bardziej szczegółowo

Właściwości optyczne kryształów

Właściwości optyczne kryształów Właściwości optyczne kryształów -ośrodki jedno- (n x =n y n z ) lub dwuosiowe (n x n y n z n x ) - oś optyczna : w tym kierunku rozchodzą się dwie takie same fale (z tą samą prędkością); w ośrodkach jednoosiowych

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 3, 20.02.2012. Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 3, 20.02.2012. Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 3, 20.02.2012 wykład: pokazy: ćwiczenia: Czesław Radzewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 2 - przypomnienie

Bardziej szczegółowo

XXIX OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne

XXIX OLIMPIADA FIZYCZNA ETAP WSTĘPNY Zadanie teoretyczne XXIX OLIMPIADA FIZYCZNA EAP WSĘPNY Zadanie teoretyczne Rozwiąż wybrane przez siebie dwa zadania spośród podanych trzech: ZADANIE A. Przez opornik o oporze R płyną jednocześnie trzy prądy sinusoidalne o

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem

Bardziej szczegółowo

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki

Bardziej szczegółowo

POMIARY OPTYCZNE 1. Wykład 1. Dr hab. inż. Władysław Artur Woźniak

POMIARY OPTYCZNE 1. Wykład 1.  Dr hab. inż. Władysław Artur Woźniak POMIARY OPTYCZNE Wykład Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej Pokój 8/ bud. A- http://www.if.pwr.wroc.pl/~wozniak/ OPTYKA GEOMETRYCZNA Codzienne obserwacje: światło

Bardziej szczegółowo

Światłowody telekomunikacyjne

Światłowody telekomunikacyjne Światłowody telekomunikacyjne Parametry i charakteryzacja światłowodów Kolejny wykład będzie poświęcony metodom pomiarowym Prezentacja zawiera kopie folii omawianych na wykładzie. Niniejsze opracowanie

Bardziej szczegółowo

Ćwiczenie: "Zagadnienia optyki"

Ćwiczenie: Zagadnienia optyki Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.

Bardziej szczegółowo

1. Dyfrakcja Fraunhofera: a) zachodzi gdy promienie padajace na przegrode i promienie biegnace do punktu obserwacji sa niemal rownolegle

1. Dyfrakcja Fraunhofera: a) zachodzi gdy promienie padajace na przegrode i promienie biegnace do punktu obserwacji sa niemal rownolegle 1. Dyfrakcja Fraunhofera: a) zachodzi gdy promienie padajace na przegrode i promienie biegnace do punktu obserwacji sa niemal rownolegle 2. Odbicie dyfuzyjne: a) rozproszone odbicie swiatla - zachodzace

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Fale elektromagnetyczne i ich własności. 2. Polaryzacja światła: a) światło

Bardziej szczegółowo

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne ĆWICZENIE 4 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO Wprowadzenie teoretyczne Rys. Promień przechodzący przez pryzmat ulega dwukrotnemu załamaniu na jego powierzchniach bocznych i odchyleniu o kąt δ. Jeżeli

Bardziej szczegółowo

GRAFIKA KOMPUTEROWA podstawy matematyczne. dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel.

GRAFIKA KOMPUTEROWA podstawy matematyczne. dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel. GRAFIKA KOMPUTEROWA podstawy matematyczne dr inż. Hojny Marcin pokój 406, pawilon B5 E-mail: mhojny@metal.agh.edu.pl Tel. (12) 617 46 37 Plan wykładu 1/4 ZACZNIEMY OD PRZYKŁADOWYCH PROCEDUR i PRZYKŁADÓW

Bardziej szczegółowo

Ćwiczenie Nr 455. Temat: Efekt Faradaya. I. Literatura. Problemy teoretyczne

Ćwiczenie Nr 455. Temat: Efekt Faradaya. I. Literatura. Problemy teoretyczne Ćwiczenie Nr 455 Temat: Efekt Faradaya I. Literatura. Ćwiczenia laboratoryjne z fizyki Część II Irena Kruk, Janusz Typek, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin. Ćwiczenia laboratoryjne

