Matematyka kompendium 2

Wielkość: px
Rozpocząć pokaz od strony:

Download "Matematyka kompendium 2"

Transkrypt

1 Matematyka kompendium 2 Spis treści Trygonometria Funkcje trygonometryczne Kąt skierowany Kąt skierowany umieszczony w układzie współrzędnych Wartości funkcji trygonometrycznych kątów 30 o, 45 o, 60 o Związki między funkcjami trygonometrycznymi Funkcje trygonometryczne dowolnego kąta Podstawowe tożsamości trygonometryczne Funkcje trygonometryczne kątów 30 0, 45 0, 60 0 wartości na wykresach Wzory redukcyjne Wzory trygonometryczne Podstawowe wzory: Funkcje trygonometryczne sumy i różnicy kątów Funkcje trygonometryczne kąta podwojonego Funkcje trygonometryczne połowy kąta Sumy funkcji trygonometrycznych Różnice funkcji trygonometrycznych Parzystość i nieparzystość funkcji Miara łukowa kata Zamiana katów z miary stopniowej na łukową i odwrotnie Kąt jako miara obrotu Wykresy funkcji trygonometrycznych: sin(x), cos(x), tg(x), cos(x) Zależności między funkcjami trygonometrycznymi Pole trójkąta gdy dane 2 boki i kąt między nimi Rodzaje kątów, miara łukowa Obliczenie długości łuku Miara łukowa kąta Zamiana katów z miary stopniowej na łukową i odwrotnie Kąt jako miara obrotu Wyznaczenie współrzędnych punktu i narysowanie końcowego ramienia kata Znaki wartości funkcji trygonometrycznych dowolnego kąta Parzystość funkcji trygonometrycznych Wzory redukcyjne Okresowość funkcji trygonometrycznych Przekształcanie funkcji trygonometrycznych Równania trygonometryczne Funkcje trygonometryczne

2 Funkcje trygonometryczne kąta ostrego Sinus kąta ostrego α stosunek długości przyprostokątnej leżącej naprzeciw kąta α do długości przeciwprostokątnej: sin α = a : c = a/c Cosinus kąta ostrego α stosunek długości przyprostokątnej przyległej do kąta α do długości przeciwprostokątnej: cos α = b : c = b / c Tangens kąta ostrego α stosunek długości przyprostokątnej leżącej naprzeciw kąta α do długości przyprostokątnej przyległej do tego kąta: tg α = a : b = a / b = tan α Cotangens kąta ostrego α stosunek długości przyprostokątnej przyległej do tego kąta do długości przyprostokątnej leżącej naprzeciw kąta α: ctg α = b : a = b / a b / a = ctg α = 1 : (a/b) = 1 : tg α = 1 / tg α Kąt skierowany Kąt skierowany kąt płaski z ustalonym uporządkowaniem ramion. Pierwsze ramię kąta nazywamy ramieniem początkowym, drugie ramieniem końcowym. Kąt skierowany oznaczamy łukiem zakończonym strzałką, wskazującą ramię końcowe.

3 Kąt skierowany umieszczony w układzie współrzędnych

4 Kąt skierowany jest umieszczony w układzie współrzędnych, jeśli jego wierzchołek znajduje się w początku układu współrzędnych Kąt skierowany zerowy kąt 0 o Kąt skierowany pełny 360 o Kąt α o dowolnej mierze stopniowej można przedstawić w postaci: γ = k*360 o + α, gdzie 0 α < 360 o oraz k C Wartości funkcji trygonometrycznych kątów 30 o, 45 o, 60 o Kąt α [ o ] 30 o 45 o 60 o sin α ½ 2 / 2 3 / 2 cos α 3 / 2 2 / 2 ½ tg α 3 / ctg α / 3 Związki między funkcjami trygonometrycznymi sin 2 α + cos 2 α = 1 (jedynka trygonometryczna) 1/tg α = ctg α sin α / cos α = tg α cos α / sin α = ctg α sin α = cos (90 o α) cos α = sin (90 o α) tg α = 1 / (tg 90 o α) tg α = sin α / cos α sin (180 o α ) = sin α cos (180 o α) = -cos α tg (180 o α) = -tg α ctg (180 o α) = -ctg α sin α = (1 cos 2 α) = tg α / ( (1 + tg 2 α) = 1/ ( (1 +ctg 2 α) cos α = (1 sin 2 α) = 1 / ( (1 + tg 2 α) = ctg/ ( (1 +ctg 2 α) tg α = sin α / (1 sin 2 α) = (1 sin 2 α) / cos α = 1 / ctg α) ctg α = (1 sin 2 α)/ sin α = cos α / (1 cos 2 α) = 1 / tg α) Funkcje trygonometryczne dowolnego kąta

5 sin α = y/r, cos α = x/r, gdzie r = (x 2 + y 2 ) tg α = y/x, gdy x 0 ctg α = x/y, gdy y 0 Podstawowe tożsamości trygonometryczne sin α = cos (90 o α) cos α = sin (90 o α) tg α = ctg (90 o α) ctg α = tg (90 o α) tg α = 1 / tg(90 o α) ctg α = 1/ tg (90 o α) sin 2 α + cos 2 α = 1 tg α = sin α / cos α sin (90º + α) = cos α tg (90 + α) = - 1/tg α sin (180 α) = sin α tg (180 α) = - tg α jedynka trygonometryczna tg (90 o α) = cos α / sin α cos (90 + α ) = - sin α cos (180 α) = - cos α ctg (180 α) = - ctg α sin (α o ) = sin α cos (α o ) = cos (α o ) tg (α o ) = tg α ctg (α o ) = ctg α sin(-α) = -sin α cos (-α) = cos α tg(-α) = -tg α ctg (-α) = -ctg α Funkcje trygonometryczne kątów 30 0, 45 0, 60 0 wartości na wykresach Funkcje sinus i cosinus kątów 30 o i 60 o - bezpośrednio z wykresu sin 30 o = ½ : 1 = ½ cos 30 o = 3/2 sin 60 o = 3/2 cos 60 o = ½ : 1 = ½ Funkcje tangens i cotangens kątów 30 o i 60 o z obliczeń tg 30 o = ½ : 3/2 = 1/ 3 = 3/3 ctg 30 o = 3/2 : ½ = 3 tg 60 o = 3/2 : ½ = 3 ctg 60 o = ½ : 3/2 = 1/ 3 = 3/3 Wartości funkcji tg 30 o i ctg 60 o - bezpośrednio z wykresu tg 30 o = 3/3/1 = 3/3 ctg 60 o = 3/3/1 = 3/3 o o

6 Przeliczenie wartości funkcji trygonometrycznych kąta 0-90 o podana wartość jednej funkcji, obliczenie pozostałych Obliczenie wartości funkcji trygonometrycznych, gdy dana wartość jednej funkcji

7

8 Dana wartość jednej funkcji w postaci ilorazu lub jednej liczby zastąpienie ilorazem liczby przez 1 Znaki funkcji trygonometrycznych Ćwiartka układu sin α cos α tg α ctg α I (0 o - 90 o ) II (90 o -180 o ) III (180 o -270 o ) IV (270 o -360 o ) Wierszyk dotyczący znaków funkcji trygonometrycznych: W pierwszej wszystkie są dodatnie w drugiej tylko sinus

