ROZDZIAŁ VI. STATYKA TARCZ

Wielkość: px
Rozpocząć pokaz od strony:

Download "ROZDZIAŁ VI. STATYKA TARCZ"

Transkrypt

1 ROZDZIAŁ I. STATYKA TARCZ Omawan w poprzdnch rozdzałach onstrc lmnt słżąc do ch modlowana n wnosł poza pwnm porządowanm nc nowgo do mtod oblczń statcznch onstrc prętowch. Mtoda lmntów sończonch st t dn sformalzowanm warantm mtod przmszczń. Dz sę ta z powod prostot onstrc prętowch. Różnczow równana równowag lmntów prętowch (4.6) są na tl prost ż daą sę bz trd scałować. Ścsł rozwązana tch równań mogą bć żwan ao fnc ształt lmntów. Zpłn nacz przdstawa sę staca w stroach powrzchnowch. Cząstow równana różnczow opsąc równowagę tch onstrc maą zamnęt rozwązana tlo dla bardzo prostch zadań. Rozwązana zsan mtodam aprosmacnm (np. przz rozwnęc w szrg) są żmdn wmagaą sporgo naład prac a ft ońcow ta wmaga żca omptra w cl rozwązana ład równań smowana szrgów. t stac mtoda nmrczna tóra załada pwn proszczna na tap tworzna równań równowag lmnt oaz sę o wl bardz ftwna. Dzę tm mtoda lmntów sończonch prznosła ta wl ważnch rzltatów w mchanc ośrodów cągłch. Dosonal wdoczn st to na przładz naprostsz onstrc cągł aą st tarcza. Tarczę zdfnować można ao brłę tór dn wmar (grbość) st dżo mnsz od dwóch pozostałch a powrzchna środowa (powrzchn równolgła do ob zwnętrznch powrzchn tarcz) st płaszczzną. Ta ształt ma tż płta tarczę wróżna sposób obcążna tór ms dzałać w płaszczźn środow (Rs.6.). Rs.6.

2 6.. PŁASKI STAN NAPRĘŻENIA I PŁASKI STAN ODKSZTAŁCENIA Gd płaszczzn boczn tarcz są swobodn a tarcza dostatczn cna można założć ż s = t = t = na cał grbośc tarcz. O ta onstrc mówm ż z z z pan w n płas stan naprężna (P.S.N.). Jst to przblżn (por. [] [7]) tm lpsz m cńsza st tarcza. tarcz cn różn od zra mogą bć węc tlo sładow poazan na Rs.6.. Rs.6. Z względ na smtrę tnsora naprężna sładow stczn t t są sob równ mam węc trz nzalżn sładow naprężna tór zgrpm w wtor naprężna: s = Øs s t. (6.) Zpłn przcwn przpad onstrc o dż grbośc (Rs.6.) moż bć równż analzowan mtodą płasgo stan tm razm st to płas stan odształcna (P.S.O.). Ponważ wmar poprzczn onstrc poazan na Rs.6. nmożlwa dformacę w rn prostopadłm do przro poprzczngo to cna warstwa wcęta z t onstrc znad sę w stan opsanm przz równana: = g = g =. (6.) z z z Z równań tch wna ż s z al prwsz równan pozwala oblczć sładow s z na podstaw dwóch pozostałch sładowch normalnch. Mam węc równan:

3 ( ) s = n s + s (6.3) z tór pozwala ogranczć lość poszwanch sładowch tnsora naprężna do trzch sładowch podanch w równan (6.). Nzalżn sładow tnsora odształcna równż zgrpm w macrz olmnową tórą nazwm wtorm odształcń: Ø = g. (6.4) Mędz wtoram s stn zwąz opswan równanam onstttwnm tórch postać zalż od modl matrał tórm opsm onstrcę. t sążc zamm sę tlo zotropowm matrałam sprężstm a węc podlgaącm praw Hooa węc równan onstttwn możm zapsać następąco: s = D (6.5) gdz D st wadratową macrzą zawraącą stał sprężst matrał a opsaną w rozdz.i. Dla płasgo stan naprężna (P.S.N.) macrz D ma postać (.3). Płas stan odształcna (P.S.O.) wmaga nco nn macrz stałch sprężstch tóra st opsana równanm (.7). 6.. ZIĄZKI GEOMETRYCZNE Dowoln pnt tarcz w czas dformac moż porszać sę tlo po płaszczźn węc wtor przmszczna tgo pnt () ma dw sładow ( ) ( ) = Ø ( ). (6.6) Mędz sładowm wtora przmszczna w wtorm odształcna zachodzą znan zwąz gomtrczn [7]: = = g = + tór można przdstawć w form: =D ( ) (6.8) gdz D st macrzą opratorów różnczowch(.35). (6.7) 3

4 6.3. MACIERZ SZTYNOŚCI ELEMENTU SPRĘŻYSTEGO Podzlm (zdsrtzm) tarczę na lmnt sończon. Omawać będzm w t sążc tlo tarczow lmnt tróątn ta tż lmnt wbrzm w trac dsrtzac (Rs.6.3). Rs.6.3 Ja wdać zgodn z założnm (6.6) węzł lmnt maą dwa stopn swobod sł węzłow równż maą po dw sładow. Loaln ład współrzędnch st wbran ta ż os go są równolgł do os ład globalngo nstotn st węc rozróżnan sładowch loalnch globalnch wtorów macrz. Przmszczna sł węzłow pogrpm traz w wtor: przmszczń węzłów lmnt = Ø = Ø sł węzłowch sł lmnt f = Ø f = Ø f = Ø = Ø f Ø = Øf = f f Ø = Ø =. (6.9) (6.) 4

5 Ponważ poszm zalżnośc mędz wtoram sł przmszczń węzłowch lmnt zastosm zasadę prac wrtaln (por. rozdz.i) tóra wmaga podana zwąz mędz przmszcznam pntów lżącch wwnątrz lmnt a przmszcznam węzłów. Godząc sę na błęd wnaąc z aprosmac załadam ż zalżność ta moż bć opsana fncam dwóch zmnnch: ( ) = N ( ) + N ( ) + N ( ) oraz ( ) = N ( ) + N ( ) + N ( ) (6.) lb w zwart macrzow form: ( ) = N ( ) (6.) gdz N () st macrzą fnc ształt lmnt: [ ] N ( ) = N ( ) I N ( ) I N ( ) I (6.3) a N () N () N () fncam ształt dla węzłów. Założm traz naprostszą z możlwch postac fnc ształt dla węzła N ( ) = a + b + c (6.4) gdz a b c - są stałm tór wznaczm z warnów zgodnośc N ( ) = N ( ) = N ( ) =. (6.5) Ø Po podstawn tch warnów do równana (6.4) otrzmam ład równań Øa Ø b = (6.6) c tór po rozwązan da wartośc współcznnów fnc ształt. Równan (6.6) można zapsać taż w ogóln postac: Ød M a = d gdz d = d d 3 (6.7) tóra po modfac polgaąc na zman nds na lb pozwala wznaczć współcznn fnc ształt następnch węzłów. równan tm d - oznacza dltę Kroncra. Rozwążm ład równań (6.6) mtodą Cramra 5

6 6 = = = - + dt M a = = b = = - = - c = = = - czl a a = b b = c c =. (6.8) Podobn zamnaąc nds na znadzm d = Ø a = = - b = = - c = = - a a = b b = c c =. (6.9) Na onc dla pnt mam:

7 Ø d = a = = b c = = - = = - (6.) a a = b b = c c =. Ja sę oaż stał a a a n są stotn dla dalszch przształcń (gdż zwązan są z rchm sztwnm tarcz) mogą bć pomnęt w czas rozwązana ład równań (6.7). Po wznaczn fnc ształt lmnt powróćm do go dformac. Podstawm równan (6.) do (6.8): =D N ( ) = B ( ) (6.) otrzmąc zalżność mędz przmszcznam węzłów lmnt a go odształcnam. Macrz B wstępąca w równan (6.) nos nazwę macrz gomtrczn moż bć wrażona następąco: [ ] B ( ) = B ( ) B ( ) B ( ) Øbn gdz B n = D N n ( ) = cn (6.) cn bn st macrzą gomtrczną dowolngo węzła n. Mam ż wszst sładn nzbędn do napsana równana równowag lmnt. orzstam zasadę prac wrtaln tóra mów ż praca wonana przz sł zwnętrzn (t sł węzłow) ms bć równa prac sł wwnętrznch tarcz (t naprężń): 7