Bardziej szczegółowo

2.1 Dyfrakcja i interferencja światła. 2.1.1 Dyfrakcja światła. Zasada Huygensa

2.1 Dyfrakcja i interferencja światła. 2.1.1 Dyfrakcja światła. Zasada Huygensa Rozdział 2 Optyka falowa 2.1 Dyfrakcja i interferencja światła 2.1.1 Dyfrakcja światła. Zasada Huygensa Zgodnie z treścią poprzedniego rozdziału, światło jest falą elektromagnetyczną o długości zawartej

Bardziej szczegółowo

Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla

Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla wszystkich rodzajów fal, we wszystkich ośrodkach, w których

Bardziej szczegółowo

Podstawy informatyki kwantowej

Podstawy informatyki kwantowej Wykład 6 27 kwietnia 2016 Podstawy informatyki kwantowej dr hab. Łukasz Cywiński lcyw@ifpan.edu.pl http://info.ifpan.edu.pl/~lcyw/ Wykłady: 6, 13, 20, 27 kwietnia oraz 4 maja (na ostatnim wykładzie będzie

Bardziej szczegółowo

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 7, 05.03.2012. Radosław Chrapkiewicz, Filip Ozimek

Podstawy Fizyki IV Optyka z elementami fizyki współczesnej. wykład 7, 05.03.2012. Radosław Chrapkiewicz, Filip Ozimek Podstawy Fizyki IV Optyka z elementami fizyki współczesnej wykład 7, 05.03.2012 wykład: pokazy: ćwiczenia: Czesław Raewicz Radosław Chrapkiewicz, Filip Ozimek Ernest Grodner Wykład 6 - przypomnienie światło

Bardziej szczegółowo

polaryzacja liniowa polaryzacj kołow

polaryzacja liniowa polaryzacj kołow Polaryzacja własność fali poprzecznej (światło). Fala spolaryzowana oscyluje w wybranym kierunku, niespolaryzowana oscyluje we wszystkich kierunkach jednakowo. Polaryzacja światła wiąże się wyłącznie z

Bardziej szczegółowo

KMO2D. Kolizje między-obiektowe w 2D

KMO2D. Kolizje między-obiektowe w 2D KMO2D Kolizje między-obiektowe w 2D I. Wstęp 3 lata temu na temat kolizji nie miałem żadnego pojęcia. Przyszedł jednak czas, gdy postanowiłem napisać pierwszą porządną grę i pojawił się, wtedy problem.

Bardziej szczegółowo

Przekształcenia geometryczne w grafice komputerowej. Marek Badura

Przekształcenia geometryczne w grafice komputerowej. Marek Badura Przekształcenia geometryczne w grafice komputerowej Marek Badura PRZEKSZTAŁCENIA GEOMETRYCZNE W GRAFICE KOMPUTEROWEJ Przedstawimy podstawowe przekształcenia geometryczne na płaszczyźnie R 2 (przestrzeń

Bardziej szczegółowo

Wyznaczanie zależności współczynnika załamania światła od długości fali światła

Wyznaczanie zależności współczynnika załamania światła od długości fali światła Ćwiczenie O3 Wyznaczanie zależności współczynnika załamania światła od długości fali światła O3.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie zależności współczynnika załamania światła od długości fali

Bardziej szczegółowo

Kryptografia kwantowa. Marta Michalska

Kryptografia kwantowa. Marta Michalska Kryptografia kwantowa Marta Michalska Główne postacie Ewa podsłuchiwacz Alicja nadawca informacji Bob odbiorca informacji Alicja przesyła do Boba informacje kanałem, który jest narażony na podsłuch. Ewa

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział

Bardziej szczegółowo

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ ĆWICZENIE 84 WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ Cel ćwiczenia: Wyznaczenie długości fali emisji lasera lub innego źródła światła monochromatycznego, wyznaczenie stałej siatki

Bardziej szczegółowo

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Podstawy Działanie obrazujące soczewek lub układu soczewek

Bardziej szczegółowo

Sposób wykonania ćwiczenia. Płytka płasko-równoległa. Rys. 1. Wyznaczanie współczynnika załamania materiału płytki : A,B,C,D punkty wbicia szpilek ; s

