(4) (b) m. (c) (d) sin α cos α = sin 2 k = sin k sin k. cos 2 m = cos m cos m. (g) (e)(f) sin 2 x + cos 2 x = 1. (h) (f) (i)
|
|
- Lidia Dobrowolska
- 6 lat temu
- Przeglądów:
Transkrypt
1 (3) (e) sin( θ) sin θ cos( θ) cos θ sin(θ + π/) cos θ cos(θ + π/) sin θ sin(θ π/) cos θ cos(θ π/) sin θ sin(θ ± π) sin θ cos(θ ± π) cos θ sin(θ ± π) sin θ cos(θ ± π) cos θ (f) cos x cos y (g) sin x sin y (h) sin x cos y (i) m cos(mπ) ( 1) m sin(mπ) cos(x + y) + cos(x y) cos(x + y) + cos(x y) sin(x + y) + sin(x y) (4) sin(π/ θ) sin(θ π/) cos θ m sin(θ ± mπ) sin θ cos(θ ± mπ) cos θ sin(θ + 3π/) sin(θ + π π/) sin α cos α (e) (f) sin(θ π/) cos θ sin(α + α) + sin(α α) sin(α) sin α cos α sin k sin k sin k cos(k + k) + cos(k k) cos m cos m cos m (g) (e)(f) sin x + cos x 1 (h) (f) cos(m + m) + cos(m m) sin α cos(k) + 1 cos(m) + 1 cos(x) cos x 1 cos x (1 cos x) cos x sin x (i) sin θ + b cos θ + b sin(θ + α) α tn 1 b 1
2 (3) [ ] sin( θ)? cos( θ)? sin(θ + π/)? cos(θ + π/)? sin(θ π/)? cos(θ π/)? sin(θ ± π)? cos(θ ± π)? (e) sin(θ ± π)? cos(θ ± π)? (f) cos x cos y? (g) sin x sin y? (h) sin x cos y? (i) m cos(mπ)? sin(mπ)? (4) [ ] sin(π/ θ)?? m sin(θ ± mπ)? cos(θ ± mπ)? sin(θ + 3π/)??? sin α cos α?? sin(α)? (e) sin k??? (f) cos m??? (g) (e)(f) sin x + cos x? (h) (f) cos(x)??? (i) sin θ + b cos θ? α?
3 (6) e e ln, b, c, (!!) (8) ( ) e e b e +b (c e ) ( e b ) (c) e +b (e ) b e b ( e) b b e b (e) b e + e b sin θ cos θ θ cos θ sin θ θ x ex e x (f) b c e + e b c e + e (c + ) e (7) e e e 4 e 6 {e 3 e } 3 {e 5 } 3 e 15 {9 e } {(1/3) e } 3 e 3 3 e e e (e) e 5 + e (f) e π + e π (9) {x sin x} x x x sin x + x x sin x sin x + x cos x {sin θ cos θ} θ θ sin θ cos θ + sin θ θ cos θ cos θ sin θ cos θ 1 cos θ (g) () e jπ + e jπ cos π y {sin y} y sin y sin y + sin y y sin y sin y cos y z {cos (z)} z cos(z) cos(z) + cos(z) z cos(z) 4 sin(z) cos(z) 3
4 (6) [ ] e e ln, b, c, (!!) (8) [ ] ( ) e e b? (c e ) ( e b )? (e ) b? ( e) b? (e) b e + e b? sin θ? θ cos θ? θ x ex? (f) b c e + e b?? (9) [ ] (7) [ ] e e e 4? {e 3 e } 3?? {9 e } {(1/3) e }?? 3 e e? (e) e 5 + e? (f) e π + e π? (g) () e jπ + e jπ?? {x sin x}? x? {sin θ cos θ}? θ y {sin y}????? z {cos (z)}?? 4
5 (1) (1) sin θ θ [ cos θ] b cos b + cos cos θ θ [sin θ] b sin b sin e x x [e x ] b e b e (/x) ( / x) {bcef x} bcef x y {αβxz} (11) x sin x x x e x x x ( cos x) x x [ x cos x] b + cos xx b cos b + cos + sin b sin x x ex x [x e x ] b e x x b e b e e b + e {θ cos x sin y} cos x sin y θ θ cos( α + β θ + γ) sin( α + β θ + γ) α + β (e) x y {x y} [ ] x y {x y} { x } x x [ sin y cos y y ] b sin b sin sin x x ( ) 1 cos x x 1 x cos x [ ] b sin x x (3)-(e) 1 [x]b 1 b sin b sin 4 5
6 (1) [ ] (1) [ ] sin θ θ?? cos θ θ?? e x x?? (/x) ( / x) {bcef x}? x {αβxz}? y (11) [ ] x sin x x??? {θ cos x sin y}? θ θ cos( α + β θ + γ)? x e x x??? cos y y?? (e) x y {x y}??? sin x x???? (3)-(e) 6
7 (13) c ef x c ef[x] b c ef(b ) T w( ) m T/ T/ [ ] T/ sin(t) cos(t) t 1 { sin T sin T 1 { sin T + sin T T sin w π/t sin mπ T/ (3)-(i) (ii) m } } T w( ) m T/ w π/t [ sin(t) cos(t) t 1 T sin 1 sin mπ ] T/ (3)-(i) (ii) m T/ cos() t (14) T/ t T n i1 x i x 1 + x + + x n T/ cos() t T/ T/ T/ t T i n T w( ) m T/ T/ [ ] T/ cos(t) sin(t) t 1 { cos T + cos T 1 T/ { cos T + cos T (ii) m T/ T/ sin() t } } i1 i1 { x i } 1 n i1 i1 (e) {x i y j } x i x i j1 j1 y j j (f) x i ( n ) x i x i i1 i1 7
8 (13) [ ] c ef x?? T w( ) m T/ T/ cos(t) t???? w π/t?? (3)-(i) (ii) m T/ T/ cos() t?? T w( ) m T/ T/ sin(t) t???? (ii) m T/ T/ sin() t? T w( ) m T/ cos(t) t?? w π/t?? (3)-(i) (ii) m T/ cos() t?? (14) [ ] i1 n i1 i1 x i? 1???? n i1 { x i }? (e) n j1 {x i y j }? j (f) x i x i? i1 8