8 ( ) T f = s d. T (6.3) Przształcm to równan podstawaąc naprw za s zwąz onstttwn (6.5) a następn za zwąz gomtrczn (6.): ( ) ( ) d ( ) ( ) T T T T f = B DB = B DB d. (6.4) równan tm przd całą za całą włączon został wtor przmszczń węzłowch lmnt ao nzalżn od zmnnch. Równan (6.4) moż bć spłnon nzalżn od przmszczń lmnt tlo wtd gd: ( ) T f = B D B d (6.5) co po porównan z znaną ż zalżnoścą (wstępowała w wszstch poprzdnch rozdzałach t sąż): f = K da nam równan wznaczaąc współcznn macrz sztwnośc lmnt: ( ) T K = B DB d. (6.6) Konstrowan macrz sztwnośc lmnt można znaczn proścć zaważaąc ż dzl sę ona na blo: K ØK K K = K K K K K K (6.7) gdz dowoln z nch np: K można oblczć z równana: ( ) T K = B DB d (6.8) a pozostał z analogcznch równań powstałch po odpowdnch zmanach ndsów. stawaąc do (6.8) macrz gomtrczn B oraz B dan równanm (6.) oraz macrz D daną równanm (.3) otrzmam: T ( ) d ( ) K = B D B = B DB Ab = T Ø - n - n EAb bb + cc b c n + b c = n n n (6.9) b c n + b c cc + bb 8

9 gdz A - powrzchna tarcz b - grbość tarcz. Jst to blo macrz sztwnośc dla płasgo stan naprężna. Zaważm ż macrz B B D n zawraą sładowch zalżnch od zmnnch z można węc bło włączć przd zna cał. Blo macrz sztwnośc dla płasgo stan odształcna otrzmam przmąc macrz stałch sprężstch wg równana (.7): Ø - n - n EAb ( - n) b b + c c b c n + b c = ( + )( - ) - - n n n n. (6.3) b c n + b c ( - n) cc + bb K Ponważ ład współrzędnch loalnch został przęt ta ż go os bł równolgł do os ład globalngo węc n ma potrzb transformować otrzman macrz sztwnośc ODKSZTAŁCENIA I NAPRĘŻENIA ELEMENCIE Oblczm szcz odształcna lmnt. Dan są on równan (6.) a borąc pod wagę wn (6.) mam: = b n n n= = b n n n= g = ( c n n + b n n ) n=. (6.3) Ja wdać sładow wtora odształcna są stał wwnątrz lmnt co st onswncą przęca lnowch fnc ształt. Elmnt tn nos nazwę CST od anglsgo orślna constant stran trangl - tróąt stałgo odształcna. Twórcą go bł?????. Naprężna w lmnc wznaczam z równana onstttwngo (6.5) równana (.3) lb (.7) w zalżnośc od rodza płasgo stan tór modlm. Oczwst st ż ta a odształcna równż naprężna będą stał wwnątrz lmnt CST EKTOR SIŁ ĘZŁOYCH OD OBCIĄŻENIA CIĄGŁEGO Obcążna tarcz można tratować a obcążna ratownc płasch tzn. przłożć sł w węzłach onstrc. Jżl dna dan st obcążn cągł dzałaąc na rawędz lmnt trzba sprowadzć do sł sponch dzałaącch na węzł lmnt Rs

10 Rs.6.4 Podobn a w poprzdnch rozdzałach zastosm zasadą prac wrtalnch tóra dla tgo przpad da równan równowag: ( T T ) f L ( ) q( ) + d = (6.3) gdz ( ) st przmszcznm obcążon rawędz a q( ) = Ø q q ( ) ( ) - wtorm obcążna na rawędz L dłgoścą rawędz - - st bzwmarową współrzędną przmącą wartość w pnc oraz w pnc. Ponważ przęlśm lnow fnc ształt dla lmnt to wtor ( ) zapszm następąco: ( ) = N (6.33) gdz N st macrzą fnc ształt dla przmszczna brzgowgo. o o o [ N ( ) N ( ) N ( ) ] N = I I (6.34) gdz N o ( ) = - N o ( ) lb w postac rozwnęt N = = Ø - -. (6.35) Po wstawn zalżnośc (6.33) do równana (6.3) otrzmam: T ( ) ( ) f = - L N q d (6.36) Po względnn lnowch fnc ształt opsanch równanm (6.35) otrzmam:

11 f = - L Ø ( - ) q ( ) ( - ) q ( ) q ( ) q ( ) d. (6.37) Oblczm dla przład wtor sł węzłowch spowodowanch obcążnm lnowo rozłożonm na rawędz - o wartośc q q - w węźl oraz q q - w węźl. Obcążn ta zapszm prz żc bzwmarow współrzędn : ( ) q Øq = q ( ) ( ) - + q - + q (6.38) a po wstawn do równana (6.37) otrzmam: f = - L Ø q ( - ) d + q ( - ) d q ( - ) d + q ( - ) d q ( - ) d + q d (6.39) q ( - ) d + q d co po scałowan da: f L = - 6 Øq + q q + q q + q q + q. (6.4) Dla szczgólngo przpad gd obcążn st stał równ: q( ) = Ø q q (6.4) otrzmam: o o z równana

12 f L = - Øqo q o qo. qo (6.4) Nalż pamętać ż oblczon sł są słam dzałaącm na lmnt potrzbn sł węzłow otrzmam zmnaąc zwrot wtorów tzn.: p = - f (6.4) gdz p st wtorm sł węzłowch dla węzłów staącch sę z lmntm EKTOR SIŁ ĘZŁOYCH SPOODOANYCH OBCIĄŻENIEM TERMICZNYM Podobn a w pnc poprzdnm zastosm zasadę prac wrtalnch do oblczna zastępczch sł węzłowch od obcążna trmczngo. Z wag na spcfę lmnt CST ogranczm sę tlo do stałgo pola tmpratr wwnątrz lmnt. Odpowdn równan prac wrtaln ma postać: ( ) T t T T t f = s d = D d t (6.43) gdz s t - st polm naprężń w lmnc wwołanm przz tmpratrę a t - odształcnm lmnt wwołanm zmaną tmpratr. Załadaąc zotropę tarcz otrzmam: Ø t = a t Dt (6.44) Po wstawn do równana (6.43) zwązów gomtrcznch (6.) otrzmam Ø Ø t T T f = a t Dt ( B ) D d = a t DtAb( B ) D. (6.45) Dla płasgo stan naprężna równan to praszcza sę do następąc zalżnośc:

13 t f PSN Øb c a t DtEAb b == - n c b c gdz b... c są współcznnam fnc ształt lmnt CST. Płas stan odształcna da nco nn wtor sł węzłowch: (6.46) t f PSO Øb c a t DtEAb b ==. ( + n)( - n) c b c (6.47) Z podobnch powodów a opswalśm w poprzdnch rozdzałach przd przłożnm sł do węzłów nalż zmnć zna sładowch: p t t = - f. (6.48) Naprężna w lmnc poddanm dzałan tmpratr oblczam z względnnm popraw spowodowan trmcznm rozszrznm lmnt: Ø s t = D( - t ) = D B - a t Dt. (6.49) Ł ł 3

14 6.7. ARUNKI BRZEGOE TARCZY arn brzgow onstrc tarczow można tratować analogczn a ratownc płas gdż węzł ob ładów maą dwa stopn swobod na płaszczźn XY. Rs.6.5 Mam węc węzł nprzswn a węzł r (Rs.6.5) przswn wzdłż os X (węzł r ) przswna wzdłż os Y (węzł r 4 ) lb ośn (węzł r 3 ). arn brzgow dla tch podpór są następąc: węzł r : r X = ry = węzł r : ry = węzł r 4 : r4 X = dla węzła r 3 gdz węz n są zgodn z osam globalngo ład współrzędnch polcam stosowan lmntów brzgowch opsanch w rozdz.ii. 4