Sposób wykonania ćwiczenia. Płytka płasko-równoległa. Rys. 1. Wyznaczanie współczynnika załamania materiału płytki : A,B,C,D punkty wbicia szpilek ; s WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Cel ćwiczenia: 1. Zapoznanie z budową i zasadą działania mikroskopu optycznego.. Wyznaczenie współczynnika załamania światła

Bardziej szczegółowo

Podpis prowadzącego SPRAWOZDANIE

Podpis prowadzącego SPRAWOZDANIE Imię i nazwisko.. Grupa. Data. Podpis prowadzącego. SPRAWOZDANIE LABORATORIUM POFA/POFAT - ĆWICZENIE NR 1 Zadanie nr 1 (plik strip.pro,nazwa ośrodka wypełniającego prowadnicę - "airlossy") Rozważamy przypadek

Bardziej szczegółowo

Reflekcyjno-absorpcyjna spektroskopia w podczerwieni RAIRS (IRRAS) Reflection-Absorption InfraRed Spectroscopy

Reflekcyjno-absorpcyjna spektroskopia w podczerwieni RAIRS (IRRAS) Reflection-Absorption InfraRed Spectroscopy Reflekcyjno-absorpcyjna spektroskopia w podczerwieni RAIRS (IRRAS) Reflection-Absorption InfraRed Spectroscopy Odbicie promienia od powierzchni metalu E n 1 Równania Fresnela E θ 1 θ 1 r E = E odb, 0,

Bardziej szczegółowo

UMO-2011/01/B/ST7/06234

UMO-2011/01/B/ST7/06234 Załącznik nr 9 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej

Bardziej szczegółowo

Najprostszą soczewkę stanowi powierzchnia sferyczna stanowiąca granicę dwóch ośr.: powietrza, o wsp. załamania n 1. sin θ 1. sin θ 2.

Najprostszą soczewkę stanowi powierzchnia sferyczna stanowiąca granicę dwóch ośr.: powietrza, o wsp. załamania n 1. sin θ 1. sin θ 2. Ia. OPTYKA GEOMETRYCZNA wprowadzenie Niemal każdy system optoelektroniczny zawiera oprócz źródła światła i detektora - co najmniej jeden element optyczny, najczęściej soczewkę gdy system służy do analizy

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

POMIAR APERTURY NUMERYCZNEJ

POMIAR APERTURY NUMERYCZNEJ ĆWICZENIE O9 POMIAR APERTURY NUMERYCZNEJ ŚWIATŁOWODU KATEDRA FIZYKI 1 Wstęp Prawa optyki geometrycznej W optyce geometrycznej, rozpatrując rozchodzenie się fal świetlnych przyjmuje się pewne założenia

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 6 Temat: Wyznaczenie stałej siatki dyfrakcyjnej i dyfrakcja światła na otworach kwadratowych i okrągłych. 1. Wprowadzenie Fale

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje.

Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Działanie obrazujące soczewek lub układu soczewek wygodnie

Bardziej szczegółowo

Optyczne badanie atomów przy powierzchni dielektryka

Optyczne badanie atomów przy powierzchni dielektryka Tomasz Kawalec Optyczne badanie atomów przy powierzchni dielektryka Praca magisterska napisana w Instytucie Fizyki Uniwersytetu Jagiellońskiego w Krakowie pod kierunkiem prof. dra hab. Tomasza Dohnalika

Bardziej szczegółowo

(12) OPIS PATENTOWY (19) PL (11) 175051

(12) OPIS PATENTOWY (19) PL (11) 175051 RZECZPO SPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 175051 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 307033 (22) Data zgłoszenia: 31.01.1995 (51) Int.Cl.6: A61B 3/107

Bardziej szczegółowo

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Ćwiczenie 2 Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne Podstawy Działanie obrazujące soczewek lub układu soczewek

Bardziej szczegółowo

Ponadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób:

Ponadto, jeśli fala charakteryzuje się sferycznym czołem falowym, powyższy wzór można zapisać w następujący sposób: Zastosowanie laserów w Obrazowaniu Medycznym Spis treści 1 Powtórka z fizyki Zjawisko Interferencji 1.1 Koherencja czasowa i przestrzenna 1.2 Droga i czas koherencji 2 Lasery 2.1 Emisja Spontaniczna 2.2

Bardziej szczegółowo

Motywacja Podstawy. Historia Teoria 2D PhC Podsumowanie. Szymon Lis Photonics Group szymon.lis@pwr.wroc.pl C-2 p.305. Motywacja.