9 (g) k α k α n, (n k) (h) n i1 j1 {α n x n } α k x k m x ij (x i1 + x i + + x im ) i1 (x 11 + x x 1m ) + (x 1 + x + + x m ) + (x n1 + x n + + x nm ) m i1 j1 n,m i1,j1 (i) m m {x i y j } x i y j i1 j1 { n } m x i y j i1 j1 i1 j1 (15) f(t) f( t) f(t) f( t) f(t) (16) f(t) f(t)t f(t) f(t)t f(t)t + f(t)t + f(t)t + f(t)t + f(t)t f(t)t f(t)t f(t)t f(t)t f(t) b f(t)t f(t) f(t)t f(t) g(t) h(t) f(t) + g(t) (e) f i (t) h(t) i f i(t) (f) f i (t) h(t) i f i(t) (g) f(t) g(t) h(t) f(t) g(t) (h) f(t) g(t) h(t) f(t) g(t) (i) f(t) g(t) h(t) f(t) g(t) 9
10 (g) k α k α n, (n k) (h) n i1 j1 {α n x n }? m x ij?? m i1 j1 n,m i1,j1 (i) i1 j1 m {x i y j }?? (16) [ ] f(t) f(t)t??? f(t) f(t)t??? (15) [ ] f(t)? f(t) b f(t)? f(t)t? f(t)? f(t) g(t) f(t) f(t)t? h(t) f(t) + g(t)? (e) f i (t) h(t) i f i(t)? (f) f i (t) h(t) i f i(t)? (g) f(t) g(t) h(t) f(t) g(t)? (h) f(t) g(t) h(t) f(t) g(t)? (i) f(t) g(t) h(t) f(t) g(t)? 1
Lista nr 1 - Liczby zespolone
Lista nr - Liczby zespolone Zadanie. Obliczyć: a) ( 3 i) 3 ( 6 i ) 8 c) (+ 3i) 8 (i ) 6 + 3 i + e) f*) g) ( 3 i ) 77 ( ( 3 i + ) 3i 3i h) ( + 3i) 5 ( i) 0 i) i ( 3 i ) 4 ) +... + ( 3 i ) 0 Zadanie. Przedstawić
Bardziej szczegółowoAnaliza Matematyczna II dla Inżynierii Biomedycznej Lista zadań
Analiza Matematyczna II dla Inżynierii Biomedycznej Lista zadań Jacek Cichoń, WPPT PWr, 05/6 Pochodne i całki funkcji jednej zmiennej Zadanie Oblicz pierwszą i drugą pochodną następujących funkcji. f(x)
Bardziej szczegółowoLista 1. (e) z działaniem dodawania ciągów i mnożeniem ciągu przez liczbę. (f) z działaniem dodawania ciągów i mnożeniem ciągu przez liczbę
MATEMATYKA Lista 1 1. Zbadać liniową niezależność wektorów. (a) (1, 2, 3), (3, 4, 5), V = R 3 ; (b) (1, 2, 3), (3, 2, 1), (1, 1, 1), V = R 3 ; (c) (1, 0, 0, 0), ( 1, 1, 0, 0), (1, 1, 1, 0), ( 1, 1 1, 1),
Bardziej szczegółowoRównania i nierówności trygonometryczne
Równania i nierówności trygonometryczne Piotr Rzonsowski Zadanie 1. Obliczyć równania: Zadania obowiązkowe a) cos x = 1, b) tg x =, c) cos( x + π ) =, d) sin x = 1. Wskazówka: (a) Oblicz cos y = 1 a następnie
Bardziej szczegółowov = v i e i v 1 ] T v = = v 1 v n v n [ ] U [x y z] T (X,Y,Z)
v U = e i,..., e n ) v = n v i e i i= e i i U = {X i } i=,n v T v = = v v n v n U x y z T X,Y,Z) v v v = 2 T A, ) b = 3 4 T B, ) c = + b b d = b c c d d 2 + 3b e b c = 5 3 T b d = 5 T c c = 34 d = 26 d
Bardziej szczegółowoAnaliza Matematyczna MAEW101 MAP1067
1 Analiza Matematyczna MAEW101 MAP1067 Wydział Elektroniki Przykłady do Listy Zadań nr 14 Funkcje wielu zmiennych. Płaszczyzna styczna. Ekstrema Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania
Bardziej szczegółowocos(ωt) ω ( ) 1 cos ω sin(ωt)dt = sin(ωt) ω cos(ωt)dt i 1 = sin ω i ( 1 cos ω ω 1 e iωt dt = e iωt iω II sposób: ˆf(ω) = 1 = e iω 1 = i(e iω 1) i ω
Rachunk prawdopodobiństwa MAP6 Wydział Elktroniki, rok akad. 8/9, sm. ltni Wykładowca: dr hab. A. Jurlwicz Przykłady do listy : Transformata Fourira Przykłady do zadania. : Korzystając z dfinicji wyznaczyć
Bardziej szczegółowov = v i e i v 1 ] T v =
v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v n U v v v +q 3q +q +q b c d XY X +q Y 3q r +q = r 3q = r +q = r +q = r 3q = r +q = E = E +q + E 3q + E +q = k q r+q 3 + k 3q r 3q 3 b V = kq
Bardziej szczegółowo(8) Oblicz wyznacznik dowolnie wybranej macierzy stopnia czwartego. (9) Rozwi aż podany układ równań stosuj ac wzory Cramera:
Zadania przygotowuj ace do kolokwium (budownictwo, studia niestacjonarne, drugi semestr, 209) [7III] () Podaj przykład dowolnej macierzy A drugiego stopnia Oblicz A A T + A T A (2) Podaj przykład dowolnej
Bardziej szczegółowoCzęść całkowita i ułamkowa, funkcje trygonometryczne, podstawowe własności funkcji