9 w trzeciej a w czwartej tangens i cotangens cosinus Wartości funkcji trygonometrycznych dla wielokrotności kata 90 o 0 o 90 o 180 o 270 o 360 o sin α cos α tg α 0 - ( ) 0 - ( ) 0 ctg α - ( ) 0 - ( ) 0 - ( ) Wzory redukcyjne φ 90 o - α 90 + α α α α α α sin φ cos α cos α sin α -sin α -cos α -cos α -sin α cos φ sin α -sin α -cos α -cos α -sin α sin α cos α tg φ ctg α -ctg α -tg α tg α ctg α -ctg α -tg α ctg φ tg α -tg α -ctg α ctg α tg α -tg α -ctg α Wzory trygonometryczne Podstawowe wzory sin 2 α + cos 2 α =1 tg α = sin α / cos α ctg α = cos α / sin α jedynka trygonometryczna dla α π/2 + kπ i k C dla α kπ i k C tg α = 1/ ctg α dla α kπ/2 i k C ctg α = 1/ tg α dla α kπ/2 i k C tg α * ctg α = 1 Funkcje trygonometryczne sumy i różnicy kątów sin (α + β) = sin α * cos β + cos α * sin β cos (α + β) = cos α *cos β sinα * sin β tg (α + β) = (tg α + tgβ) / (1 tgα * tgβ) ctg (α + β) = ( ctg α * ctg β - 1) / (ctg α + ctg β) sin (α - β) = sin α * cos β cos α * sin β cos (α - β) = cos α * cos β + sin α * sin β tg (α - β) = (tg α tg β) / (1 + tg α * tg β) ctg(α-β) = (ctg α * ctgβ + 1) / (ctg β ctg α)

10 Funkcje trygonometryczne kąta podwojonego sin2α = 2* sin α * cosα = 2*tgα / (1+tg 2 α) cos2α = cos 2 α - sin 2 α = 1-2*sin 2 α = (1-tg 2 α)/(1+tg 2 α) tg2α = 2* tgα / (1 - tg 2 α) = 2/(ctgα tgα) ctg2α = (ctg 2 α -1/(2*ctgα) = (ctgα tgα).2 Funkcje trygonometryczne połowy kąta sin(α/2) = ± ((1-cosα)/2) cos(α/2) = ± ((1+cosα)/2) α/2) tg(α/2) = ±(1-cosα)/sinα = sinα/(1+cosα) = (1-cosα)/sinα ctg(α/2) =± (1+cosα)/sinα = (1+cosα)/sinα = sinα/(1-cosα) (bierzemy znak + lub - w zależności od tego, do której ćwiartki należy Sumy funkcji trygonometrycznych sinα+sinβ = 2 * sin((α+β)/2) * cos(α-β)/2) cosα+cosβ = 2*cos((α+β)/2) * cos(α-β)/2) tgα+tgβ = sin(α+β) / (cosα*cosβ) ctgα+ctgβ = sin(α+β) / (sinα*sinβ) Różnice funkcji trygonometrycznych sinα - sinβ = 2 * sin((α-β)/2) * cos(α+β)/2) cosα - cosβ = -2*sin((α-β)/2) * sin(α+β)/2) tgα - tgβ = sin(α-β) / (cosα*cosβ) ctgα - ctgβ = sin(β-α) / (sinα*sinβ) Parzystość i nieparzystość funkcji cos(-x) = cos(x) sin(-x) = -sin(x) tg(-x) = -tg(x) ctg(-x) = -ct(x) Miara łukowa kata długość łuku wyciętego przez kąt o promieniu 1 i środku w wierzchołku kąta

11 Miarą łukową kąta środkowego nazywamy liczbę α, równą stosunkowi długości łuku L okręgu, na którym jest oparty ten kąt, do długości promienia r tego okręgu, czyli α = l / r Jeśli r = 1 to α = L / 1 = L Miara łukowa kąta miara kąta wyrażona przez stosunek długości łuku okręgu opartego na tym kącie do długości promienia okręgu Gdzie α rozpatrywany kąt,

12 l długość łuku, r promień okręgu, którego wycinkiem jest łuk. Jednostką miary łukowej kąta jest radian (1 rad). Radian miara kata środkowego opartego na łuku równym promieniowi r okręgu Wymiarem radiana jest jedność [rad] = 1 1 rad = 180º / π =~ 57 o 17 44,81 Zamiana kątów α = α [rad] = α [ o ] * π / 180 o α [ o ] = α * 180 o / π Wykresy funkcji trygonometrycznych: sin(x), cos(x), tg(x), cos(x) Sinusoida Dziedzina : D f = R Zbiór wartości: Y f = [-1; 1] Miejsca zerowe: f(x) = 0 dla x = k* π, k C Funkcja nieparzysta: cos(-x) = cos(x) Funkcja okresowa o okresie T=2π = 360 o Funkcja rośnie w przedziałach (-π/2 + 2kπ, 3/2*π + 2kπ), k C Punkt O = (0, 0) jest środkiem symetrii sinusoidy sin(-x) = - sin(x) Liczba 2π jest okresem podstawowym funkcji sinus, czyli sin (x + 2kπ) = sin(x), gdy x <0, 2π ) i k C

13 Cosinusoida Dziedzina : D f = R Zbiór wartości: Y f = [-1; 1] Miejsca zerowe: f(x) = 0 dla x = π/2 + k* π, k C Funkcja parzysta: cos(-x) = cos(x) Funkcja okresowa o okresie podstawowym T=2π = 360 o Funkcja rośnie w przedziałach (π + 2k π, 2π + 2kπ), k C Funkcja maleje w przedziałach (2k π, π + 2kπ), k C Oś y jest osią symetrii cosinusoidy, czyli cos(-x) = cos (x) Liczba 2π jest okresem podstawowym funkcji cosinus, czyli cos (x + 2kπ) = cos(x), gdy x <0, 2π ) i k C Tangensoida Dziedzina : D f = R \ {x: x = π/2 + k* π, k C}

14 Zbiór wartości: R Miejsca zerowe: f(x) = 0 dla x = k* π, k C Funkcja nieparzysta: tg(-x) = -tg(x) Funkcja okresowa o okresie T = π = 180 o Funkcja jest przedziałami mononiczna, rośnie przedziałami w (-π/2 + kπ, π/2 +kπ) k C Funkcja tangens nie jest określona gdy x = π/2 + k * π, gdzie k k C Funkcja nie jest różnowartościowa Liczba π jest okresem podstawowym funkcji tangens, czyli tg (x + kπ) = tg(x), gdy x (-π/2, π/2 ) i k C Cotangensoida Dziedzina : Df = R \ {x: x = k* π, k C} Zbiór wartości: R Miejsca zerowe: f(x) = 0 dla x = π/2 + k* π, k C Funkcja nieparzysta: ctg(-x) = -ctg(x) Funkcja okresowa o okresie podstawowym T = π = 180 o Funkcja maleje przedziałami w (kπ, π+kπ) k C Funkcja nieparzysta Funkcja nie jest różnowartościowa

15 Zależności między funkcjami trygonometrycznymi Pole trójkąta gdy dane 2 boki i kąt między nimi

16 Rodzaje kątów, miara łukowa Obliczenie długości łuku Ł/(2 πr) = α o /360 o Ł = πrα/180 o = α o / (180/π) * r = α o *(π / 180) * r = α ł * r

17 Miara łukowa kąta Miarą łukową kąta środkowego nazywamy liczbę α, równą stosunkowi długości łuku L okręgu, na którym jest oparty ten kąt, do długości promienia r tego okręgu, czyli α = l / r Jednostką miary łukowej kąta jest radian (1 rad). Radian miara kata środkowego opartego na łuku równym promieniowi r okręgu rad symbol radiana 1 rad = 180º / π =~ 57 o 17 44,81 = 200[grad]/ π = Kąt ma miarę 1 radiana (1 rad), jeśli łuk wyznaczony przez ten kąt na okręgu jednostkowym ma długość 1 Zamiana katów z miary stopniowej na łukową i odwrotnie α = α [rad] = α [ o ] * π / 180 o α [ o ] = α * 180 o / π Wyprowadzenie wzorów na zamianę kątów α o / 360º = α /(2* π) α o / 180º = α / π α o kąt w stopniach, α kat w mierze łukowej