Motywacja Podstawy. Historia Teoria 2D PhC Podsumowanie. Szymon Lis Photonics Group szymon.lis@pwr.wroc.pl C-2 p.305. Motywacja. Politechnika Wrocławska Plan wykładu 1. 2D Kryształy Fotoniczne opis teoretyczny 2. Podstawowe informacje 3. Rys historyczny 4. Opis teoretyczny - optyka vs. elektronika - równania Maxwella Wydział Elektroniki

Bardziej szczegółowo

TRANFORMACJA GALILEUSZA I LORENTZA

TRANFORMACJA GALILEUSZA I LORENTZA TRANFORMACJA GALILEUSZA I LORENTZA Wykład 4 2012/2013, zima 1 Założenia mechaniki klasycznej 1. Przestrzeń jest euklidesowa 2. Przestrzeń jest izotropowa 3. Prawa ruchu Newtona są słuszne w układzie inercjalnym

Bardziej szczegółowo

Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki

Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki Politechnika Warszawska Instytut Mikroelektroniki i Optoelektroniki Zakład Optoelektroniki LASEROWY POMIAR ODLEGŁOŚCI INTERFEROMETREM MICHELSONA Instrukcja wykonawcza do ćwiczenia laboratoryjnego ćwiczenie

Bardziej szczegółowo

WYZNACZANIE KĄTA BREWSTERA 72

WYZNACZANIE KĄTA BREWSTERA 72 WYZNACZANIE KĄTA BREWSTERA 72 I. ZAGADNIENIA TEORETYCZNE Polaryzacja światła. Zjawisko polaryzacji światła przy odbiciu od powierzchni dielektrycznej kąt Brewstera. Prawa odbicia i załamania światła na

Bardziej szczegółowo

Kombinacje liniowe wektorów.

Kombinacje liniowe wektorów. Kombinacje liniowe wektorów Definicja: Niech V będzie przestrzenią liniową nad ciałem F, niech A V Zbiór wektorów A nazywamy liniowo niezależnym, jeżeli m N v,, v m A a,, a m F [a v + + a m v m = θ a =

Bardziej szczegółowo

Na pewno zrozumiesz!! Jacek Kratkowski

Na pewno zrozumiesz!! Jacek Kratkowski Na pewno zrozumiesz!! Jacek Kratkowski Instrukcja obsługi programu - przejścia między slajdami kliknięcie myszką lub naciśnięcie klawisza ENTER - powrót do poprzedniego slajdu lub powtórzenie animacji

Bardziej szczegółowo

ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II

ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II ZAGADNIENIA na egzamin klasyfikacyjny z fizyki klasa III (IIIA) rok szkolny 2013/2014 semestr II Piotr Ludwikowski XI. POLE MAGNETYCZNE Lp. Temat lekcji Wymagania konieczne i podstawowe. Uczeń: 43 Oddziaływanie

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści 0 Wyrażenia algebraiczne, indukcja matematyczna 2 2 2 1 Geometria analityczna w R 2 3 3 3 2 Liczby zespolone 4 4 4 3

Bardziej szczegółowo

Pracownia fizyczna dla optyków okularowych. Drgania i fale. Instrukcja dla studentów

Pracownia fizyczna dla optyków okularowych. Drgania i fale. Instrukcja dla studentów Pracownia fizyczna dla optyków okularowych Drgania i fale Instrukcja dla studentów Tematy ćwiczeń I. Wyznaczanie prędkości fal w gumie w funkcji naprężenia II. Wyznaczanie prędkości dźwięku w powietrzu

Bardziej szczegółowo

Ć W I C Z E N I E N R O-7

Ć W I C Z E N I E N R O-7 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA OPTYKI Ć W I C Z E N I E N R O-7 POMIAR PROMIENI KRZYWIZNY SOCZEWKI PŁASKO-WYPUKŁEJ METODĄ PIERŚCIENI