Sprawdzian nr 2: 25..204, godz. 8:5-8:40 (materiał zad. -48) Sprawdzian nr 3: 9.2.204, godz. 8:5-8:40 (materiał zad. -88) Część całkowita i ułamkowa, funkcje trygonometryczne, podstawowe własności funkcji
Bardziej szczegółowoAnaliza Matematyczna Praca domowa
Analiza Matematyczna Praca domowa J. de Lucas Zadanie 1. Pokazać, że dla wszystkich n naturalnych ( n ) exp kx k dx 1 dx n = 1 n (e k 1). (0,1) n k=1 n! k=1 Zadanie. Obliczyć dla dowolnego n. (0,1) n (x
Bardziej szczegółowoGranica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywistej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus 3 listopada 06r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Bardziej szczegółowoSzereg Taylora Javier de Lucas. f k) (x 0 ) (x x 0 ) k + R n (x, x 0 ), k! (x x 0 ) k k!
Szereg Taylora Javier de Lucas Zadanie 1. Wyka»,»e e x > 1 + x dla ka»dego x 0. Rozwiazanie: Funkcja f : x R e x R jest niesko«czenie wiele razy ró»niczkowalna w R. Z tego powodu, dla ka»dych x, x 0 R
Bardziej szczegółowoWstęp do chemii kwantowej - laboratorium. Zadania
Wstęp do chemii kwantowej - laboratorium. Zadania 2 października 2012 1 Wstęp Używanie maximy jako kalkulatora Zadanie 1 1. Oblicz 2+2*2 2. Oblicz 18769 3. Oblicz 2 10 4. Oblicz 7/8 i 7.0/8.0 5. Oblicz
Bardziej szczegółowoOpracowanie: mgr Jerzy Pietraszko
Analiza Matematyczna Opracowanie: mgr Jerzy Pietraszko Zadanie 1. Oblicz pochodną funkcji: (a) f(x) = x xx (b) f(x) = log sin 4 x cos 4 x (c) f(x) = sin sin x log x 2(2x) (d) f(x) = ( tg ( x + π 2 (e)
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era
Bardziej szczegółowoAnaliza Matematyczna MAEW101 MAP1067
Analiza Matematyczna MAEW MAP67 Wydział Elektroniki Przykłady do Listy Zadań nr 4 Funkcje wielu zmiennych. Pochodne cząstkowe Opracowanie: dr hab. Agnieszka Jurlewicz Przykłady do zadania 4.: Wyznaczyć
Bardziej szczegółowoProjekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego
Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt
Bardziej szczegółowoFunkcje trygonometryczne
Funkcje trygonometryczne Wartości funkcji trygonometrycznych kątów 30 o, 45 o, 60 o Kąt α [ o ] 30 o 45 o 60 o sin α ½ 2 / 2 3 / 2 cos α 3 / 2 2 / 2 ½ tg α 3 / 3 1 3 ctg α 3 1 3 / 3 Związki między funkcjami
Bardziej szczegółowoODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN
ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN Gr. 1 Zad. 1. Dane są punkty: P = (-, 1), R = (5, -1), S = (, 3). a) Oblicz odległość między punktami R i S. b) Wyznacz współrzędne środka odcinka PR. c) Napisz równanie
Bardziej szczegółowoZASTOSOWANIA POCHODNEJ FUNKCJI
Wykłady z matematyki inżynierskiej ZASTOSOWANIA POCHODNEJ FUNKCJI IMiF UTP 04 JJ (IMiF UTP) ZASTOSOWANIA POCHODNEJ FUNKCJI 04 1 / 13 Reguła de L Hospitala TWIERDZENIE (Reguła de L Hospitala). Załóżmy,
Bardziej szczegółowoGAL 80 zadań z liczb zespolonych
GAL 80 zadań z liczb zespolonych Postać algebraiczna liczby zespolonej 1 Sprowadź wyrażenia do postaci algebraicznej: (a) ( + i)(3 i) + ( + 31)(3 + 41), (b) (4 + 3i)(5 i) ( 6i), (5 + i)(7 6i) (c), 3 +
Bardziej szczegółowoGranica i ciągłość funkcji. 1 Granica funkcji rzeczywistej jednej zmiennej rzeczywsitej
Wydział Matematyki Stosowanej Zestaw zadań nr 3 Akademia Górniczo-Hutnicza w Krakowie WEiP, energetyka, I rok Elżbieta Adamus listopada 07r. Granica i ciągłość funkcji Granica funkcji rzeczywistej jednej
Bardziej szczegółowoDyfrakcja. Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia
Dyfrakcja 1 Dyfrakcja Dyfrakcja to uginanie światła (albo innych fal) przez drobne obiekty (rozmiar porównywalny z długością fali) do obszaru cienia uginanie na szczelinie uginanie na krawędziach przedmiotów
Bardziej szczegółowoBlok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x.