18 α o = α * (180 o / π) = α * ρ o =~ α * 57, o α = α o * (π/180º) = α o / ρ o = α o / 57, o 1 rad = 180º / π =~ 57 o 17 44,81 1 o = π / 180 o 2π [rad] = 360º π [rad] = 180º π/2 [rad] = 90º π/3 [rad] = 60º π/4 [rad] = 45º π/6 [rad] = 30º α [grad] = α * 200/ π = α * α = α [grad]* π / 200 = α [grad]* Miara stopniowa 360 o 180 o 90 o 60 o 45 o 30 o Miara gradowa 400 g 200 g 100 g 66,(6) 50 g 33,(3) g Miara łukowa 2π π π/2 π/3 π /4 π/6 Kąt jako miara obrotu Jeśli określimy kolejność ramion kąta α, czyli wyróżnimy ramię początkowe i końcowe, to kąt taki nazywamy skierowanym. Kąt skierowany oznaczamy łukiem zakończonym strzałką. Kąt skierowany wskazany łukiem o zwrocie przeciwnym do ruchu wskazówek zegara nazywamy kątem skierowanym dodatnio. Kąt skierowany wskazany łukiem o zwrocie zgodnym z ruchem wskazówek zegara jest kątem skierowanym ujemnie.

19 Miarę każdego kąta skierowanego można przedstawić w postaci: k* α, gdzie 0 0 <= α < k jest pewną ustaloną liczbą całkowitą k*2π + α, gdzie 0 <= α < 2π czyli α < 0; 2π) i k jest ustaloną liczbą całkowitą Miara α jest nazywana miarą główną kąta skierowanego. Jeżeli ramiona kątów skierowanych się pokrywają, to ich miary główne są równe. Kąty przeciwne to kąty, których miary są liczbami przeciwnymi. Kąty w ćwiartkach układu współrzędnych Ćwiartka I II III IV Kąt w stopniach 0 o < α < 90 o 90 o < α < 180 o 180 o < α < 270 o 270 o < α < 360 o Kąt w radianach 0 < α < π/2 π/2 < α < π π < α < 3/2 *π 3/2*π < α < 2 *π Kąt w gradach 0 g < α < 100 g 100 g < α < 200 g 200 g < α < 300 g 300 g < α < 400 g Funkcje trygonometryczne dowolnego kąta sin α = y/r cos α = x/r

20 tg α = y/x x 0 ctg α = x/y y 0 ctg α = 1/ (y/x) = 1/tg α x 0, y 0 Wyznaczenie współrzędnych punktu i narysowanie końcowego ramienia kata Jeśli punkt P leży na końcowym ramieniu kata α i jego promień wodzący jest równy 1 to P = (1*cos α, 1*sin α) = (cos α, sin α) Wyznaczenie punktu P i kąta α, gdy dany jest kąt α. - nanosimy wartości współrzędnych punktu P: x P = cos α oraz y P = sin α i kreślimy ramię kąta OP α = 30 o cos α = 3/2 ~= 0,8660 = x P sin α = 1/2 = y p Wyznaczenie ramienia kąta α, gdy dany jest tg α tg α = y/x = t/1 = 2t/2 = 3t/3 itd. Przyjmujemy za współrzędne punktu P wartości (t, 1) lub (2t, 2) itp. Wyznaczamy punkty na podstawie współrzędnych i rysujemy ramię kata OP Przykład: dany tg α = 4

21 tg α = -4 = y/x = -4/1 = -1/4 Przyjmujemy P1 = A = (1, -4) lub P2 = B = (-1, 4) α = 104,04 o lub α = o Gdy dany jest tg α w postaci a/b to można przyjąć za x wartość b, a za y wartość a lub ich wielokrotności. Dany cos α Przykład: cos α = -2/3 Dany sin α

22 Przykład: sin α = -1/3 sin α = -1/3 = y/r y/r = -1/3 = -2/6 Przyjmujemy: y = -1, r = 3 α1 = o α2 = 340,52 o Wartości funkcji trygonometrycznych wielokrotności kata π/2 0 o 90 o = π/2 180 o =π 270 o =3/2*π =2 sin α cos α tg α 0 (nie istnieje) 0 (nie istnieje) 0 ctg α = 1/tg α (nie istnieje) 0 (nie istnieje) 0 (nie istnieje) Znaki wartości funkcji trygonometrycznych dowolnego kąta Punkt P = (x, y) leży w ćwiartce: I gdy x >0 i y > 0 sin α > 0, cos α > 0, tg α > 0, ctg α > 0 II gdy x < 0 i y > 0 sin α > 0, cos α < 0, tg α < 0, ctg α < 0 III gdy x < 0 i y > 0 sin α < 0, cos α < 0, tg α > 0, ctg α > 0 IV gdy x > 0 i y < 0 sin α < 0, cos α > 0, tg α < 0, ctg α < 0 Parzystość funkcji trygonometrycznych Funkcje nieparzyste: sinus, tangens i cotangens Funkcja parzysta: cosinus sin (-α) = -sin α cos (-α) = cos α tg (-α) = -tg α ctg (-α) = -ctg α

23 Wzory redukcyjne sin (180 o α) = sin α sin (π α) = sin α II ćwiartka cos (180 o α) = -cos α cos (π α) = -sin α tg (180 o α) = -tg α tg (π α) = - sin α ctg (180 o α) = -ctg α ctg (π α) = tg α sin (180 o + α) = -sin α = π III ćwiartka cos (180 o + α) = -cos α tg (180 o + α) = tg α ctg (180 o + α) = ctg α sin (360 o - α) = -sin α π = IV ćwiartka cos (360 o - α) = cos α tg (360 o - α) = -tg α ctg (360 o - α) = -ctg α sin (90 o - α) = cos α 90 0 = π/2 cos (90 o - α) = sin α tg (90 o - α) = ctg α = 1/ (tg α) ctg (90 o - α) = tg α Analogicznie dla funkcji 90º + α oraz α funkcje zmieniają się w kofunkcje (sin cos, tg ctg) W osi x (0, 180, 360) we wzorach redukcyjnych funkcje się nie zmieniają w kofunkcje, a ewentualnie zmieniają się znaki, w zależności od ćwiartek. W osy y (90 0, ) we wzorach redukcyjnych funkcje zmieniają się w kofunkcje, z uwzględnieniem znaków w zależności od ćwiartki układu współrzędnych. Okresowość funkcji trygonometrycznych sin (k*360 o + α) = sin α cos (k*360 o + α) = cos α k C tg (k*180 o + α) = tg α ctg (k*180 o + α) = ctg α sin (k*2π + α) = sin α cos (k*2π + α) = cos α tg (k*π + α) = tg α ctg (k*π + α) = ctg α Liczbę 360 o = 2π dla funkcji sinus i cosinus nazywa się okresem podstawowym tych funkcji. Liczbę 180 o = π dla funkcji tangens i cotangens nazywa się okresem podstawowym tych funkcji. Okres podstawowy funkcji najmniejsza dodatnia liczba, która dodana do (odjęta od) argumentu funkcji nie zmienia jej wartości, np. sin 1000 o = sin 640 o = sin = sin (-80 0 ) Związki między funkcjami trygonometrycznymi tego samego kąta sin 2 α + cos 2 α = 1 - jedynka trygonometryczna tg α = sin α / cos α, gdy cos α 0 ctg α = 1/(tg α = (cos α) / (sin α), gdy sin α 0