15 ROZDZIAŁ I. STATYKA TARCZ PŁASKI STAN NAPRĘŻENIA I PŁASKI STAN ODKSZTAŁCENIA ZIĄZKI GEOMETRYCZNE MACIERZ SZTYNOŚCI ELEMENTU SPRĘŻYSTEGO ODKSZTAŁCENIA I NAPRĘŻENIA ELEMENCIE EKTOR SIŁ ĘZŁOYCH OD OBCIĄŻENIA CIĄGŁEGO EKTOR SIŁ ĘZŁOYCH SPOODOANYCH OBCIĄŻENIEM TERMICZNYM ARUNKI BRZEGOE TARCZY...4 5

Metody numeryczne. Różniczkowanie. Wykład nr 6. dr hab. Piotr Fronczak

Metody numeryczne. Różniczkowanie. Wykład nr 6. dr hab. Piotr Fronczak Mtod numrczn Wład nr 6 Różnczowan dr ab. Potr Froncza Różnczowan numrczn Wzor różnczowana numrczngo znajdują zastosowan wtd, gd trzba wznaczć pocodn odpowdngo rzędu uncj, tóra orślona jst tablcą lub ma

Bardziej szczegółowo

ANALIZA OBWODÓW DLA PRZEBIEGÓW SINUSOIDALNYCH METODĄ LICZB ZESPOLONYCH

ANALIZA OBWODÓW DLA PRZEBIEGÓW SINUSOIDALNYCH METODĄ LICZB ZESPOLONYCH ANAZA OBWODÓW DA PZBGÓW SNUSODANYH MTODĄ ZB ZSPOONYH. Wprowadzn. Wprowadź fnkcję zspoloną znnj rzczwstj (czas) o następjącj postac: F( t) F F j t j jt t+ Fnkcj tj przporządkj na płaszczźn zspolonj wktor

Bardziej szczegółowo

x y x y y 2 1-1

x y x y y 2 1-1 Mtod komputrow : wrzsiń 5 Zadani. Obliczć u(.5) stosując intrpolację kwadratową Lagrang a dla danch z tabli. i i 5 u( i )..5. 5. 7. Zadani.Dlapunktów =, =, =obliczćfunkcjębazowąintrpolacjihrmitah, ().

Bardziej szczegółowo

Ć w i c z e n i e K 2 b

Ć w i c z e n i e K 2 b Akademia Górniczo Hutnicza Wdział Inżnierii Mechanicznej i Robotki Katedra Wtrzmałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wdział Górnictwa i Geoinżnierii Grupa nr: Ocena:

Bardziej szczegółowo

Służą opisowi oraz przewidywaniu przyszłego kształtowania się zależności gospodarczych.

Służą opisowi oraz przewidywaniu przyszłego kształtowania się zależności gospodarczych. MODEL EOOMERYCZY MODEL EOOMERYCZY DEFIICJA Modl konomtrczn jst równanm matmatcznm (lub układm równao), któr przdstawa zasadncz powązana loścow pomędz rozpatrwanm zjawskam konomcznm., uwzględnającm tlko

Bardziej szczegółowo

MODELOWANIE UKŁADÓW MECHANICZNYCH Z NIEPEWNYMI PARAMETRAMI

MODELOWANIE UKŁADÓW MECHANICZNYCH Z NIEPEWNYMI PARAMETRAMI Smlaca Andrze POWNUK Katedra Mecan Teoretczne Wdzał Bdownctwa Poltecna Śląsa w Glwcac MODELOWANIE UKŁADÓW MECHANICZNYCH Z NIEPEWNYMI PARAMETRAMI Streszczene. Wszste parametr ładów mecancznc są znane z

Bardziej szczegółowo

ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP

ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP ZAGADNIENIA ZALICZENIOWE i PRZYKŁADY PYTAŃ z METOD KOMPUTEROWYCH w TSiP. Podstawowe związki (równania równowagi, liniowe i nieliniowe związki geometrczne, związki fizczne, warunki brzegowe) w zapisie wskaźnikowm

Bardziej szczegółowo

MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH

MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH MES W ANAIZIE SPRĘŻYSEJ KŁADÓW PRĘOWYCH Przkład obliczeń Kratownice płaskie idia FEDOROWICZ Jan FEDOROWICZ Magdalena MROZEK Dawid MROZEK Gliwice r. - idia Fedorowicz Jan Fedorowicz Magdalena Mrozek Dawid

Bardziej szczegółowo

UWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ.

UWAGI O ROZKŁADZIE FUNKCJI ZMIENNEJ LOSOWEJ. L.Kowls - Uwg o rozłdz uc zm losow UWAI O ROZKŁADZIE UNKCJI ZMIENNEJ LOSOWEJ. - d zm losow cągł o gęstośc. Y g g - borlows tz. g - B BR dl B BR Wzczć gęstość g zm losow Y. Jśl g - ścśl mootocz różczowl

Bardziej szczegółowo

$y = XB KLASYCZNY MODEL REGRESJI LINIOWEJ Z WIELOMA ZMIENNYMI NIEZALEŻNYMI

$y = XB KLASYCZNY MODEL REGRESJI LINIOWEJ Z WIELOMA ZMIENNYMI NIEZALEŻNYMI KASYCZNY ODE REGRESJI INIOWEJ Z WIEOA ZIENNYI NIEZAEŻNYI. gdz: wtor obsrwacj a zmj Y, o wmarach ( macrz obsrwacj a zmch zalżch, o wmarach ( ( wtor paramtrów struturalch (wtor współczów, o wmarach (( wtor

Bardziej szczegółowo

śą ś ć Ą Ó ó Ę ń ó

śą ś ć Ą Ó ó Ę ń ó ć Ł Ś Ó ó ś ą ś Ł ń Ą Ę ń śą ś ć Ą Ó ó Ę ń ó Ę ń Źą ń ó Ą ś ś ń Ń ó ń ń ń ń ę ś Ę ń ń ś ą ą ą ę śó ń Ó Ś ę Ź ę ść ń ó ę Ę ń ó ą ó ą ą ą ę ą ó ń ń ę ć ń ó ó ń ą ń ę ó ś ą ś Ł ą ń ą ń Źą ń ę ś ń Ź ó ę ń

Bardziej szczegółowo

ϕ i = q 2 ϕ k = q 4 Macierzowa wersja metody przemieszczeń - belki 1. Wstęp. Koncepcja metody

ϕ i = q 2 ϕ k = q 4 Macierzowa wersja metody przemieszczeń - belki 1. Wstęp. Koncepcja metody Macrzowa wrsja mtody przmszczń - b. Wstęp. Koncpcja mtody Macrzow ujęc mtody przmszczń stanow jj wrsję ułatwającą omputryzację agorytmu obczń. W odnsnu do zastosowana w obczanu b, wszyst założna asycznj

Bardziej szczegółowo

Przykład 1 modelowania jednowymiarowego przepływu ciepła

Przykład 1 modelowania jednowymiarowego przepływu ciepła Przykład 1 modlowania jdnowymiarowgo przpływu cipła 1. Modl przpływu przz ścianę wilowarstwową Ściana składa się trzch warstw o różnych grubościach wykonana z różnych matriałów. Na jdnj z ścian zwnętrznych

Bardziej szczegółowo

VI. MATEMATYCZNE PODSTAWY MES

VI. MATEMATYCZNE PODSTAWY MES Kurs na Studac Dotorancc Poltcn Wrocławsj (wrsja: luty 007) 40 I. MATEMATYCZE PODSTAWY MES. Problm abstracyjny Rozwązujmy problm lptyczny np. przstrznn zagadnn tor sprężystośc. Poszuujmy rozwązana u( nmatyczn

Bardziej szczegółowo

Defi f nicja n aprę r żeń

Defi f nicja n aprę r żeń Wytrzymałość materiałów Stany naprężeń i odkształceń 1 Definicja naprężeń Mamy bryłę materialną obciążoną układem sił (siły zewnętrzne, reakcje), będących w równowadze. Rozetniemy myślowo tę bryłę na dwie