Blok III: Funkcje elementarne III. Narysuj wykres funkcji: a) y = x y = x y = x y = x III. Narysuj wykres funkcji: a) y = x + y = 4 x III. Znajdź miejsca zerowe funkcji: a) y = 6 x y = x e) y = x f) y
Bardziej szczegółowoG:\AA_Wyklad 2000\FIN\DOC\FRAUN1.doc. "Drgania i fale" ii rok FizykaBC. Dyfrakcja: Skalarna teoria dyfrakcji: ia λ
Dyfrakcja: Skalarna teoria dyfrakcji: U iω t [ e ] ( t) Re U ( ) ;. c t U ( ; t) oraz [ + ] U ( ) k. U ia s ( ) A e ik r ( rs + r ) cos( n, ) cos( n, s ) ds s r. Dyfrakcja Fresnela (a) a dyfrakcja Fraunhofera
Bardziej szczegółowoElektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 10 Promieniowanie Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/~tanas Spis treści 11 Promieniowanie 3 11.1 Promieniowanie dipolowe............... 3 11
Bardziej szczegółowo1 Przestrzenie unitarne i przestrzenie Hilberta.
Przestrzenie unitarne i przestrzenie Hilberta.. Wykazać, że iloczyn skalarny w przestrzeni wektorowej X nad cia lem K ma nastepuj ace w lasności: (i) x, y + z = x, y + x, z, (ii) x, λy = λ x, y, (iii)
Bardziej szczegółowo2 5 C). Bok rombu ma długość: 8 6
Zadanie 1 W trójkącie prostokątnym o przeciwprostokątnej 6 i przyprostokątnej sinus większego z kątów ostrych ma wartość: C) Zadanie Krótsza przekątna rombu o długości tworzy z bokiem rombu kąt 60 0. Bok
Bardziej szczegółowoRównania różniczkowe zwyczajne. 1 Rozwiązywanie równań różniczkowych pierwszego rzędu
Wydział Matematyki Stosowanej Zestaw zadań nr 13 Akademia Górniczo-Hutnicza w Krakowie WFiIS, informatyka stosowana, I rok Elżbieta Adamus 17 maja 2018r. Równania różniczkowe zwyczajne 1 Rozwiązywanie
Bardziej szczegółowoPrzekształcenie Fouriera obrazów FFT
Przekształcenie ouriera obrazów T 6 P. Strumiłło, M. Strzelecki Przekształcenie ouriera ourier wymyślił sposób rozkładu szerokiej klasy funkcji (sygnałów) okresowych na składowe harmoniczne; taką reprezentację
Bardziej szczegółowoi = [ 0] j = [ 1] k = [ 0]
Ćwiczenia nr TEMATYKA: Układy współrzędnych: kartezjański, walcowy (cylindryczny), sferyczny (geograficzny), Przekształcenia: izometryczne, nieizometryczne. DEFINICJE: Wektor wodzący: wektorem r, ρ wodzącym
Bardziej szczegółowoPodstawy robotyki. Wykład II. Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska
Podstawy robotyki Wykład II Ruch ciała sztywnego w przestrzeni euklidesowej Robert Muszyński Janusz Jakubiak Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Preliminaria matematyczne
Bardziej szczegółowoMatematická analýza II pro kombinované studium. Konzultace první a druhá. RNDr. Libuše Samková, Ph.D. pf.jcu.cz
Učební texty ke konzultacím předmětu Matematická analýza II pro kombinované studium Konzultace první a druhá RNDr. Libuše Samková, Ph.D. e-mail: lsamkova@ pf.jcu.cz webová stránka: home.pf.jcu.cz/ lsamkova/
Bardziej szczegółowoR Z N C. p11. a!b! = b (a b)!b! d n dx n [xn sin x] = x n(n k) (sin x) (n) = n(n 1) (n k + 1) sin(x + kπ. n(n 1) (n k + 1) sin(x + lπ 2 )
5 Z N p ) a a + b)! b ) a!b! a a! b a b)!b! p n n k nn k) n ) n k) d n d n [n sin ] n nn k) sin ) n) k n nn ) n k + ) sin + lπ ) k d n d n [n sin ] n k ) n n ) n k) sin ) k) k n k ) n nn ) n k + ) sin
Bardziej szczegółowoMATEMATYKA EiT. (studia drugiego stopnia, drugi semestr) 3 2i, 2i44 i i )12, (cos 15 + i sin 15 ) 15, ( p 3 i) i)17, (i 1) 9, ( 1 i
MATEMATYKA EiT (studia drugiego stopnia, drugi semestr) ) Wyznaczyć Re z; Im z; jzj ; z dla z = ( + i)(3 i), ( + i)( i) + (3 5i), (+i) 3 i, i44 i 45 i 46 +3i, 47 (cos 33 + i sin 33 ), ( + p 3 i)7, (i )
Bardziej szczegółowoZadania z analizy matematycznej - sem. II Całki nieoznaczone
Zadania z analizy matematycznej - sem. II Całki nieoznaczone Definicja 1 (funkcja pierwotna i całka nieoznaczona). Niech f : I R. Mówimy, że F : I R jest funkcją pierwotną funkcji f, jeśli F jest różniczkowalna
Bardziej szczegółowo1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5)