24 Tożsamość trygonometryczna każde równanie wyrażające zależności między funkcjami trygonometrycznymi zachodzące dla wszystkich katów, dla których wartości tych funkcji istnieją. Funkcje trygonometryczne sumy i różnicy kątów sin (α + β) = sin α * cos β + cos α * sin β cos (α + β) = cos α * cos β sinα * sin β sin (α - β) = sin α * cos β cosα * sin β cos (α - β) = cos α * cos β + sinα * sin β tg (α + β) = (tg α + tg β) / (1 tg α * tg β) ctg (α + β) = (ctg α * ctg β - 1) / (ctg α + ctg β) tg (α - β) = (tg α tg β) / (1 + tg α * tg β) ctg (α - β) = (ctg α * ctg β + 1) / (ctg β ctg α) cos 2 α = cos 2 α sin 2 α cos 2 α = 2 cos 2 α 1 cos 2 α = 1 sin 2 α sin 2 α = 2 * sin α * cos α tg 2 α = 2*tg α / (1 tg 2 α), gdy cos α 0 i cos 2 α 0 Suma i różnica funkcji trygonometrycznych sin α + sin β = 2 * sin (α + β) /2 * cos (α β) /2 cos α + cos β = 2 * cos (α + β) /2 * cos (α β) /2 sin α - sin β = 2 * sin (α - β) /2 * cos (α + β) /2 cos α - cos β = 2 * sin (α + β) /2 * sin (α β) /2 Przekształcanie funkcji trygonometrycznych g(x) = - f(x) - symetria względem osi x Np. Wykres y = -sin(x) powstaje przez odbicie względem osi x wykresu funkcji y = sin(x)

25 y = f(x) + q przesunięcie o q jednostek w górę czyli o wektor [0, q] Np. Wykres y = sin(x) + 1 powstaje przez przesunięcie o 1 do góry wykresu y = sin(x) y = k*f(x) do wykresu funkcji należą punkty (x, k*f(x) - rozciągnięcie lub ściągnięcie funkcji y = f(x) w pionie, zgodnie ze współczynnikiem k Gdy k > 1 rozciągnięcie, k < 1 ściągnięcie Np. Wykres y = 2*cos(x) rozciągnięcie w pionie wykresu y = cos(x) o mnożnik 2 y = -2*sin(x)

26 y = g (k*x) Do wykresu funkcji y należą punkty (1/k *x, f(x) y = cos( ½ * x) - wykres rozszerzony po osi x 1 stosunku (1 : ½ = 2) y = sin(2*x) wykres ścieśniony w kierunku poziomym po osi x w stosunku 1:2 y = f(x-p) przesunięcie funkcji f(x) o wektor [p. 0] y = f(x+p) przesunięcie funkcji f(x) o wektor [-p. 0] Np. y = cos(x-π) - wykres przesunięty o π w prawo wektor [0, π]

27 Wykres funkcji y = 2*cos( x + π/2) - przesunięcie wykresu funkcji y = 2*cos(x) o π/2 w lewo (wektor [0, -π/2

28 y = 2*cos( x + π/2) - wykres cos(x), Wykres funkcji ½*tgx -2 - tgx, ½*tg x, ½*tg x - 2

29 Wykres funkcji 3*sin(x) -1 Równania trygonometryczne Równanie trygonometryczne równanie, w którym niewiadoma występuje wyłącznie pod znakiem funkcji trygonometrycznych Przykłady równań trygonometrycznych: sin(x) = 0,5, sin(x) = 3 / 2 sin x + cos x = 1, sin(3x) = cos(5x) tg 2 x + cos x = 1 Natomiast równania typu: x + cos x = 0 2x - ctg x + sin x = 1 nie są równaniami trygonometrycznymi. Rozwiązując równania trygonometryczne, staramy się je doprowadzić do równań elementarnych (tzn. bardzo podstawowych) postaci, np. sin x = a

30 Rozwiązania równania sin x = a, gdy a <=1; 1> Rozwiązaniami podstawowymi są pierwiastki, które należą do dowolnego przedziału o długości 2π Jeśli x 0 jest jednym z rozwiązań podstawowych równania: sin x = a i x <0; 2 π>, to drugim rozwiązaniem jest π x 0 sin x 0 = sin (π x 0) = a Rozwiązaniami podstawowymi są więc: x 1 = x 0, x 2 = π x 1 Rozwiązania ogólne: x1 = x 1 + 2kπ; x2 = x 2 + 2kπ; Jeżeli a = 0, to sin x = a ma 3 rozwiązania: x 1 = 0, x 2 = π, x 3 = 2π Rozwiązanie ogólne: x = k*π Rozwiązania równania cos x = a, gdy a <=1; 1> Rozwiązaniami podstawowymi są pierwiastki, które należą do dowolnego przedziału o długości 2π Jeśli x 0 jest jednym z rozwiązań podstawowych równania: cos x = a i x <0; 2 π>, to drugim rozwiązaniem jest x 0 cos x 0 = sin ( x 0) = a Rozwiązaniami podstawowymi są więc: x 1 = x 0, x 2 = -x 1 Rozwiązania ogólne: x1 = x 1 + 2kπ; x2 = x 2 + 2kπ; Jeżeli a = 0, to cos x = a ma 2 podstawowe rozwiązania: x 1 = π/2, x 2 = 3/2 * π Rozwiązanie ogólne: x = π/2 + k*π sin α = sin β, gdy α = β + 2kπ lub α = π β + 2kπ; β = x 0, π β = π x 0 cos x 0 = cos (-x 0) cos α = cos β, gdy α = β + 2kπ lub α = - β + 2kπ; Rozwiązanie równania tg x = a, gdzie a R tg x = a, gdzie a R oraz x (-π/2; π/2) jest spełnione i ma rozwiązanie podstawowe, gdy x = x 0 tg x = a, gdzie a R oraz x R jest spełnione, gdy x = x 0 + k π, gdzie k C

31 Rozwiązanie ogólne: x = x 0 + k π, gdzie k C

Funkcje trygonometryczne

Funkcje trygonometryczne Funkcje trygonometryczne Sinus kąta ostrego α stosunek długości przyprostokątnej leżącej naprzeciw kąta α do długości przeciwprostokątnej: sin α = a : c = a/c Cosinus kąta ostrego α stosunek długości przyprostokątnej

Bardziej szczegółowo

Funkcje trygonometryczne

Funkcje trygonometryczne Funkcje trygonometryczne Wartości funkcji trygonometrycznych kątów 30 o, 45 o, 60 o Kąt α [ o ] 30 o 45 o 60 o sin α ½ 2 / 2 3 / 2 cos α 3 / 2 2 / 2 ½ tg α 3 / 3 1 3 ctg α 3 1 3 / 3 Związki między funkcjami

Bardziej szczegółowo

MATEMATYKA 8. Funkcje trygonometryczne kąta ostrego (α < 90 ). Stosunki długości boków trójkąta prostokątnego nazywamy funkcjami trygonometrycznymi.

MATEMATYKA 8. Funkcje trygonometryczne kąta ostrego (α < 90 ). Stosunki długości boków trójkąta prostokątnego nazywamy funkcjami trygonometrycznymi. INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 017/018 www.medicus.edu.pl tel. 501 38 39 55 MATEMATYKA 8 FUNKCJE TRYGONOMETRYCZNE. Funkcje trygonometryczne kąta ostrego

Bardziej szczegółowo

TRYGONOMETRIA. 1. Definicje i własności funkcji trygonometrycznych

TRYGONOMETRIA. 1. Definicje i własności funkcji trygonometrycznych TRYGONOMETRIA. Definicje i własności funkcji trygonometrycznych Funkcje trygonometryczne kąta ostrego można zdefiniować przy użyciu trójkąta prostokątnego: c a α b DEFINICJA. Sinusem kąta ostrego α w trójkącie

Bardziej szczegółowo

Funkcje trygonometryczne. XX LO (wrzesień 2016) Matematyka elementarna Temat #5 1 / 14

Funkcje trygonometryczne. XX LO (wrzesień 2016) Matematyka elementarna Temat #5 1 / 14 XX LO (wrzesień 2016) Matematyka elementarna Temat #5 1 / 14 Miara kąta Miara kąta kąt mierzymy od ramienia początkowego do końcowego w kierunku przeciwnym do ruchu wskazówek zegara (α > 0) kąt zgodny