Bardziej szczegółowo

MES dla stacjonarnego przepływu ciepła

MES dla stacjonarnego przepływu ciepła ME da staconarngo przpływu cpła Potr Pucńs -ma: ppucn@l5.p.du.p Jrzy Pamn -ma: pamn@l5.p.du.p Instytut Tchnoog Informatycznych w Inżynr Lądow Wydzał Inżynr Lądow Potchn Kraows trona domowa: www.l5.p.du.p

Bardziej szczegółowo

SPIS TREŚCI Całkowanie numeryczne 89

SPIS TREŚCI Całkowanie numeryczne 89 GRZEGORZ KRZESIŃSKI. MES_. CZĘŚĆ. MATERIAŁY DO WYKŁADU. SPIS TREŚCI. Mtody przybżon w mchanc onstruc. Mtoda Różnc Sończonych 9. Mtoda Emntów Brzgowych 7. MEB da równana Possona 7. Zagadnna tor sprężystośc

Bardziej szczegółowo

WYZNACZENIE ODKSZTAŁCEŃ, PRZEMIESZCZEŃ I NAPRĘŻEŃ W ŁAWACH FUNDAMENTOWYCH NA PODŁOŻU GRUNTOWYM O KSZTAŁCIE WYPUKŁYM

WYZNACZENIE ODKSZTAŁCEŃ, PRZEMIESZCZEŃ I NAPRĘŻEŃ W ŁAWACH FUNDAMENTOWYCH NA PODŁOŻU GRUNTOWYM O KSZTAŁCIE WYPUKŁYM Budownctwo 7 Mkhal Hrtsuk, Rszard Hulbo WYZNACZNI ODKSZTAŁCŃ, PRZMISZCZŃ I NAPRĘŻŃ W ŁAWACH FNDAMNTOWYCH NA PODŁOŻ GRNTOWYM O KSZTAŁCI WYPKŁYM Wprowadzene Prz rozwązanu zagadnena przmuem, że brła fundamentowa

Bardziej szczegółowo

XXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne

XXX OLIMPIADA FIZYCZNA ETAP I Zadania teoretyczne XXX OLIPIADA FIZYCZNA TAP I Zadana teoretczne Nazwa zadana ZADANI T1 Na odstawe wsółczesnch badań wadomo że jądro atomowe może znajdować sę tlo w stanach o oreślonch energach odobne ja dobrze znan atom

Bardziej szczegółowo

Kompresja fraktalna obrazów. obraz. 1. Kopiarka wielokrotnie redukująca 1.1. Zasada działania ania najprostszej kopiarki

Kompresja fraktalna obrazów. obraz. 1. Kopiarka wielokrotnie redukująca 1.1. Zasada działania ania najprostszej kopiarki Kompresa fratalna obraów. Kopara welorotne reuuąca.. Zasaa ałana ana naprostse opar Koncepca opar welorotne reuuące Naprosts prła opar. Moel matematcn obrau opara cęś ęścowa. obra weścow opara obra wścow

Bardziej szczegółowo

Teoria Sygnałów. II rok Geofizyki III rok Informatyki Stosowanej. Wykład 5 ( ) ( ) ( ) ( ) ( ) ( ) ( ) Transformacja Hilberta. sgn( + = + = + lim.

Teoria Sygnałów. II rok Geofizyki III rok Informatyki Stosowanej. Wykład 5 ( ) ( ) ( ) ( ) ( ) ( ) ( ) Transformacja Hilberta. sgn( + = + = + lim. Tora Synałów II rok Gozyk III rok Inormatyk Stosowanj Wykład 5 ) sn( d d d F Najprw nzbędny rzltat. Transormacja Forra (w sns rancznym) nkcj sn() F lm π sn Z twrdzna o dalnośc wynka, ż π sn Transormacja

Bardziej szczegółowo

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia.

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia. Adam Bdnar: Wtrzmałść Materiałów Analiza płaskieg stanu naprężenia 5 ANALIZA PŁASKIEGO STANU NAPRĘŻENIA 5 Naprężenia na dwlnej płaszczźnie Jak pamiętam płaski stan naprężenia w punkcie cechuje t że wektr

Bardziej szczegółowo

Młodzieżowe Uniwersytety Matematyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego REGUŁA GULDINA

Młodzieżowe Uniwersytety Matematyczne. Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego REGUŁA GULDINA Młodzieżowe Uniwerstet Matematczne Projekt współfinansowan przez Unię Europejską w ramach Europejskiego Funduszu połecznego REGUŁA GULDINA dr Bronisław Pabich Rzeszów marca 1 Projekt realizowan przez Uniwerstet

Bardziej szczegółowo

2009 ZARZĄDZANIE. LUTY 2009

2009 ZARZĄDZANIE. LUTY 2009 Wybran zstawy gzaminacyjn kursu Matmatyka na Wydzial ZF Uniwrsyttu Ekonomiczngo w Wrocławiu w latach 009 06 Zstawy dotyczą trybu stacjonarngo Niktór zstawy zawirają kompltn rozwiązania Zakrs matriału w

Bardziej szczegółowo

UKŁADY JEDNOWYMIAROWE. Część III UKŁADY NIELINIOWE

UKŁADY JEDNOWYMIAROWE. Część III UKŁADY NIELINIOWE UKŁADY JEDNOWYMIAROWE Część III UKŁADY NIELINIOWE 1 15. Wprowadzenie do części III Układ nieliniowe wkazją czter właściwości znacznie różniące je od kładów liniowch: 1) nie spełniają zasad sperpozcji,

Bardziej szczegółowo

Stan naprężenia. Przykład 1: Tarcza (płaski stan naprężenia) Określić siły masowe oraz obciążenie brzegu tarczy jeśli stan naprężenia wynosi:

Stan naprężenia. Przykład 1: Tarcza (płaski stan naprężenia) Określić siły masowe oraz obciążenie brzegu tarczy jeśli stan naprężenia wynosi: Stan naprężenia Przkład 1: Tarcza (płaski stan naprężenia) Określić sił masowe oraz obciążenie brzegu tarcz jeśli stan naprężenia wnosi: 5 T σ. 8 Składowe sił masowch obliczam wkonując różniczkowanie zapisane

Bardziej szczegółowo

Zagadnienie statyki kratownicy płaskiej

Zagadnienie statyki kratownicy płaskiej Zagadnini statyki kratownicy płaskij METODY OBLICZENIOWE Budownictwo, studia I stopnia, smstr 6 Instytut L-5, Wydział Inżynirii Lądowj, Politchnika Krakowska Ewa Pabisk () Równania MES dla ustrojów prętowych

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem

Bardziej szczegółowo

I..ROZWIĄZANIE DŹWIGARA DANEGO OD DANEGO OBCIĄŻENIA

I..ROZWIĄZANIE DŹWIGARA DANEGO OD DANEGO OBCIĄŻENIA METO IŁ uład przetrzenn przład dźwgar załaan w plane OZWIĄZNIE ŹWIG ZŁMNEGO W PLNIE METOĄ IŁ I OLIZENIE PZEMIEZZENI an jet dźwgar załaan w plane. ozwązać go etodą ł porządzć wre ł przerojowch doonać ontrol

Bardziej szczegółowo

Ł ś Ń Ż Ó Ń Ż Ń Ł Ł

Ł ś Ń Ż Ó Ń Ż Ń Ł Ł Ł Ł Ł Ń Ń Ó Ł ś Ń Ż Ó Ń Ż Ń Ł Ł Ł Ó Ś Ś ś ść ś ć ć ć ś ś ś ś ś Ń ś ś ś ś ś ć ć źć ś ć ś ć ś ść ś ś ś Ł ś ś Ł ć Ł ś ć ć ć ś ś ćł ź ść ść ć ść ś ś ć Ż ś ś ś ć ś ć ć źć ź Ń ś ś Ł Ń ć ś ść Ł źć ś ś ć ćń ć

Bardziej szczegółowo

Ś ć Ó Ś Ó Ą Ł Ą Ź Ź Ó ć ć Ó Ź Ą Ą Ś Ą Ł Ó Ł Ń Ź Ź ź Ź ź ć ć ć ć ć ć ć ć ć ć ć ć ć Ć Ą Ź ź ć ć ć ź Ą Ź Ą Ó Ó Ą Ń Ź ć ź ć ć ć Ą ź Ó ć Ą Ą ć ć ź Ó ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ł Ź Ź ć ć ź ź ć ć ć ć ć ć Ó

Bardziej szczegółowo

Temat: Wyznaczanie odległości ogniskowej i powiększenia cienkich soczewek.