. Liczby zespolone Zadanie.. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone () i +i, () 3i, (3) ( + i 3) 6, (4) (5) ( +i ( i) 5, +i 3 i ) 4. Zadanie.. Znaleźć moduł i argument główny
Bardziej szczegółowoWSTĘP DO OPTYKI FOURIEROWSKIEJ
1100-4BW1, rok akademicki 018/19 WSTĘP DO OPTYKI FOURIEROWSKIEJ dr hab. Rafał Kasztelanic Wykład 4 Przestrzeń swobodna jako filtr częstości przestrzennych Załóżmy, że znamy rozkład pola na fale monochromatyczne
Bardziej szczegółowoFunkcje trygonometryczne
Funkcje trygonometryczne Sinus kąta ostrego α stosunek długości przyprostokątnej leżącej naprzeciw kąta α do długości przeciwprostokątnej: sin α = a : c = a/c Cosinus kąta ostrego α stosunek długości przyprostokątnej
Bardziej szczegółowoAnaliza Matematyczna MAEW101
Analiza Matematyczna MAEW0 Wydział Elektroniki Listy zadań nr -7 (część I) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 005 M.Gewert, Z Skoczylas,
Bardziej szczegółowoMatematyczne Metody Fizyki I
Matematyczne Metody Fizyki I Dr hab. inż.. Mariusz Przybycień Matematyka dla przyrodników i inżynierów, D.A. McQuarrie, PWN, Warszawa 005. Wybrane rozdziały matematycznych metod fizyki, A. Lenda, B. Spisak,
Bardziej szczegółowoMatematyczne Metody Fizyki I Dr hab. inż. Mariusz Przybycień
Matematyczne Metody Fizyki I Dr hab. inż. Mariusz Przybycień Matematyka dla przyrodników i inżynierów, D.A. McQuarrie, PWN, Warszawa 005. Wybrane rozdziały matematycznych metod fizyki, A. Lenda, B. Spisak,
Bardziej szczegółowoFunkcje trygonometryczne. XX LO (wrzesień 2016) Matematyka elementarna Temat #5 1 / 14
XX LO (wrzesień 2016) Matematyka elementarna Temat #5 1 / 14 Miara kąta Miara kąta kąt mierzymy od ramienia początkowego do końcowego w kierunku przeciwnym do ruchu wskazówek zegara (α > 0) kąt zgodny
Bardziej szczegółowoSt. Pod. dla Nauczycieli 5 seria zadań z algebry szkolnej
St. Pod. dla Nauczycieli 5 seria zadań z algebry szkolnej 19.0.006 I. Trygonometria. Definicja. Oznaczmy przez C okrąg jednostkowy, tzn. okrąg o środku w punkcie (0, 0) i promieniu równym 1. Po okręgu
Bardziej szczegółowo1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?
1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),
Bardziej szczegółowoCAŠKA NIEOZNACZONA. Politechnika Lubelska. Z.Šagodowski. 18 lutego 2016
WYKŠAD CAŠKA NIEOZNACZONA Z.Šagodowski Politechnika Lubelska 8 lutego 06 Denicja CAŠKA NIEOZNACZONA Funkcja F jest funkcja pierwotn funkcji f na przedziale A, je»eli Zauwa»my,ze F (x) = f (x), dla ka»dego
Bardziej szczegółowoD l. D p. Rodzaje baz jezdnych robotów mobilnych
ERO Elementy robotyki 1 Rodzaje baz jezdnych robotów mobilnych Napęd różnicowy dwa niezależnie napędzane koła jednej osi, dla zachowania równowagi dodane jest trzecie koło bierne (lub dwa bierne koła)
Bardziej szczegółowoMATEMATYKA 8. Funkcje trygonometryczne kąta ostrego (α < 90 ). Stosunki długości boków trójkąta prostokątnego nazywamy funkcjami trygonometrycznymi.
INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 017/018 www.medicus.edu.pl tel. 501 38 39 55 MATEMATYKA 8 FUNKCJE TRYGONOMETRYCZNE. Funkcje trygonometryczne kąta ostrego
Bardziej szczegółowoObliczenia iteracyjne
Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej
Bardziej szczegółowov = v i e i v 1 ] T v = = v 1 v n v n ] a r +q = a a r 3q =
v U = e i,..., e n ) v = n v i e i i= e i i v T v = = v v n v v v v n 3q q q q r q = r 3q = E = E q E 3q E q = k q rq 3 k 3q r 3q 3 r q = k q rq 3 = kq 4 3 ) 4 q d b d c d d X d ± = d r = x y T d ± r ±
Bardziej szczegółowoα - stałe 1 α, s F ± Ψ taka sama Drgania nieliniowe (anharmoniczne) Harmoniczne: Inna zależność siły od Ψ : - układ nieliniowy,
Drgania nieliniowe (anharmoniczne) Harmoniczne: F s s Inna zależność siły od : - układ nieliniowy, Symetryczna siła zwrotna Niech: F s ( ) s Symetryczna wartość - drgania anharmoniczne α, s F s dla α -
Bardziej szczegółowox2 + 2x 15 x 2 + 4x ) f(x) = x 2 + 2x 15 x2 + x 12 3) f(x) = x 3 + 3x 2 10x. x 3 + 3x 2 10x x 2 + x 12 10) f(x) = log 2.