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

8. TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO.

8. TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO. WYKŁAD 6 1 8. TRYGONOMETRIA. 8.1. FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO. SINUSEM kąta nazywamy stosunek przyprostokątnej leżącej naprzeciw kąta do przeciwprostokątnej w trójkącie prostokątnym : =. COSINUSEM

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era

Bardziej szczegółowo

TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA SKIEROWANEGO

TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA SKIEROWANEGO TRYGONOMETRIA Trygonometria to dział matematyki, którego przedmiotem badań są związki między bokami i kątami trójkątów oraz tzw. funkcje trygonometryczne. Trygonometria powstała i rozwinęła się głównie

Bardziej szczegółowo

Funkcje trygonometryczne

Funkcje trygonometryczne Funkcje trygonometryczne Piotr Rzonsowski Teoria Definicja. Sinusem kąta ostrego α nazywamy stosunek przyprostokątnej leżącej naprzeciw kąta α do przeciwprostokątnej sin α = b c. Cosinusem kąta ostrego

Bardziej szczegółowo

Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x.

Blok III: Funkcje elementarne. e) y = 1 3 x. f) y = x. g) y = 2x. h) y = 3x. c) y = 3x + 2. d) y = x 3. c) y = x. d) y = x. Blok III: Funkcje elementarne III. Narysuj wykres funkcji: a) y = x y = x y = x y = x III. Narysuj wykres funkcji: a) y = x + y = 4 x III. Znajdź miejsca zerowe funkcji: a) y = 6 x y = x e) y = x f) y

Bardziej szczegółowo

Funkcje trygonometryczne

Funkcje trygonometryczne Funkcje trygonometryczne Piotr Rzonsowski Teoria Definicja. Sinusem kąta ostrego nazywamy stosunek przyprostokątnej leżącej naprzeciw kąta do przeciwprostokątnej sin = b c. Cosinusem kąta ostrego nazywamy

Bardziej szczegółowo

Funkcje trygonometryczne w trójkącie prostokątnym

Funkcje trygonometryczne w trójkącie prostokątnym Funkcje trygonometryczne w trójkącie prostokątnym Oznaczenia boków i kątów trójkąta prostokątnego użyte w definicjach Sinus Sinusem kąta ostrego w trójkącie prostokątnym nazywamy stosunek przyprostokątnej

Bardziej szczegółowo

1. Wyznacz długości boków trójkąta prostokątnego ABC oraz wartości funkcji trygonometrycznych kąta CABmającdane sin (CAB) = 4 5i BC = 2.

1. Wyznacz długości boków trójkąta prostokątnego ABC oraz wartości funkcji trygonometrycznych kąta CABmającdane sin (CAB) = 4 5i BC = 2. Funkcje trygonometryczne. Wyznacz długości boków trójkąta prostokątnego ABC oraz wartości funkcji trygonometrycznych kąta CABmającdane sin (CAB) = 4 5i BC =..Rozwiążtrójkątprostokatnymającdaneprzyprostokątne

Bardziej szczegółowo

Repetytorium z matematyki ćwiczenia

Repetytorium z matematyki ćwiczenia Spis treści 1 Liczby rzeczywiste 1 2 Geometria analityczna. Prosta w układzie kartezjańskim Oxy 4 3 Krzywe drugiego stopnia na płaszczyźnie kartezjańskiej 6 4 Dziedzina i wartości funkcji 8 5 Funkcja liniowa

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

Indukcja matematyczna

Indukcja matematyczna Indukcja matematyczna Zadanie. Zapisać, używając symboli i, następujące wyrażenia (a) n!; (b) sin() + sin() sin() +... + sin() sin()... sin(n); (c) ( + )( + /)( + / + /)... ( + / + / +... + /R). Zadanie.

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach

Bardziej szczegółowo

7. Funkcje elementarne i ich własności.

7. Funkcje elementarne i ich własności. Misztal Aleksandra, Herman Monika 7. Funkcje elementarne i ich własności. Definicja funkcji elementarnej Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe, np. wykładnicze logarytmiczne

Bardziej szczegółowo

1 Funkcje elementarne

1 Funkcje elementarne 1 Funkcje elementarne Funkcje elementarne, które będziemy rozważać to: x a, a x, log a (x), sin(x), cos(x), tan(x), cot(x), arcsin(x), arccos(x), arctan(x), arc ctg(x). 1.1 Funkcje x a. a > 0, oraz a N

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

Wykład 5. Informatyka Stosowana. 7 listopada Informatyka Stosowana Wykład 5 7 listopada / 28

Wykład 5. Informatyka Stosowana. 7 listopada Informatyka Stosowana Wykład 5 7 listopada / 28 Wykład 5 Informatyka Stosowana 7 listopada 2016 Informatyka Stosowana Wykład 5 7 listopada 2016 1 / 28 Definicja (Złożenie funkcji) Niech X, Y, Z, W - podzbiory R. Niech f : X Y, g : Z W, Y Z. Złożeniem

Bardziej szczegółowo

Trigonometria. Funkcje trygonometryczne

Trigonometria. Funkcje trygonometryczne 1 Trigonometria. Funkcje trygonometryczne Trigonometria to wiedza o zwi azkach miarowych pomiedzy bokami i k atami trójk atów. Takie znaczenie s lowa Trigonometria by lo używane w czasach starożytnych

Bardziej szczegółowo

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008

(a 1 2 + b 1 2); : ( b a + b ab 2 + c ). : a2 2ab+b 2. Politechnika Białostocka KATEDRA MATEMATYKI. Zajęcia fakultatywne z matematyki 2008 Zajęcia fakultatywne z matematyki 008 WYRAŻENIA ARYTMETYCZNE I ALGEBRAICZNE. Wylicz b z równania a) ba + a = + b; b) a = b ; b+a c) a b = b ; d) a +ab =. a b. Oblicz a) [ 4 (0, 5) ] + ; b) 5 5 5 5+ 5 5

Bardziej szczegółowo

Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa.

Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa. Funkcje - monotoniczność, różnowartościowość, funkcje parzyste, nieparzyste, okresowe. Funkcja liniowa. Monotoniczność i różnowartościowość. Definicja 1 Niech f : X R, X R. Funkcję f nazywamy rosnącą w

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi. Podanie dziedziny funkcji f:

Bardziej szczegółowo

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II

ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II ZAGADNIENIA PROGRAMOWE I WYMAGANIA EDUKACYJNE DO TESTU PRZYROSTU KOMPETENCJI Z MATEMATYKI DLA UCZNIA KLASY II POZIOM ROZSZERZONY Równania i nierówności z wartością bezwzględną. rozwiązuje równania i nierówności

Bardziej szczegółowo

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

PRÓBNA MATURA ZADANIA PRZYKŁADOWE ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA 3, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0,3 C. 30. D. 0 5% 6 II sposób: x nieznana liczba

Bardziej szczegółowo

Wymagania edukacyjne z matematyki klasa IV technikum

Wymagania edukacyjne z matematyki klasa IV technikum Wymagania edukacyjne z matematyki klasa IV technikum Poziom rozszerzony Obowiązują wymagania z zakresu podstawowego oraz dodatkowo: FUNKCJE TRYGONOMETRYCZNE zaznacza kąt w układzie współrzędnych, wskazuje

Bardziej szczegółowo

Jolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r.

Jolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r. Jolanta Pająk Wymagania edukacyjne matematyka w zakresie rozszerzonym w klasie 2f 2018/2019r. Ocena dopuszczająca: Temat lekcji Stopień i współczynniki wielomianu Dodawanie i odejmowanie wielomianów Mnożenie

Bardziej szczegółowo

Wykład 5. Informatyka Stosowana. 6 listopada Informatyka Stosowana Wykład 5 6 listopada / 28

Wykład 5. Informatyka Stosowana. 6 listopada Informatyka Stosowana Wykład 5 6 listopada / 28 Wykład 5 Informatyka Stosowana 6 listopada 2017 Informatyka Stosowana Wykład 5 6 listopada 2017 1 / 28 Definicja (Funkcja odwrotna) Niech f : X Y będzie różnowartościowa na swojej dziedzinie. Funkcja odwrotna

Bardziej szczegółowo

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres

Bardziej szczegółowo

MATeMAtyka 3. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Zakres podstawowy i rozszerzony

MATeMAtyka 3. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony. Zakres podstawowy i rozszerzony MATeMAtyka 3 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania programowe: konieczne

Bardziej szczegółowo

< > Sprawdzić prawdziwość poniższych zdań logicznych (odpowiedź uzasadnić) oraz podać ich zaprzeczenia:

< > Sprawdzić prawdziwość poniższych zdań logicznych (odpowiedź uzasadnić) oraz podać ich zaprzeczenia: Zadania na zajęcia z przedmiotu Repetytorium z matematyki elementarnej, GiK, 06/7 Zdania logiczne Funkcje zdaniowe i kwantyfikatory Ocenić wartość logiczną zdania (odpowiedź uzasadnić): < Nieprawda, że

Bardziej szczegółowo

BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA

BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA BAZA ZADAŃ KLASA 2 TECHNIKUM FUNKCJA KWADRATOWA 1. Podaj zbiór wartości i monotoniczność funkcji: b) c) j) k) l) wskazówka: - oblicz wierzchołek (bez miejsc zerowych!) i naszkicuj wykres (zwróć uwagę na

Bardziej szczegółowo

Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM

Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM Zespól Szkół Ogólnokształcących i Zawodowych w Ciechanowcu 23 czerwca 2017r. Wymagania na egzamin poprawkowy z matematyki z zakresu klasy drugiej TECHNIKUM Strona 1 z 9 1. Geometria płaska trójkąty zna

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era

Bardziej szczegółowo

Część całkowita i ułamkowa, funkcje trygonometryczne, podstawowe własności funkcji

Część całkowita i ułamkowa, funkcje trygonometryczne, podstawowe własności funkcji Sprawdzian nr 2: 25..204, godz. 8:5-8:40 (materiał zad. -48) Sprawdzian nr 3: 9.2.204, godz. 8:5-8:40 (materiał zad. -88) Część całkowita i ułamkowa, funkcje trygonometryczne, podstawowe własności funkcji

Bardziej szczegółowo

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

PRÓBNA MATURA ZADANIA PRZYKŁADOWE ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0, C. 0. D. 0 5% 6 II sposób: x nieznana liczba

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO PLAN WYNIKOWY Z MATEMATYKI DLA KLASY IV TECHNIKUM 5 - LETNIEGO Lp. Temat lekcji Umiejętności Podstawowe Ponadpodstawowe I Granica i pochodna funkcji. Uczeń: Uczeń: 1 Powtórzenie wiadomości o granicy ciągu,

Bardziej szczegółowo

ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN

ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN ODLEGŁOŚĆ NA PŁASZCZYŹNIE - SPRAWDZIAN Gr. 1 Zad. 1. Dane są punkty: P = (-, 1), R = (5, -1), S = (, 3). a) Oblicz odległość między punktami R i S. b) Wyznacz współrzędne środka odcinka PR. c) Napisz równanie

Bardziej szczegółowo

Zadania do samodzielnego rozwiązania zestaw 11

Zadania do samodzielnego rozwiązania zestaw 11 Zadania do samodzielnego rozwiązania zestaw 11 1 Podać definicję pochodnej funkcji w punkcie, a następnie korzystając z tej definicji obliczyć ( ) π (a) f, jeśli f(x) = cos x, (e) f (0), jeśli f(x) = 4

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie rozszerzonym. Klasa 2 1. TRYGONOMETRIA STOPIEŃ UMIEJĘTNOŚCI UCZNIA Dopuszczający Zna i

Bardziej szczegółowo

2 5 C). Bok rombu ma długość: 8 6

2 5 C). Bok rombu ma długość: 8 6 Zadanie 1 W trójkącie prostokątnym o przeciwprostokątnej 6 i przyprostokątnej sinus większego z kątów ostrych ma wartość: C) Zadanie Krótsza przekątna rombu o długości tworzy z bokiem rombu kąt 60 0. Bok

Bardziej szczegółowo

Funkcje. Alina Gleska. Instytut Matematyki, Wydział Elektryczny, Politechnika Poznańska

Funkcje. Alina Gleska. Instytut Matematyki, Wydział Elektryczny, Politechnika Poznańska Dr Instytut Matematyki, Wydział Elektryczny, Politechnika Poznańska Definicja Funkcja f ze zbioru X w zbiór Y nazywamy relację, która każdemu elementowi x X przyporzadkowuje dokładnie jeden element y Y.

Bardziej szczegółowo

KLASA II LO Poziom rozszerzony (wrzesień styczeń)

KLASA II LO Poziom rozszerzony (wrzesień styczeń) KLASA II LO Poziom rozszerzony (wrzesień styczeń) Treści nauczania wymagania szczegółowe: ZAKRES PODSTAWOWY: 1) na podstawie wykresu funkcji y = f(x) szkicuje wykresy funkcji y = f(x), y = c f(x), y =

Bardziej szczegółowo

Funkcje elementarne. Matematyka 1

Funkcje elementarne. Matematyka 1 Funkcje elementarne Matematyka 1 Katarzyna Trąbka-Więcław Funkcjami elementarnymi nazywamy: funkcje wymierne (w tym: wielomiany), wykładnicze, trygonometryczne, odwrotne do wymienionych (w tym: funkcje

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (36 h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P)

1.. FUNKCJE TRYGONOMETRYCZNE Poziom (K) lub (P) Wymagania edukacyjne dla klasy IIIc technik informatyk 1.. FUNKCJE TRYGONOMETRYCZNE rok szkolny 2014/2015 zaznacza kąt w układzie współrzędnych, wskazuje jego ramię początkowe i końcowe wyznacza wartości

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo

Ostatnia aktualizacja: 30 stycznia 2015 r.

Ostatnia aktualizacja: 30 stycznia 2015 r. Ostatnia aktualizacja: 30 stycznia 2015 r. Spis treści 1. Funkcja liniowa 5 2. Funkcja kwadratowa 7 3. Trygonometria 11 4. Ciagi liczbowe 13 5. Wielomiany 15 6. Funkcja wykładnicza 17 7. Funkcja wymierna

Bardziej szczegółowo

? 14. Dana jest funkcja. Naszkicuj jej wykres. Dla jakich argumentów funkcja przyjmuje wartości dodatnie? 15. Dana jest funkcja f x 2 a x

? 14. Dana jest funkcja. Naszkicuj jej wykres. Dla jakich argumentów funkcja przyjmuje wartości dodatnie? 15. Dana jest funkcja f x 2 a x FUNKCE FUNKCJA LINIOWA Sporządź tabelkę i narysuj wykres funkcji ( ) Dla jakich argumentów wartości funkcji są większe od 5 Podaj warunek równoległości prostych Wyznacz równanie prostej równoległej do

Bardziej szczegółowo

Funkcje trygonometryczne. sinus (sin) cosinus (cos) tangens (tg) kotangens (ctg) secans (sec) cosecans (cosec)

Funkcje trygonometryczne. sinus (sin) cosinus (cos) tangens (tg) kotangens (ctg) secans (sec) cosecans (cosec) Matematyka to nauka o naszych wspólnych urojeniach. Ale urojenia jak to urojenia, jak się je nieco usystematyzuje to stają się rzeczywistością. To już druga część słynnego kompendium czyli funkcje trygonometryczne,