Bardziej szczegółowo

GEOFIZYKA STOSOWANA wykład 2. Podstawy sejsmiki

GEOFIZYKA STOSOWANA wykład 2. Podstawy sejsmiki GEOFIZYKA STOSOWANA wykład Podstawy sejsmiki Naprężenie całkowite działające na nieskończenie mały element ośrodka ciągłego o objętości dv i powierzchni ds można opisać jeśli znamy rozkład naprężeń działających

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 DEFINICJE PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 Czworokąt to wielokąt o 4 bokach i 4 kątach. Przekątną czworokąta nazywamy odcinek łączący przeciwległe wierzchołki. Wysokością czworokąta nazywamy

Bardziej szczegółowo

Propagacja światła we włóknie obserwacja pól modowych.

Propagacja światła we włóknie obserwacja pól modowych. Propagacja światła we włóknie obserwacja pól modowych. Przy pomocy optyki geometrycznej łatwo można przedstawić efekty propagacji światła tylko w ośrodku nieograniczonym. Nie ukazuje ona jednak interesujących

Bardziej szczegółowo

Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego

Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego Ćwiczenie O5 Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego O5.1. Cel ćwiczenia Celem ćwiczenia jest wykorzystanie zjawiska dyfrakcji i interferencji światła do wyznaczenia rozmiarów

Bardziej szczegółowo

Rachunek całkowy funkcji wielu zmiennych

Rachunek całkowy funkcji wielu zmiennych Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1

Bardziej szczegółowo

Dynamika morza FALE Wykład 1

Dynamika morza FALE Wykład 1 Dynamika morza FALE Wykład 1 Stanisław Massel 1,2 Gabriela Grusza 2 1 Instytut Oceanologii PAN Zakład Dynamiki Morza 2 Instytut Oceanografii UG Zakład Oceanografii Fizycznej 11 października 2005 roku Plan

Bardziej szczegółowo

Badanie uporządkowania magnetycznego w ultracienkich warstwach kobaltu w pobliżu reorientacji spinowej.

Badanie uporządkowania magnetycznego w ultracienkich warstwach kobaltu w pobliżu reorientacji spinowej. Tel.: +48-85 7457229, Fax: +48-85 7457223 Zakład Fizyki Magnetyków Uniwersytet w Białymstoku Ul.Lipowa 41, 15-424 Białystok E-mail: vstef@uwb.edu.pl http://physics.uwb.edu.pl/zfm Praca magisterska Badanie

Bardziej szczegółowo

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne. Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować

Bardziej szczegółowo

Metoda osłabionego całkowitego wewnętrznego odbicia ATR (Attenuated Total Reflection)

Metoda osłabionego całkowitego wewnętrznego odbicia ATR (Attenuated Total Reflection) Metoda osłabionego całkowitego wewnętrznego odbicia ATR (Attenuated Total Reflection) Całkowite wewnętrzne odbicie n 2 θ θ n 1 n > n 1 2 Kiedy promień pada na granicę ośrodków pod kątem większym od kąta

Bardziej szczegółowo

Politechnika Wrocławska Wydział Podstawowych Problemów Techniki

Politechnika Wrocławska Wydział Podstawowych Problemów Techniki Politechnika Wrocławska Wydział Podstawowych Problemów Techniki specjalność FOTONIKA 3,5-letnie studia stacjonarne I stopnia (studia inżynierskie) FIZYKA TECHNICZNA Charakterystyka wykształcenia: - dobre

Bardziej szczegółowo

3. Model Kosmosu A. Einsteina

3. Model Kosmosu A. Einsteina 19 3. Model Kosmosu A. Einsteina Pierwszym rozwiązaniem równań pola grawitacyjnego w 1917 r. było równanie hiperpowierzchni kuli czterowymiarowej, przy założeniu, że materia kosmiczna tzw. substrat jest

Bardziej szczegółowo

Michał Praszałowicz, pok. 438. michal@if.uj.edu.pl strona www: th-www.if.uj.edu.pl/~michal wykład 3 godz. za wyjątkiem listopada Egzamin: esej max.