Příklady k 1 zápočtové písemce Definiční obor funkce Určete definiční obor funkce: x + x 15 1 f(x x + x 1 ( x + x 1 f(x log x + x 15 x + x 1 3 f(x x 3 + 3x 10x ( x 3 + 3x 10x f(x log x + x 1 x3 + 5x 5
Bardziej szczegółowoCałka krzywoliniowa niezorientowana Niech R 3 będzie krzywą prostowalną opisywaną parametryzacją r:,α, β- γ taką, że
Całka krzywoliniowa niezorientowana Niech R będzie krzywą prostowalną opisywaną parametryzacją r:,α, β- taką, że t α, β : r t = ( t, y t, z t ) ef. Mówimy, że krzywa jest kawałkami gładka funkcja r t ma
Bardziej szczegółowoMATEMATYKA EiT. (studia drugiego stopnia, drugi semestr) 3 2i, 2i44 i i )12, (cos 15 + i sin 15 ) 15, ( p 3 i) i)17, (i 1) 9, ( 1 i
MATEMATYKA EiT (studia drugiego stopnia, drugi semestr) ) Wyznaczyć Re z; Im z; jzj ; z dla z = ( + i)(3 i), ( + i)( i) + (3 5i), (+i) 3 i, i44 i 45 i 46 +3i, 47 (cos 33 + i sin 33 ), ( + p 3 i)7, (i )
Bardziej szczegółowoRównania różniczkowe zwyczajne Zadania z odpowiedziami
Równania różniczkowe zwyczajne Zadania z odpowiedziami Maciej Burnecki Spis treści strona główna I Równania pierwszego rzędu 2 1 o rozdzielonych zmiennych 2 2 jednorodne 4 3 liniowe 4 4 Bernoulliego 5
Bardziej szczegółowoCałki z funkcji trygonometrycznych. Autorzy: Tomasz Drwięga
Całki z funkcji trygonometrycznych Autorzy: Tomasz Drwięga 08 Całki z funkcji trygonometrycznych Autor: Tomasz Drwięga TWIERDZENIE Twierdzenie : o całkowaniu funkcji postaci R(sin x, cos x) Do obliczania
Bardziej szczegółowo1. Liczby zespolone Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą. (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną?
1. Liczby zespolone 1.1. Stwierdzić kiedy kwadrat liczby zespolonej jest liczbą (i) rzeczywistą, (ii) ujemną, (iii) tylko urojoną? 1.2. Doprowadzić do postaci a + ib liczby zespolone (i) (1 13i)/(1 3i),
Bardziej szczegółowo1 Funkcja wykładnicza i logarytm
1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres
Bardziej szczegółowoZastosowania zasad dynamiki Newtona Katarzyna Sznajd-Weron. Wykład dla Matematyki Stosowanej
Zastosowania zasad dynamiki Newtona Katarzyna Sznajd-Weron Wykład dla Matematyki Stosowanej Zasady Dynamiki Newtona skrót (inercjalne układy odniesienia) 1. σ F = 0 a = 0 (definicja układu inercjalnego)
Bardziej szczegółowoMatematyka kompendium 2
Matematyka kompendium 2 Spis treści Trygonometria Funkcje trygonometryczne Kąt skierowany Kąt skierowany umieszczony w układzie współrzędnych Wartości funkcji trygonometrycznych kątów 30 o, 45 o, 60 o
Bardziej szczegółowoGrafika komputerowa i wizualizacja. dr Wojciech Pałubicki
Grafika komputerowa i wizualizacja dr Wojciech Pałubicki Grafika komputerowa Obrazy wygenerowane za pomocy komputera Na tych zajęciach skupiamy się na obrazach wygenerowanych ze scen 3D do interaktywnych
Bardziej szczegółowo1 Funkcja wykładnicza i logarytm
1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres
Bardziej szczegółowo1 Warunkowe wartości oczekiwane
Warunkowe wartości oczekiwane W tej serii zadań rozwiążemy różne zadania związane z problemem warunkowania.. (Eg 48/) Załóżmy, że X, X, X 3, X 4 są niezależnymi zmiennymi losowymi o jednakowym rozkładzie
Bardziej szczegółowoRównania różniczkowe liniowe drugiego rze
Przyk lad 14.1 Omówimy jeszcze jeden przyk lad zagadnienia prowadza cego do równania pierwszego rze. Za lóżmy, że spadochroniarz wyskoczy l z samolotu na wysokości 1500 m i że spada swobodnie aż do wysokości
Bardziej szczegółowofalowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich
Bardziej szczegółowoWstęp do Rachunku Prawdopodobieństwa, IIr. WMS
Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85
Bardziej szczegółowoProgramowanie dynamiczne i modele rekurencyjne w ekonomii Wykład 2
Programowanie dynamiczne i modele rekurencyjne w ekonomii Wykład Michał Ramsza października Streszczenie Wykład drugi bazuje głównie na [, roz 6 5, [, roz oraz [ Materiał obejmuje zagadnienie zwiazane