Temat: Wyznaczanie odległości ogniskowej i powiększenia cienkich soczewek. Ćwiczni Nr 0 Tmat: Wznaczani odlgłości ognikowj i owiękznia cinkich oczwk. I. LITERTUR:. D. Hallida, R. Rnick, Fizka t. II, PWN, Warzawa.. J.R. Mr-rndt. Wtę do otki, PWN, Warzawa 977.. Ćwicznia laboratorjn

Bardziej szczegółowo

ROZDZIAŁ III. STATYKA KRATOWNIC PRZESTRZENNYCH

ROZDZIAŁ III. STATYKA KRATOWNIC PRZESTRZENNYCH ROZDZIAŁ III. STATYKA KRATOWNIC PRZESTRZENNYCH Mimo, ż przstrznn konstrkcj kratow znan yły od dawna (por.[17]), to do nidawna stosowan yły stosnkowo rzadko, co yć moż spowodowan yło sporymi kłopotami oliczniowymi,

Bardziej szczegółowo

1.11. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ

1.11. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ .. RÓWNANIE RÓŻNICZKOWE OSI UGIĘTEJ od płem obciążenia prostolinioa oś podłużna belki staje się krzolinioa. Zakrzioną oś belki nazam linią ugięcia (osią ugiętą), przemieszczenie pionoe ( x) tej osi nazam

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

1.4. STAN ODKSZTAŁCENIA STRONA GEOMETRYCZNA

1.4. STAN ODKSZTAŁCENIA STRONA GEOMETRYCZNA J. Wyrwał Wyłady z mechan materałów.. STAN ODKSZTAŁCENA STRONA GEOMETRYCZNA... Wetor przemeszczena Rozważmy bryłę (cało materalne) o dowolnym ształce meszczoną w prostoątnym ładze odnesena Ox xx (rys.

Bardziej szczegółowo

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx 5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.

Bardziej szczegółowo

Wektory. P. F. Góra. rok akademicki

Wektory. P. F. Góra. rok akademicki Wektor P. F. Góra rok akademicki 009-0 Wektor zwiazan. Wektorem zwiazanm nazwam parę punktów. Jeżeli parę tę stanowią punkt,, wektor przez nie utworzon oznaczm. Graficznie koniec wektora oznaczam strzałką.

Bardziej szczegółowo

Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7

Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7 ozwiązwanie ram płaskich wznaczanie reakcji i wkresów sił przekrojowch 7 Obciążenie ram płaskiej, podobnie jak w przpadku beek rozdział 6, mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 Równania różniczkowe liniowe Metoda przewidwań Metoda przewidwań całkowania równania niejednorodnego ' p( x) opiera się na następującm twierdzeniu. Twierdzenie f ( x) Suma

Bardziej szczegółowo

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów

Bardziej szczegółowo

Interpolacja. Układ. x exp. = y 1. = y 2. = y n

Interpolacja. Układ. x exp. = y 1. = y 2. = y n MES 07 lokaln Interpolacja. Układ Interpolacja, wprowadzenie Interpolacja: po co nam to? Ptania MES polega na wznaczaniu interesującch nas parametrów w skończonej ilości punktów. A co leż pomiędz tmi punktami?

Bardziej szczegółowo

[L] Rysunek Łuk wolnopodparty, paraboliczny wymiary, obciążenie, oznaczenia.

[L] Rysunek Łuk wolnopodparty, paraboliczny wymiary, obciążenie, oznaczenia. rzkład 10.3. Łuk paraboliczn. Rsunek przedstawia łuk wolnopodpart, którego oś ma kształt paraboli drugiego stopnia (łuk paraboliczn ). Łuk obciążon jest ciśnieniem wewnętrznm (wektor elementarnej wpadkowej

Bardziej szczegółowo

2. CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH

2. CHARAKTERYSTYKI GEOMETRYCZNE FIGUR PŁASKICH dam Bodnar: Wtrzmałość Materiałów. Charakterstki geometrczne figur płaskich.. CHRKTERSTKI GEOMETRCZNE FIGUR PŁSKICH.. Definicje podstawowch charakterstk geometrcznch Podczas zajęć z wtrzmałości materiałów

Bardziej szczegółowo

Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor.

Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor. Zadanie 1. Wektor naprężenia. Tensor naprężenia. Zależność wektor-tensor. Dany jest stan naprężenia w układzie x 1,x 2,x 3 T 11 12 13 [ ] 21 23 31 32 33 Znaleźć wektor naprężenia w płaszczyźnie o normalnej

Bardziej szczegółowo

1.7 Zagadnienia szczegółowe związane z równaniem ruchu Moment bezwładności i moment zamachowy

1.7 Zagadnienia szczegółowe związane z równaniem ruchu Moment bezwładności i moment zamachowy .7 Zagadnna zczgółow zwązan z równan ruchu.7. ont bzwładnośc ont zaachowy Równan równowag ł dzałających na lnt ay d poazany na ry..8 będz ało potać: df a tąd lntarny ont dynaczny: d d ϑ d r * d d ϑ r d

Bardziej szczegółowo

8 Metoda objętości skończonych

8 Metoda objętości skończonych 8 Mtoda ojętości skończonch Mtoda ojętości skończonch lu ojętości kontrolnch oszarów kontrolnch została zudowana na zasadzi osłainia warunków opisanch rozwiązwanm równanim różniczkowm. Zamiast spłninia

Bardziej szczegółowo

gdzie E jest energią całkowitą cząstki. Postać równania Schrödingera dla stanu stacjonarnego Wprowadźmy do lewej i prawej strony równania Schrödingera

gdzie E jest energią całkowitą cząstki. Postać równania Schrödingera dla stanu stacjonarnego Wprowadźmy do lewej i prawej strony równania Schrödingera San sacjonarny cząsk San sacjonarny - San, w kórym ( r, ) ( r ), gęsość prawdopodobńswa znalzna cząsk cząsk w danym obszarz przsrzn n zalży od czasu. San sacjonarny js charakrysyczny dla sacjonarngo pola

Bardziej szczegółowo

Metoda Elementów Skończonych w Modelowaniu Układów Mechatronicznych. Układy prętowe (Scilab)

Metoda Elementów Skończonych w Modelowaniu Układów Mechatronicznych. Układy prętowe (Scilab) Mtoda Elmntów Skończonych w Modlowaniu Układów Mchatronicznych Układy prętow (Scilab) str.1 I. MES 1D układy prętow. Podstawow informacj Istotą mtody lmntów skończonych jst sposób aproksymacji cząstkowych

Bardziej szczegółowo

RÓWNANIA FIZYCZNE DLA KOMPOZYTÓW

RÓWNANIA FIZYCZNE DLA KOMPOZYTÓW Kopozt RÓWNANIA FIZYCZN DLA KOMPOZYTÓW Równania fizczne dla ateriałów anizotropowch Równania fizczne liniowej teorii sprężstości ożna zapisać w ogólnej postaci ij ijkl kl lub po odwróceniu ij ijkl kl gdzie

Bardziej szczegółowo

IV. WPROWADZENIE DO MES

IV. WPROWADZENIE DO MES Kondra P. Moda mnów Sończonych ora zasosowana 7 IV. WPROWADZNI DO MS Poszuwan rozwązań rzybżonych bazuących na modach rsduanych waracynych naoya na rudnośc w doborz func bazowych orśonych na całym obszarz.

Bardziej szczegółowo

Wrocław, dnia 24 czerwca 2016 r. Poz UCHWAŁA NR XXVI/540/16 RADY MIEJSKIEJ WROCŁAWIA. z dnia 16 czerwca 2016 r.