Bardziej szczegółowo

Funkcja f jest ograniczona, jeśli jest ona ograniczona z

Funkcja f jest ograniczona, jeśli jest ona ograniczona z FUNKCJE JEDNEJ ZMIENNEJ. PODSTAWOWE POJĘCIA. PODSTAWOWE FUNKCJE ELEMENTARNE R - zbiór liczb rzeczywistych, D R, P R Definicja. Jeżeli każdemu elementowi ze zbioru D jest przyporządkowany dokładnie jeden

Bardziej szczegółowo

Zakres na egzamin poprawkowy w r. szk. 2013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY

Zakres na egzamin poprawkowy w r. szk. 2013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY MATEMATYKA Klasa TMB Zakres na egzamin poprawkowy w r. szk. 013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY (zakres rozszerzony - czcionką pogrubioną) Hasła programowe Wymagania

Bardziej szczegółowo

Skrypt 19. Trygonometria: Opracowanie L3

Skrypt 19. Trygonometria: Opracowanie L3 Projekt Innowacyjny program nauczania matematyki dla liceów ogólnokształcących współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Skrypt 19 Trygonometria: 9. Proste

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria i Gospodarka Wodna w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM

WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM WYMAGANIA I KRYTERIA OCENIANIA Z MATEMATYKI W 3 LETNIM LICEUM OGÓLNOKSZTAŁCĄCYM Klasa pierwsza A, B, C, D, E, G, H zakres podstawowy. LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą jeśli: podaje

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

Funkcją sinus kąta α nazywamy stosunek przyprostokątnej leżącej naprzeciw kąta α do przeciwprostokątnej w trójkącie prostokątnym, i opisujemy jako:

Funkcją sinus kąta α nazywamy stosunek przyprostokątnej leżącej naprzeciw kąta α do przeciwprostokątnej w trójkącie prostokątnym, i opisujemy jako: 1. Trygonometria 1.1Wprowadzenie Jednym z podstawowych działów matematyki który wykorzystywany jest w rozwiązywaniu problemów technicznych jest trygonometria. W szkole średniej wprowadzone zostały podstawowe

Bardziej szczegółowo

Zagadnienia z matematyki dla klasy II oraz przykładowe zadania

Zagadnienia z matematyki dla klasy II oraz przykładowe zadania Zagadnienia z matematyki dla klasy II oraz przykładowe zadania FUNKCJA KWADRATOWA Wykres funkcji f (x) = ax Przesunięcie wykresu funkcji f(x) = ax o wektor Postać kanoniczna i postać ogólna funkcji kwadratowej

Bardziej szczegółowo

Dział I FUNKCJE TRYGONOMETRYCZNE

Dział I FUNKCJE TRYGONOMETRYCZNE MATEMATYKA ZAKRES PODSTAWOWY Rok szkolny 01/013 Klasa: III Nauczyciel: Mirosław Kołomyjski Dział I FUNKCJE TRYGONOMETRYCZNE Lp. Zagadnienie Osiągnięcia ucznia. 1. Miara kąta. Sprawnie operuje pojęciami:

Bardziej szczegółowo

Równania i nierówności trygonometryczne

Równania i nierówności trygonometryczne Równania i nierówności trygonometryczne Piotr Rzonsowski Zadanie 1. Obliczyć równania: Zadania obowiązkowe a) cos x = 1, b) tg x =, c) cos( x + π ) =, d) sin x = 1. Wskazówka: (a) Oblicz cos y = 1 a następnie

Bardziej szczegółowo

=, =, =, = Funkcje trygonometryczne kąta skierowanego określa się wzorami:

=, =, =, = Funkcje trygonometryczne kąta skierowanego określa się wzorami: Matematyka to nauka o naszych wspólnych urojeniach. Ale urojenia jak to urojenia, jak się je nieco usystematyzuje to stają się rzeczywistością. To już druga część słynnego kompendium czyli funkcje trygonometryczne,

Bardziej szczegółowo

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu. ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)

Bardziej szczegółowo

Matematyka ETId I.Gorgol. Funkcja złożona i odwrotna. Funkcje

Matematyka ETId I.Gorgol. Funkcja złożona i odwrotna. Funkcje Funkcja złożona i odwrotna. Funkcje cyklometryczne. Definicja funkcji DEFINICJA Niech dane będa dwa zbiory D i P. Funkcja f : D P nazywamy przyporzadkowanie, które każdemu elementowi ze zbioru D przyporzadkowuje

Bardziej szczegółowo

WYMAGANIA WSTĘPNE Z MATEMATYKI

WYMAGANIA WSTĘPNE Z MATEMATYKI WYMAGANIA WSTĘPNE Z MATEMATYKI Wydział Informatyki, Elektroniki i Telekomunikacji Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie I. ZBIORY I.1. Działania na zbiorach I.2. Relacje między

Bardziej szczegółowo

PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM

PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM PRZYKŁADOWE ZADANIA Z MATEMATYKI NA POZIOMIE PODSTAWOWYM Zad.1. (0-1) Liczba 3 8 3 3 9 2 A. 3 3 Zad.2. (0-1) jest równa: Liczba log24 jest równa: B. 3 32 9 C. 3 4 D. 3 5 A. 2log2 + log20 B. log6 + 2log2

Bardziej szczegółowo

Matematyka I. BJiOR Semestr zimowy 2018/2019 Wykład 2

Matematyka I. BJiOR Semestr zimowy 2018/2019 Wykład 2 Matematyka I BJiOR Semestr zimowy 2018/2019 Wykład 2 Definicja funkcji przypomnienie Definicja Dla danych dwóch niepustych zbiorów X, Y przypisanie każdemu elementowi zbioru X dokładnie jednego elementu

Bardziej szczegółowo

SPRAWDZIAN Z 1. SEMESTRU KLASY 2 ROZSZ

SPRAWDZIAN Z 1. SEMESTRU KLASY 2 ROZSZ www.zadania.info NJWIEKSZY INTERNETOWY ZIÓR ZŃ Z MTEMTYKI SPRWZIN Z 1. SEMESTRU KLSY 2 ROZSZ ZNIE 1 (5 PKT) Funkcja f określona jest wzorem f (x) = (3m 5)x 2 (2m 1)x + 0, 25(3m 5). Wyznacz te wartości

Bardziej szczegółowo

III. Funkcje rzeczywiste

III. Funkcje rzeczywiste . Pojęcia podstawowe Załóżmy, że dane są dwa niepuste zbiory X i Y. Definicja. Jeżeli każdemu elementowi x X przyporządkujemy dokładnie jeden element y Y, to mówimy, że na zbiorze X została określona funkcja

Bardziej szczegółowo

postaci kanonicznej i iloczynowej trójmiany: y = 0,5x 2. Podaj określenie ciągu arytmetycznego. Dany jest ciąg a n

postaci kanonicznej i iloczynowej trójmiany: y = 0,5x 2. Podaj określenie ciągu arytmetycznego. Dany jest ciąg a n Propozycje pytań na maturę ustną ( profil podstawowy ) Elżbieta Kujawińska ZESTAW Podaj wzory na postać kanoniczną i iloczynową funkcji kwadratowej Sprowadź do postaci kanonicznej i iloczynowej trójmiany:

Bardziej szczegółowo

Następnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień.

Następnie przypominamy (dla części studentów wprowadzamy) podstawowe pojęcia opisujące funkcje na poziomie rysunków i objaśnień. Zadanie Należy zacząć od sprawdzenia, co studenci pamiętają ze szkoły średniej na temat funkcji jednej zmiennej. Na początek można narysować kilka krzywych na tle układu współrzędnych (funkcja gładka,

Bardziej szczegółowo

W tym rozdziale przypomnimy wiadomości o funkcjach trygonometrycznych kąta ostrego w trójkącie prostokątnym.