Bardziej szczegółowoUniwersytet Warmińsko-Mazurski w Olsztynie
Uniwersytet Warmińsko-Mazurski w Olsztynie ZETAW II Całka podwójna.. Obliczyć całki iterowane (a 4 4 2 ( (x + y ( 2 4 ( y x y dy dx y 3 x 2 + y 2 dx dy. 2. Zmienić kolejność całkowania (a (d 2 e ( 2x x
Bardziej szczegółowoFunkcje wielu zmiennych
dr Krzysztof yjewski Informatyka I rok I 0 in» 12 stycznia 2016 Funkcje wielu zmiennych Informacje pomocnicze Denicja 1 Niech funkcja f(x y) b dzie okre±lona przynajmniej na otoczeniu punktu (x 0 y 0 )
Bardziej szczegółowo1 Pochodne wyższych rzędów
Pochodne wyższych rzędów Pochodną rzędu drugiego lub drugą pochodną funkcji y = f(x) nazywamy pochodną pierwszej pochodnej tej funkcji. Analogicznie definiujemy pochodne wyższych rzędów, jako pochodne
Bardziej szczegółowoAnaliza Matematyczna MAEW101
Analiza Matematyczna MAEW Wydział Elektroniki Listy zadań nr 8-4 (część II) na podstawie skryptów: M.Gewert, Z Skoczylas, Analiza Matematyczna. Przykłady i zadania, GiS, Wrocław 5 M.Gewert, Z Skoczylas,
Bardziej szczegółowoLinia długa w obrazkach
Linia dłua w obrazach A. Linia dłua jao czwórni I I I E U U U Rys.1 Tyowa raca linii dłuiej. Podstawowe wielości s imedancja alowa =, s = R + jωl, Y r = G + jωc, Y r dzie R, G, L, C- arametry jednostowe
Bardziej szczegółowoA r A r. r = , 2. + r r + r sr. Interferencja. Dwa źródła punktowe: Dla : Dla dużych 1,r2. błąd: 3D. W wyniku interferencji:
-- G:\AA_Wyklad \FIN\DOC\Inte.doc Intefeencja. Dwa źódła punktowe: (, t) A( ) ( k ω t) U cos (, t) A( ) ( k ω t) U cos Dla : 3D ( ) Dla : A D ( ) A Dla dużych, d, A A : A ( ) A( ) A A( ) błąd: 3D % ~ U
Bardziej szczegółowoRównania różniczkowe zwyczajne zadania z odpowiedziami
Równania różniczkowe zwyczajne zadania z odpowiedziami Maciej Burnecki opracowanie Spis treści I Równania pierwszego rzędu 2 o rozdzielonych zmiennych 2 jednorodne 4 liniowe 4 Bernoulliego 5 Równania sprowadzalne
Bardziej szczegółowoFUNKCJE WIELU ZMIENNYCH
FUNKCJE WIELU ZMIENNYCH 1. Wyznaczyć i narysować dziedziny naturalne podanych funkcji: 4 x 2 y 2 ; (b) g(x, y) = e y x 2 1 ; (c) u(x, y) = arc sin xy; (d) v(x, y) = sin(x 2 + y 2 ); (e) w(x, y) = x sin
Bardziej szczegółowo3. Materiały do manipulacji wiązkami świetlnymi
3. Materiały do manipulacji wiązkami świetlnymi Modulatory światła: wymuszona dwójłomność efekty magnetoi elektro-optyczne Np. modulatory natężenia (AM) substancja dwójłomna między skrzyż. polaryzatorami
Bardziej szczegółowoWarunek zaliczenia wykładu: wykonanie sześciu ćwiczeń w Pracowni Elektronicznej
Elektronika cyfrowa Warunek zaliczenia wykładu: wykonanie sześciu ćwiczeń w Pracowni Elektronicznej Część notatek z wykładu znajduje się na: http://zefir.if.uj.edu.pl/planeta/wyklad_elektronika/ 1 Pracownia
Bardziej szczegółowoWykład XIV. wiatła. Younga. Younga. Doświadczenie. Younga
Wykład XIV Poglądy na naturęświat wiatła Dyfrakcja i interferencja światła rozwój poglądów na naturę światła doświadczenie spójność światła interferencja w cienkich warstwach interferometr Michelsona dyfrakcja
Bardziej szczegółowoTrigonometria. Funkcje trygonometryczne
1 Trigonometria. Funkcje trygonometryczne Trigonometria to wiedza o zwi azkach miarowych pomiedzy bokami i k atami trójk atów. Takie znaczenie s lowa Trigonometria by lo używane w czasach starożytnych
Bardziej szczegółowoElektrodynamika. Część 8. Fale elektromagnetyczne. Ryszard Tanaś. Zakład Optyki Nieliniowej, UAM
Elektrodynamika Część 8 Fale elektromagnetyczne Ryszard Tanaś Zakład Optyki Nieliniowej, UAM http://zon8.physd.amu.edu.pl/\~tanas Spis treści 9 Fale elektromagnetyczne 3 9.1 Fale w jednym wymiarze.................
Bardziej szczegółowoRepetytorium z analizy i rachunku całkowego funkcji wielu zmiennych. Wiadomości wstępne.