Wrocław, dnia 24 czerwca 2016 r. Poz UCHWAŁA NR XXVI/540/16 RADY MIEJSKIEJ WROCŁAWIA. z dnia 16 czerwca 2016 r. DZE UZĘDY EÓDZA DLŚLĄE, d 24 2016 2966 UCHAŁA XXV/540/16 ADY EE CŁAA d 16 2016 ś g bdó b ó d gó d 18 2 15 d 8 1990 ąd g (D U 2016 446) 12 11 92 1 d 5 1998 ąd (D U 2015 1445 1890), ą 17 4 5 d 7 ś 1991 ś

Bardziej szczegółowo

Imperfekcje globalne i lokalne

Imperfekcje globalne i lokalne Imperfekcje globalne i lokalne Prz obliczaniu nośności i stateczności konstrukcji stalowch szczególnego znaczenia nabiera konieczność uwzględniania warunków wkonania, transportu i montażu elementów konstrukcjnch.

Bardziej szczegółowo

Rozwiązanie jednokierunkowego przepływu w przewodach prostoosiowych o dowolnym kształcie przekroju poprzecznego metodą elementów skończonych

Rozwiązanie jednokierunkowego przepływu w przewodach prostoosiowych o dowolnym kształcie przekroju poprzecznego metodą elementów skończonych Symulacja w Badanach Rozwoju Vol. 3, No. 1/2012 Tomasz Janusz TELESZEWSKI, Sławomr Adam SORKO Poltchnka Bałostocka, WBIŚ, ul.wjska 45E, 15-351 Bałystok E-mal: t.tlszwsk@pb.du.pl, s.sorko@pb.du.pl Rozwązan

Bardziej szczegółowo

Teoria Sygnałów. II rok Geofizyki III rok Informatyki Stosowanej. Wykład 4. iωα. Własności przekształcenia Fouriera. α α

Teoria Sygnałów. II rok Geofizyki III rok Informatyki Stosowanej. Wykład 4. iωα. Własności przekształcenia Fouriera. α α ora Sygałów rok Gozyk rok ormatyk Stosowaj Wykład 4 Własośc przkształca ourra własość. Przkształc ourra jst low [ β g ] βg dowód: rywaly całkowa jst opracją lową. własość. wrdz o podobństw [ ] dowód :

Bardziej szczegółowo

NIEZNANE RYSUNKI STANISŁAWA WYSPIAŃSKIEGO

NIEZNANE RYSUNKI STANISŁAWA WYSPIAŃSKIEGO jj b lą fgą g ( jg l Pl l ż Pl ę ł ńg N lł ś K Wlg ć ą l j bś 9 Nłlj ęś łś ż ę bć ąż j j j ę l ę j Oją ją f ąją jś bń 30 Wj Bł Fg g ł ąż Wj Bł S l K XIX Cęść g: j Wń ż ę l b ł W Uv T S R Sł Wńg K 93 4

Bardziej szczegółowo

Ś Ś Ś Ś Ś Ś Ę Ą Ę ŚĘ Ę Ś ń Ę Ę Ą Ł Ż Ń Ł ć Ą ć Ł Ę Ó ć Ź ć ź ń Ń ń Ś Ą Ę Ł Ę Ą Ę ń ć ń Ź ć ń ć ń Ś ń ŚĆ ć ź Ł Ę Ę Ś Ę Ę Ę ń ŚĘ Ń Ę Ę ń ŚĘ Ę Ę Ś Ś ć ń Ę ń Ś Ę ć ć Ę Ę ć ź ć ń Ę Ń ń ć Ł Ę Ę Ę Ę ć Ę ć ć ź

Bardziej szczegółowo

ń Ż Ż Ż ź Ś ź ń ŚĆ ć ń Ę ć Ć ń Ę ć ń ć ć Ż Ę Ę Ś ń Ó ć Ę Ć ć ć Ę Ę Ż ń ć ć Ś ń Ę ć ń Ś Ś ć ź Ś ŹĆ Ż Ś Ż ć ć ć ć ć ć ń ć ć ń ć ć Ś Ć ń Ś Ą ć ć ć ć ć ć ń ć ń ć Ć ć ń ć Ą ń ć ć Ę Ś ć ń ź ń Ć Ć ń ć ć ć Ś ć

Bardziej szczegółowo

ĆWICZENIE 1. (8.10) Rozciąganie statycznie wyznaczalne, pręty o skokowo zmiennym przekroju, kratownice, Obciążenia termiczne.

ĆWICZENIE 1. (8.10) Rozciąganie statycznie wyznaczalne, pręty o skokowo zmiennym przekroju, kratownice, Obciążenia termiczne. ĆWICZENIE 1 (8.10) Rozciąganie statycznie wyznaczalne, pręty o skokowo zienny przekroj, kratownice, Obciążenia tericzne. Rozciąganie - przykłady statycznie wyznaczalne Zadanie Zadanie jest zaprojektowanie

Bardziej szczegółowo

Równania różniczkowe

Równania różniczkowe Równania różniczkowe I rzędu Andrzej Musielak Równania różniczkowe Równania różniczkowe I rzędu Równanie różniczkowe pierwszego rzędu to równanie w którm pojawia się zmienna x, funkcja tej zmiennej oraz

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 4-5

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 4-5 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch - Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs... s.. rzed przstąpieniem

Bardziej szczegółowo

NIEZAWODNOŚĆ KONSTRUKCJI O PARAMETRACH PRZEDZIAŁOWYCH I LOSOWYCH

NIEZAWODNOŚĆ KONSTRUKCJI O PARAMETRACH PRZEDZIAŁOWYCH I LOSOWYCH ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2 Sra: BUDOWNICTWO z. Nr kol. Andrzj POWNUK NIEZAWODNOŚĆ KONSTRUKCJI O PARAETRACH PRZEDZIAŁOWYCH I LOSOWYCH Strszczn. W pracy wykazano, ż mtoda projktowana konstrukcj

Bardziej szczegółowo

ą ą Ą ł ą Ą Ł ÓŁ Ą ę ą ż ę łą ą łą

ą ą Ą ł ą Ą Ł ÓŁ Ą ę ą ż ę łą ą łą Ą ł Ą Ł ÓŁ Ą ę ę ł ł ń ęść ł ł ę ęść źć ć ł ń ś ń ć ń ń ń Ż ł ć ść ń ń Ę ę ĘŚĆ Ó Ł Ł ę ł ś ł Ę ę ń ń ś ś ź ę ś Ę ś ć ś ę Ę ę ć ń ś ś ę ę ć ś Ę ń ź ć ś ś Ł ś Ł ź ł ę Ż ń Ę ń Ę ń ś ę ń ś ś ń ł ś ć ź ń ś

Bardziej szczegółowo

ń ż Ą Ł ż ć ż ć ż ć Ś Ż ć ć ż ć ż ż ż Ą ż ż Ź ń Ą ź ń ź ń Ą ż Ń ż ń Ą ń ż ń Ź ć ń ż Ń Ą ż ż ż ć ń ń Ł ż ż ż ń Ź ź Ą ż Ł ż ż ć ń Ś ć Ó ż ć Ś ż ż Ą ń ż ń Ł ż Ż ń Ą Ł ć ż ń ż ń Ż ń ń Ą ż ż Ł ż ż ż ż ć ż Ń

Bardziej szczegółowo

) q przyłożona jest w punkcie o współrzędnej x = x + x. Przykład Łuk trójprzegubowy.

) q przyłożona jest w punkcie o współrzędnej x = x + x. Przykład Łuk trójprzegubowy. rzkład 0.. Łuk trójprzegubow. Rsunek 0.. przedstawia łuk trójprzegubow, którego oś ma kształt półokręgu (jest to łuk kołow ). Łuk obciążon jest ciężarem konstrukcji podwieszonej. Narsować wkres momentów

Bardziej szczegółowo

Elektroniczne systemy bezpieczeństwa mogą występować w trzech rodzajach struktur. Są to struktury typu: - skupionego, - rozproszonego, - mieszanego.