W tym rozdziale przypomnimy wiadomości o funkcjach trygonometrycznych kąta ostrego w trójkącie prostokątnym. ONOMETRYCZNE A B FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO W tym rozdziale przypomnimy wiadomości o funkcjach trygonometrycznych kąta ostrego w trójkącie prostokątnym. 1. Sinusem kąta ostrego w trójkącie prostokątnym

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości

Bardziej szczegółowo

ZDAJ MATMĘ NA MAKSA POZIOM PODSTAWOWY 2018/ : (2 5 ) 5 (0, 5)

ZDAJ MATMĘ NA MAKSA POZIOM PODSTAWOWY 2018/ : (2 5 ) 5 (0, 5) Lista nr 1 LICZBY RZECZYWISTE Zad.1 Udowodnij równość: 5 3 10 27 = 10 3 5 9. Zad.2 Wartość wyrażenia (3 1 3 27 2 3 9 1 ) 3 4 zapisz w postaci pierwiastka z liczby wymiernej. Zad.3 Oblicz wartość wyrażenia:

Bardziej szczegółowo

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY TRZECIEJ M. zakres rozszerzony

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY TRZECIEJ M. zakres rozszerzony WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY TRZECIEJ M. zakres rozszerzony Trygonometria. wie, co to jest miara łukowa kąta; potrafi stosować miarę łukową i stopniową kąta

Bardziej szczegółowo

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY DRUGIEJ M. zakres rozszerzony

WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY DRUGIEJ M. zakres rozszerzony WYMAGANIA Z WIEDZY I UMIEJĘTNOŚCI NA POSZCZEGÓLNE STOPNIE SZKOLNE DLA KLASY DRUGIEJ M. zakres rozszerzony Funkcje i ich własności. -podać przykład funkcji; -rozpoznać funkcję, wskazać jej dziedzinę i zbiór

Bardziej szczegółowo

Definicje funkcji trygonometrycznych kąta ostrego

Definicje funkcji trygonometrycznych kąta ostrego 1 Definicje funkcji trygonometrycznych kąta ostrego Sinusem kąta ostrego w trójkącie prostokątnym nazywamy stosunek długości przyprostokątnej leżącej naprzeciw tego kąta do długości przeciwprostokątnej.

Bardziej szczegółowo

Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność

Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność Kup książkę Poleć książkę Oceń książkę Księgarnia internetowa Lubię to!» Nasza społeczność Spis treści WSTĘP 5 ROZDZIAŁ 1. Matematyka Europejczyka. Program nauczania matematyki w szkołach ponadgimnazjalnych

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1 POZIOM PODSTAWOWY

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1 POZIOM PODSTAWOWY Nr zadania Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Nr Etapy rozwiązania zadania czynności Obliczenie wyróżnika oraz pierwiastków trójmianu

Bardziej szczegółowo

Przykładowy zestaw zadań nr 1 z matematyki Odpowiedzi i schemat punktowania poziom podstawowy ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1

Przykładowy zestaw zadań nr 1 z matematyki Odpowiedzi i schemat punktowania poziom podstawowy ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 1 Nr zadania Nr czynności. Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR Etapy rozwiązania zadania POZIOM PODSTAWOWY Obliczenie wyróżnika oraz pierwiastków trójmianu

Bardziej szczegółowo

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych

Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Krzywe stożkowe Lekcja II: Okrąg i jego opis w różnych układach współrzędnych Wydział Matematyki Politechniki Wrocławskiej Okrąg Okrąg jest szczególną krzywą stożkową. Wyznacza nam koło, które jest podstawą

Bardziej szczegółowo

ZADANIA PRZED EGZAMINEM KLASA I LICEUM

ZADANIA PRZED EGZAMINEM KLASA I LICEUM ZADANIA PRZED EGZAMINEM KLASA I LICEUM + 7. Równanie = 0 : + A. ma tylko jedno rozwiązanie równe 7 B. ma tylko jedno rozwiązania równe 7 C. ma tylko jedno rozwiązanie równe D. nie ma rozwiązań.. Do przedziału,

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie trzeciej zasadniczej szkoły zawodowej

Wymagania edukacyjne z matematyki w klasie trzeciej zasadniczej szkoły zawodowej Wymagania edukacyjne z matematyki w klasie trzeciej zasadniczej szkoły zawodowej Temat ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca Dział I. TRYGONOMETRIA (15 h )

Bardziej szczegółowo

Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii. Trójkąty. Trójkąt dowolny. Wielokąty trygonometria 1.

Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii. Trójkąty. Trójkąt dowolny. Wielokąty trygonometria 1. Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Wielokąt wypukły miara każdego kąt wewnętrznego jest mniejsza od 180 o. Liczba przekątnych: n*(n-2) Suma kątów wewnętrznych wielokąta

Bardziej szczegółowo

Wzory funkcji cyklometrycznych (kołowych)

Wzory funkcji cyklometrycznych (kołowych) Wzory funkcji cyklometrycznych (kołowych) Mateusz Kowalski www.kowalskimateusz.pl 19.07.01 Streszczenie Wzory funkcji cyklometrycznych wraz z wyprowadzeniami. 1 A co to za funkcje? Funkcje cyklometryczne

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 2019

LUBELSKA PRÓBA PRZED MATURĄ 2019 1 MATEMATYKA - poziom podstawowy klasa 1 MAJ 2019 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron. 2. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.

Bardziej szczegółowo

Równania prostych i krzywych; współrzędne punktu

Równania prostych i krzywych; współrzędne punktu Równania prostych i krzywych; współrzędne punktu Zad 1: Na paraboli o równaniu y = 1 x znajdź punkt P leŝący najbliŝej prostej o równaniu x + y = 0 Napisz równanie stycznej do tej paraboli, poprowadzonej

Bardziej szczegółowo

PLAN RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II (zakres rozszerzony)

PLAN RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE II (zakres rozszerzony) DZIAŁ PROGRAMOWY JEDNOSTKA LEKCYJNA 1 Program nauczania: Matematyka z plusem Liczba godzin nauki w tygodniu: 5 Planowana liczba godzin w ciągu roku: 160 PLAN RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W

Bardziej szczegółowo

ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY

ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY Zadanie Wskaż w zbiorze A = Zadanie Usuń niewymierność z wyrażenia,(0); 0,9; ; 0; 8; 0; 0 liczby wymierne 6 Zadanie Rozwiąż nierówność x + > Rozwiązanie

Bardziej szczegółowo

Przygotowanie do poprawki klasa 1li

Przygotowanie do poprawki klasa 1li Zadanie Rozwiąż równanie x 6 5 x 4 Przygotowanie do poprawki klasa li Zadanie Rozwiąż nierówność x 4 x 5 Zadanie Oblicz: a) 9 b) 6 5 c) 64 4 d) 6 0 e) 8 f) 7 5 6 Zadanie 4 Zapisz podane liczby bez znaku

Bardziej szczegółowo

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna Arkusz A01 2 Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba log 1 3 3 27 jest równa:

Bardziej szczegółowo

Dr inż. Janusz Dębiński Mechanika ogólna Wykład 2 Podstawowe wiadomości z matematyki Kalisz

Dr inż. Janusz Dębiński Mechanika ogólna Wykład 2 Podstawowe wiadomości z matematyki Kalisz Dr inż. Janusz Dębiński Mechanika ogólna Wykład 2 Podstawowe wiadomości z matematyki Kalisz Dr inż. Janusz Dębiński 1 2.1. Przestrzeń i płaszczyzna Podstawowe definicje Punkt - najmniejszy bezwymiarowy

Bardziej szczegółowo

Matematyka licea ogólnokształcące, technika

Matematyka licea ogólnokształcące, technika Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem

Bardziej szczegółowo