SPIS TREŚCI 1 Repetytorium z analizy i rachunku całkowego funkcji wielu zmiennych. Wiadomości wstępne. Spis treści 1 Repetytorium 2 2 Wiadomości wstępne 5 1 Repetytorium 2 1 Repetytorium 1. Rozwia zać
Bardziej szczegółowoJarosław Wróblewski Matematyka Elementarna, zima 2011/12
168. Uporządkować podane liczby w kolejności niemalejącej. sin50, cos80, sin170, cos200, sin250, cos280. 169. Naszkicować wykres funkcji f zdefiniowanej wzorem a) f(x) = sin2x b) f(x) = cos3x c) f(x) =
Bardziej szczegółowoV.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania
V.6.6 Pęd i energia przy prędkościach bliskich c. Zastosowania 1. Ogólne wyrażenia na aberrację światła. Rozpad cząstki o masie M na dwie cząstki o masach m 1 i m 3. Rozpraszanie fotonów z lasera GaAs
Bardziej szczegółowof(g(x))g (x)dx = 6) x 2 1
Mtemtyk -. rok Trnsport, stcjonrne. stopie«przykªdowe zdni n kolokwium nr.cªki nieoznczone - cªkownie przez cz ±ci, cªkownie przez podstwienie Denicj F () = f(), f()d = F () + C Cªkownie przez cz ±ci:
Bardziej szczegółowoSzeregFouriera-Legendre a
SzeregFouriera-Legendre a Szereg Fouriera-Legendre a : n=0 P n (t) f n Współczynniki f n = Pn (t) f (t) dt - Pn (t) 2 dt - = 2 n + Pn 2 - (t) f (t) dt Pn - (t) 2 dt = 2 2 n + Zadanie Policz kwadrat normy
Bardziej szczegółowoWstęp do komputerów kwantowych
Obwody kwantowe Uniwersytet Łódzki, Wydział Fizyki i Informatyki Stosowanej 2008/2009 Obwody kwantowe Bramki kwantowe 1 Algorytmy kwantowe 2 3 4 Algorytmy kwantowe W chwili obecnej znamy dwie obszerne
Bardziej szczegółowoAnaliza Matematyczna. Zastosowania Całek
Analiza Matematyczna. Zastosowania Całek Aleksander Denisiuk denisiuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 8-45 Gdańsk 9 maja 217
Bardziej szczegółowoZjawisko interferencji fal
Zjawisko interferencji fal Interferencja to efekt nakładania się fal (wzmacnianie i osłabianie się ruchu falowego widoczne w zmianach amplitudy i natęŝenia fal) w którym zachodzi stabilne w czasie ich
Bardziej szczegółowoMaciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Całki nieoznaczone
Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Całki nieoznaczone 1. Definicja całki nieoznaczonej Definicja 1. Funkcja F jest funkcją pierwotną funkcji f na przedziale I, jeżeli F (x) =
Bardziej szczegółowoRÓWNANIA RÓŻNICZKOWE ZWYCZAJNE zadania z odpowiedziami
RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE zadania z odpowiedziami Maciej Burnecki opracowanie strona główna Spis treści I Równania pierwszego rzędu 2 o rozdzielonych zmiennych 2 jednorodne 3 liniowe 3 Bernoulliego
Bardziej szczegółowoZadania z algebry liniowej Iloczyn skalarny, przestrzenie euklidesowe
Zadania z algebry liniowej Iloczyn skalarny, przestrzenie euklidesowe Definicja 1 (Iloczyn skalarny). Niech V będzie rzeczywistą przestrzenią liniową. Iloczynem skalarnym w przestrzeni V nazywamy funkcję
Bardziej szczegółowoRozdział 6 Oscylacje neutrin słonecznych i atmosferycznych. Eksperymenty Superkamiokande, SNO i inne. Macierz mieszania Maki-Nakagawy- Sakaty (MNS)
Rozdział 6 Oscylacje neutrin słonecznych i atmosferycznych. Eksperymenty Superkamiokande, SNO i inne. Macierz mieszania Maki-Nakagawy- Sakaty (MNS) Kilka interesujących faktów Każdy człowiek wysyła dziennie
Bardziej szczegółowoWYKŁAD 10 METODY POMIARU PRĘDKOŚCI, STRUMIENIA OBJĘTOŚCI I STRUMIENIA MASY W PŁYNACH
WYKŁAD 10 METODY POMIARU PRĘDKOŚCI, STRUMIENIA OBJĘTOŚCI I STRUMIENIA MASY W PŁYNACH Pomiar strumienia masy i strumienia objętości metoda objętościowa, (1) q v V metoda masowa. (2) Obiekt badań Pomiar
Bardziej szczegółowoWykład VI. Badanie przebiegu funkcji. 2. A - przedział otwarty, f D 2 (A) 3. Ekstrema lokalne: 4. Punkty przegięcia. Uwaga!
Wykład VI Badanie przebiegu funkcji 1. A - przedział otwarty, f D A x A f x > 0 f na A x A f x < 0 f na A 2. A - przedział otwarty, f D 2 (A) x A f x > 0 fwypukła ku górze na A x A f x < 0 fwypukła ku
Bardziej szczegółowoWykład z analizy. Tydzień 10 i 11. Różniczkowanie funkcji wielu zmiennych
Wykład z analizy Tydzień 1 i 11. Różniczkowanie funkcji wielu zmiennych 1.1 Niech f(x, y) będzie funkcją dwóch zmiennych, i niech druga współrzędna będzie ustalona y = y. Rozważana funkcja zależy tylko
Bardziej szczegółowoKRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Matematyka Poziom rozszerzony
KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM Matematyka Poziom rozszerzony Listopad W niniejszym schemacie oceniania zadań otwartych są prezentowane przykładowe poprawne odpowiedzi. W tego typu
Bardziej szczegółowoInformacje pomocnicze:
dr Krzysztof yjewski Informatyka; S-I 0.in». 7 grudnia 06 Rachunek caªkowy funkcji jednej zmiennej. Caªka nieoznaczona. przydatne wzory: Informacje pomocnicze: Lp. Wzór Uwagi. dx = x c. adx = ax c 3. x
Bardziej szczegółowoPodstawy analizy matematycznej II
Podstawy analizy matematycznej II Andrzej Marciniak Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych i ich zastosowań
Bardziej szczegółowo