Elektroniczne systemy bezpieczeństwa mogą występować w trzech rodzajach struktur. Są to struktury typu: - skupionego, - rozproszonego, - mieszanego. A. Cl ćwicznia Clm ćwicznia jst zapoznani się z wskaźnikami nizawodnościowymi lktronicznych systmów bzpiczństwa oraz wykorzystanim ich do optymalizacji struktury nizawodnościowj systmu.. Część tortyczna

Bardziej szczegółowo

lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów

lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów 9. CAŁKA POWÓJNA 9.. Całka podwójna w prostokącie Niech P będzie prostokątem opisanm na płaszczźnie OXY nierównościami: a < < b, c < < d, a f(,) funkcją określoną i ograniczoną w tm prostokącie. Prostokąt

Bardziej szczegółowo

Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. TWIERDZENIA O WZAJEMNOŚCI Twierdzenie Bettiego (o wzajemności prac)

Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. TWIERDZENIA O WZAJEMNOŚCI Twierdzenie Bettiego (o wzajemności prac) Część 1 7. TWIERDZENIA O WZAJEMNOŚCI 1 7. 7. TWIERDZENIA O WZAJEMNOŚCI 7.1. Twerdzene Bettego (o wzajemnośc prac) Nech na dowolny uład ramowy statyczne wyznaczalny lub newyznaczalny, ale o nepodatnych

Bardziej szczegółowo

Tra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m

Tra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m Wytrzymałość materiałów Naprężenia główne na przykładzie płaskiego stanu naprężeń 1 Tensor naprężeń Naprężenia w stanie przestrzennym: τ τxz τ yx τ yz τzx τzy zz Układ współrzędnych jest zwykle wybrany

Bardziej szczegółowo

Ekstrema funkcji dwóch zmiennych

Ekstrema funkcji dwóch zmiennych Wkład z matematki inżnierskiej Ekstrema funkcji dwóch zmiennch JJ, IMiF UTP 18 JJ (JJ, IMiF UTP) EKSTREMA 18 1 / 47 Ekstrema lokalne DEFINICJA. Załóżm, że funkcja f (, ) jest określona w pewnm otoczeniu

Bardziej szczegółowo

ź ą ą ź ć ź ą ć ź ź ń ą ą ń ą ą ą Żą Żą ć ź ą ą ą ą ą ą ć ć ź ą ąą ą ą ą ąą ą ą ć ą ć ź ć ć ć ą ć ć ą ć ć ć ć ą ć ą ą ć ć ć ą ć ź ć ć ź ć ą ć ą ą ć ć Ę Ł Ż ć ą ą ć ć ą ć ć ć ą ą ń Ż ą ą ą ą ą ć ć ą ć ą

Bardziej szczegółowo

Ż ć ź ć ć ź Ż Ż Ł Ż ć Ż Ż Ż ć Ł Ż ć ć ć ź Ż Ż Ż Ż Ż Ż ć ć ź Ż ć ć ć ź Ż Ż ć Ż Ż źć ć Ż Ż Ż ć Ż Ż Ż Ż Ś ć Ż ć Ł Ż Ł ć Ą Ż Ł ć Ż ć Ż Ż Ż ć ć ć Ż Ż Ż Ż Ż Ż Ł ć Ł Ż ź ć Ż Ż Ż ć ć ć ć ć Ż Ż Ą Ż Ż Ż ć Ż Ż ć

Bardziej szczegółowo

Ć w i c z e n i e K 1

Ć w i c z e n i e K 1 kademia Górniczo Hutnicza Wdział nżnierii echanicznej i Robotki Katedra Wtrzmałości, Zmęczenia ateriałów i Konstrukcji azwisko i mię: azwisko i mię: Wdział Górnictwa i Geoinżnierii Grupa nr: Ocena: Podpis:

Bardziej szczegółowo

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) 2. r s. ( i. REGRESJA (jedna zmienna) e s = + Y b b X. x x x n x. cov( (kowariancja) = (współczynnik korelacji) = +

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) 2. r s. ( i. REGRESJA (jedna zmienna) e s = + Y b b X. x x x n x. cov( (kowariancja) = (współczynnik korelacji) = + REGRESJA jda zma + prota rgrj zmj wzgldm. przlo wartoc paramtrów trukturalch cov r waga: a c cov kowaracja d r cov wpółczk korlacj Waracja rztowa. Nch gdz + wtd czl ozacza rd tadardow odchl od protj rgrj.

Bardziej szczegółowo

1 n 0,1, exp n

1 n 0,1, exp n 8. Właścwośc trmczn cał stałych W trakc zajęć będzmy omawać podstawow własnośc trmczn cał stałych, a szczgóln skupmy sę na cpl właścwym. Klasyczna dfncja cpła właścwgo wygląda następująco: C w Q (8.) m

Bardziej szczegółowo

Ó Ó ą ć ą ą ą Ź ą ą Ż Ż Ę Ó Ż ą ć ć ź Ó Ź ź ź ą Ó Ś ą ą ć ć Ż ą Ż ą Ó ą ć ą Ż Ó ć ć ć Ę ą Ó Ł Ó Ź Ę ą ć ć ź Ó Ź Ó Ź ć ć ą Ż ą ź Ż Ź ć ć ć Ż Ę Ą ą ą Ź Ż Ź Ź ź ź Ź ć ą ą ź ź Ż Ż Ą ź Ę ą ć ą ą Ó Ź ć Ę ź ź

Bardziej szczegółowo

Wykład Analiza jakościowa równań różniczkowych

Wykład Analiza jakościowa równań różniczkowych Na podstawie książki J. Rusinka, Równania różniczkowe i różnicowe w zarządzaniu, Oficna Wdawnicza WSM, Warszawa 2005. 21 maja 2012 Definicja Stabilność Niech = F (x, ) będzie równaniem różniczkowm. Rozwiązanie

Bardziej szczegółowo

Pozycjonowanie bazujące na wielosensorowym filtrze Kalmana. Positioning based on the multi-sensor Kalman filter

Pozycjonowanie bazujące na wielosensorowym filtrze Kalmana. Positioning based on the multi-sensor Kalman filter Scntfc ournal Martm Unvrt of Szczcn Zzt Naukow Akadma Morka w Szczcn 8, 13(85) pp. 5 9 8, 13(85). 5 9 ozcjonowan bazując na wlonorowm fltrz Kalmana otonng bad on th mult-nor Kalman fltr otr Borkowk, anuz

Bardziej szczegółowo

Jak zwiększyć efektywność i radość z wykonywanej pracy? Motywacja do pracy - badanie, szkolenie

Jak zwiększyć efektywność i radość z wykonywanej pracy? Motywacja do pracy - badanie, szkolenie Jak zwększyć fktywność radość z wykonywanj pracy? Motywacja do pracy - badan, szkoln czym sę zajmujmy? szkolna, symulacj Komunkacja, współpraca Cągł doskonaln Zarządzan zspołm Rozwój talntów motywacja

Bardziej szczegółowo

Ł Ł ć

Ł Ł ć Ą Ł Ł Ł Ś Ł Ś Ć Ł Ł ć ź ć ż ć ź ź Ą Ś ż ć Ż ż Ą Ż Ś ćż Ą ż Ż ć Ś ć ć ć Ł Ą ź ź Ł Ż Ź ć ć ć Ż Ś ż ż ć Ł ć ź ż ż ż ć Ą ź ż ć ż ż ż ź ż Ą Ż Ż ż Ż Ą ż ć ź ż ź ć Ż Ł ż Ś ć Ż ć ć ż ć Ć ć ć ć ć ż ć Ż Ł Ł Ż Ź

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA. WYDZIAŁ ORGANIZACJI I ZARZĄDZANIA. Katedra Podstaw Systemów Technicznych - Mechanika Stosowana. y P 1. Śr 1 (x 1,y 1 ) P 2

POLITECHNIKA ŚLĄSKA. WYDZIAŁ ORGANIZACJI I ZARZĄDZANIA. Katedra Podstaw Systemów Technicznych - Mechanika Stosowana. y P 1. Śr 1 (x 1,y 1 ) P 2 POLITECHNIKA ŚLĄSKA. WYDZIAŁ ORGANIZACI I ZARZĄDZANIA. Katedra Podstaw Sstemów Technicznch Płaska geometria mas c c 3c Dla zadanego pola przekroju wznaczć: - połoŝenie środka cięŝkości S( s, s ) - moment