Michał Praszałowicz, pok. 438. michal@if.uj.edu.pl strona www: th-www.if.uj.edu.pl/~michal wykład 3 godz. za wyjątkiem listopada Egzamin: esej max. Michał Praszałowicz, pok. 438. michal@if.uj.edu.pl strona www: th-www.if.uj.edu.pl/~michal wykład 3 godz. za wyjątkiem listopada Egzamin: esej max. 10 stron na jeden z listy tematów + rozmowa USOS! 1 Model

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 4. wykład z algebry liniowej Warszawa, październik 2010 Mirosław Sobolewski (UW) Warszawa, wrzesień 2006 1 / 7

Bardziej szczegółowo

TYCZENIE OSI TRASY W 2 R 2 SŁ KŁ W 1 W 3

TYCZENIE OSI TRASY W 2 R 2 SŁ KŁ W 1 W 3 TYCZENIE TRAS W procesie projektowania i realizacji inwestycji liniowych (autostrad, linii kolejowych, kanałów itp.) materiałem źródłowym jest mapa sytuacyjno-wysokościowa w skalach 1:5 000; 1:10 000 lub

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 7 Temat: Pomiar kąta załamania i kąta odbicia światła. Sposoby korekcji wad wzroku. 1. Wprowadzenie Zestaw ćwiczeniowy został

Bardziej szczegółowo

Zadania z analizy i algebry. (wykład prof.prof. J. Wojtkiewicza i K. Napiórkowskiego) ALGEBRA, przestrzenie wektorowe

Zadania z analizy i algebry. (wykład prof.prof. J. Wojtkiewicza i K. Napiórkowskiego) ALGEBRA, przestrzenie wektorowe Zadania z analizy i algebry. (wykład prof.prof. J. Wojtkiewicza i K. Napiórkowskiego) ALGEBRA, przestrzenie wektorowe Zadanie Zbadać czy wektor v mażna przedstawić jako kombinację liniową wektorów e i

Bardziej szczegółowo

Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową.

Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową. Szczegółowy rozkład materiału z fizyki dla klasy III gimnazjum zgodny z nową podstawą programową. Lekcja organizacyjna. Omówienie programu nauczania i przypomnienie wymagań przedmiotowych Tytuł rozdziału

Bardziej szczegółowo

Spis treści 1. Liczby zespolone 2 2. Macierze, wyznaczniki, równania liniowe 4 3. Geometria analityczna 9 4. Granice, pochodne funkcji i ich

Spis treści 1. Liczby zespolone 2 2. Macierze, wyznaczniki, równania liniowe 4 3. Geometria analityczna 9 4. Granice, pochodne funkcji i ich Spis treści Liczby zespolone Macierze wyznaczniki równania liniowe 4 Geometria analityczna 9 4 Granice pochodne funkcji i ich zastosowania 5 Całki nieoznaczone 8 6 Zastosowania geometryczne całek 0 7 Pochodne

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

INTERFEROMETR MICHELSONA ver. R

INTERFEROMETR MICHELSONA ver. R INTERFEROMETR MICHELSONA ver. R Celem ćwiczenia jest konstrukcja interferometru Michelsona i weryfikacja jego zdolności pomiaru frontów falowych. A. Ustawienie interferometru 1. Przygotuj dużą, skolimowaną

Bardziej szczegółowo

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej.

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. Wprowadzenie Przy opisie zjawisk takich

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R_P-08 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 008 Czas pracy 80 minut Instrukcja

Bardziej szczegółowo

Zagadnienie dyspersji polaryzacyjnej (PMD) w wysokoprzepustowych światłowodowych systemach telekomunikacyjnych

Zagadnienie dyspersji polaryzacyjnej (PMD) w wysokoprzepustowych światłowodowych systemach telekomunikacyjnych Centralna Izba Pomiarów Telekomunikacyjnych (P-12) Zagadnienie dyspersji polaryzacyjnej (PMD) w wysokoprzepustowych światłowodowych systemach telekomunikacyjnych Praca nr 12300085 Warszawa, grudzień 2005

Bardziej szczegółowo

Układy krystalograficzne

Układy krystalograficzne Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Układy krystalograficzne Cel ćwiczenia: kształtowanie umiejętności wyboru komórki elementarnej i przyporządkowywania

Bardziej szczegółowo

1. Wzmacniacze wiatłowodowe oparte na zjawisku emisji wymuszonej (lasery bez sprz enia zwrotnego).

1. Wzmacniacze wiatłowodowe oparte na zjawisku emisji wymuszonej (lasery bez sprz enia zwrotnego). Wzmacniacze światłowodowe, Wykład 9 SMK J. Siuzdak, Wstęp do współczesnej telekomunikacji światłowodowej, WKŁ W-wa 1999 1. Wzmacniacze światłowodowe oparte na zjawisku emisji wymuszonej (lasery bez sprzężenia

Bardziej szczegółowo

4. Równania Cauchy ego Riemanna. lim. = c.. dz z=a Zauważmy, że warunkiem równoważnym istnieniu pochodnej jest istnienie liczby c C, takiej że

4. Równania Cauchy ego Riemanna. lim. = c.. dz z=a Zauważmy, że warunkiem równoważnym istnieniu pochodnej jest istnienie liczby c C, takiej że 4. Równania Caucy ego Riemanna Niec Ω C będzie zbiorem otwartym i niec f : Ω C. Mówimy, że f ma w punkcie a Ω pocodną w sensie zespolonym (jest olomorficzna w a równą c C, jeśli f(z f(a lim = c. z a Piszemy

Bardziej szczegółowo

Metoda mnożników Lagrange a i jej zastosowania w ekonomii

Metoda mnożników Lagrange a i jej zastosowania w ekonomii Maciej Grzesiak Metoda mnożników Lagrange a i jej zastosowania w ekonomii 1 Metoda mnożników Lagrange a znajdowania ekstremum warunkowego Pochodna kierunkowa i gradient Dla prostoty ograniczymy się do

Bardziej szczegółowo

Ćwiczenie O3-A3 BADANIE DYFRAKCJI NA SZCZELINIE I SIAT- CE DYFRAKCYJNEJ Wstęp teoretyczny

Ćwiczenie O3-A3 BADANIE DYFRAKCJI NA SZCZELINIE I SIAT- CE DYFRAKCYJNEJ Wstęp teoretyczny Ćwiczenie O3-A3 BADANIE DYFRAKCJI NA SZCZELINIE I SIAT- CE DYFRAKCYJNEJ Wstęp teoretyczny Rozważania dotyczące natury światła, doprowadziły do odkrycia i opisania wielu zjawisk związanych z jego rozchodzeniem

Bardziej szczegółowo

Wyznaczanie współczynnika załamania światła za pomocą mikroskopu i pryzmatu

Wyznaczanie współczynnika załamania światła za pomocą mikroskopu i pryzmatu POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: MATEMATYKA Z ELEMENTAMI FIZYKI Kod przedmiotu: ISO73; INO73 Ćwiczenie Nr Wyznaczanie współczynnika

Bardziej szczegółowo

Piotr Targowski i Bernard Ziętek WYZNACZANIE MACIERZY [ABCD] UKŁADU OPTYCZNEGO

Piotr Targowski i Bernard Ziętek WYZNACZANIE MACIERZY [ABCD] UKŁADU OPTYCZNEGO Instytut Fizyki Uniwersytet Mikołaja Kopernika Piotr Targowski i Bernard Ziętek Pracownia Optoelektroniki Specjalność: Fizyka Medyczna WYZNAZANIE MAIERZY [ABD] UKŁADU OPTYZNEGO Zadanie II Zakład Optoelektroniki

Bardziej szczegółowo

+OPTYKA 3.stacjapogody.waw.pl K.M.

+OPTYKA 3.stacjapogody.waw.pl K.M. Zwierciadło płaskie, prawo odbicia. +OPTYKA.stacjapogody.waw.pl K.M. Promień padający, odbity i normalna leżą w jednej płaszczyźnie, prostopadłej do płaszczyzny zwierciadła Obszar widzialności punktu w

Bardziej szczegółowo