Bardziej szczegółowo

Ó ć ź ź ę ń ę ź ń ę ć ź ć ę ę ć ń ć

Ó ć ź ź ę ń ę ź ń ę ć ź ć ę ę ć ń ć Ą ę Ą Ó ÓŁ Ę ę ęć ń ę Ą ń Ł ć Ó ć ź ź ę ń ę ź ń ę ć ź ć ę ę ć ń ć ę Ę ń ęć ń ęć ęć ęć ć ć ć ć ć Ę ę ę ć ć ę ń ęć ń ęć ęć ęć ń ć ć ę ń ę ń ę ę ź ć ć ź ę ź ć ę ę ć ę ć ę ń ę ń ź ź ć ę ę ć ć ć ę ć ę ę ę ń

Bardziej szczegółowo

Testy oparte na ilorazie wiarygodności

Testy oparte na ilorazie wiarygodności Ts opar a loraz wargodośc Probl sowaa hpoz Nch B P=P będz przsrzą sasczą prz cz = =. Probl. Na podsaw prób wu spru zwrfować hpozę wobc alraw. Rozwąza powższgo problu s fuca [] zwaa s sascz zradozowa lub

Bardziej szczegółowo

Badania zginanych belek

Badania zginanych belek Mechanika i wtrzmałość materiałów - instrukcja do ćwiczenia laboratorjneo: Badania zinanch belek oprac. dr inż. Ludomir J. JNKOWSKI, dr inż. nna NIKODM. Wprowadzenie W wtrzmałości materiałów stan obciążenia

Bardziej szczegółowo

wydanie 3 / listopad 2015 znaków ewakuacji i ochrony przeciwpożarowej PN-EN ISO 7010 certyfikowanych pr zez C N B O P www.znaki-tdc.

wydanie 3 / listopad 2015 znaków ewakuacji i ochrony przeciwpożarowej PN-EN ISO 7010 certyfikowanych pr zez C N B O P www.znaki-tdc. Stosowani znaków wakuacji i ochron przciwpożarowj crtfikowanch pr zz C N B O P www.znaki-tdc.com wdani 3 / listopad 2015 AA 001 Wjści wakuacjn AA 010 Drzwi wakuacjn AA 009 Drzwi wakuacjn AA E001 E001 AA

Bardziej szczegółowo

ż Ą Ź Ą Ż ź ż ć Ą ż ź ć ź Ś ż ź ć ż ĄĄ ż ż ź ż ć ć Ę ć ż ć Ś ć ć ź ż ż ć ż ć Ę ć Ę Ę ż ż Ę ć Ś ż ć ż ć ż Ą ź ż źć ż ż ż ż ź ź ż ć ć ż ć ż ć ć ż Ę ć ź ć ć ż ć ć ż ć ć ć ć ż Źć ź ż ć ć Ę Ą Ę ć ź Ę Ę ż Ę

Bardziej szczegółowo

Przetwarzanie sygnałów biomedycznych

Przetwarzanie sygnałów biomedycznych Prztwarzani sygnałów biomdycznych dr hab. inż. Krzysztof Kałużyński, prof. PW Człowik- najlpsza inwstycja Projkt współfinansowany przz Unię Europjską w ramach Europjskigo Funduszu Społczngo Wykład XI Filtracja

Bardziej szczegółowo

Całkowanie przez podstawianie i dwa zadania

Całkowanie przez podstawianie i dwa zadania Całkowanie przez podstawianie i dwa zadania Antoni Kościelski Funkcje dwóch zmiennch i podstawianie Dla funkcji dwóch zmiennch zachodzi następując wzór na całkowanie przez podstawianie: f(x(a, b), (a,

Bardziej szczegółowo

9. WYBRANE ZAGADNIENIA DYNAMIKI KONSTRUKCJI

9. WYBRANE ZAGADNIENIA DYNAMIKI KONSTRUKCJI 9. WYBRANE ZAGADNIENIA DYNAMIKI KONSRUKCJI 9. WYBRANE ZAGADNIENIA DYNAMIKI KONSRUKCJI W rozdzal 5 wyprowadzlśmy równan równowag saycznj dla cała analzowango modą lmnów skończonych. Równan o można równż

Bardziej szczegółowo

Ń Ą Ń Ń Ń

Ń Ą Ń Ń Ń ŁĄ Ń Ł ć ć ć Ę Ę Ą Ą Ę Ń Ą Ń Ń Ń Ń ć Ą Ź ć Ź ć Ź ć ź ź Ł Ą Ę ć ć Ę Ć Ć Ą ć Ć Ć Ł Ć Ź Ć Ą Ą Ą Ą ĄĄ Ć Ą Ą Ą ć Ć Ł Ć Ę Ć Ć Ę Ę Ć Ć Ę Ą Ć Ć Ń Ń Ć Ę Ć Ł Ć Ł Ą Ę Ź Ć Ł Ę Ł Ł Ł Ę Ę Ł Ę Ł Ć Ć Ą Ę Ł Ą Ć Ą Ź Ą Ę

Bardziej szczegółowo

Wartości i wektory własne

Wartości i wektory własne Rozdział 7 Wartości i wektor własne Niech X będzie skończenie wmiarową przestrzenią liniową nad ciałem F = R lub F = C. Niech f : X X będzie endomorfizmem, tj. odwzorowaniem liniowm przekształającm przestrzeń

Bardziej szczegółowo

Technika Próżniowa. Przyszłość zależy od dobrego wyboru produktu. Wydanie Specjalne.

Technika Próżniowa. Przyszłość zależy od dobrego wyboru produktu. Wydanie Specjalne. Technika Próżniowa Przyszłość zależy od dobrego wyboru produktu Wydanie Specjalne www.piab.com P6040 Dane techniczne Przepływ podciśnienia Opatentowana technologia COAX. Dostępna z trójstopniowym wkładem

Bardziej szczegółowo

Uogólnione wektory własne

Uogólnione wektory własne Uogólnion wktory własn m Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do

Bardziej szczegółowo

Ń Ś Ó Ó Ć Ś ŃŃ Ó Ą

Ń Ś Ó Ó Ć Ś ŃŃ Ó Ą Ń Ó Ń Ń Ś Ń Ą Ń Ą Ź Ź Ą Ś Ż Ń Ć Ń Ń Ń Ń Ń Ś Ó Ó Ć Ś ŃŃ Ó Ą Ń Ń Ź Ś ĄŃ Ż Ń Ą Ć Ś Ą Ą Ń Ó Ą Ą Ś Ó Ą Ń Ą Ą Ą Ą Ń Ą Ś Ś Ą Ń Ą Ć Ó Ą Ś Ń Ą Ą Ą Ą Ń Ą Ń Ą Ą Ą Ą Ż Ż Ś Ń Ń Ń Ó Ó Ś Ż Ó Ą Ń Ń Ń Ń Ń Ą Ą Ń Ą Ń Ą Ą

Bardziej szczegółowo

ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY

ALGORYTM STATYCZNEJ ANALIZY MES DLA KRATOWNICY ALGORYTM STATYCZNEJ ANALIZY MES DLA RATOWNICY Piotr Pluciński e-mail: p.plucinski@l5.pk.edu.pl Jerzy Pamin e-mail: jpamin@l5.pk.edu.pl Instytut Technologii Informatycznych w Inżynierii Lądowej Wydział

Bardziej szczegółowo

Diagonalizacja macierzy kwadratowej

Diagonalizacja macierzy kwadratowej Dagonalzacja macerzy kwadratowej Dana jest macerz A nân. Jej wartośc własne wektory własne spełnają równane Ax x dla,..., n Każde z równań własnych osobno można zapsać w postac: a a an x x a a an x x an

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA. Wkład wstępn. Teora prawdopodobeństwa element kombnatork. Zmenne losowe ch rozkład 3. Populacje prób danch, estmacja parametrów 4. Testowane hpotez statstcznch 5. Test parametrczne

Bardziej szczegółowo