OCHRONA PRZECIWPOŻAROWA BUDYNKÓW

Wielkość: px
Rozpocząć pokaz od strony:

Download "OCHRONA PRZECIWPOŻAROWA BUDYNKÓW"

Transkrypt

1 95 V. OCHRONA PRZCWPOŻAROWA BUDYNKÓW 34 tapy rozwoju pożaru Ohroa prziwpożarowa uwzględia astępują fazy rozwoju pożaru:. Lokala iijaja pożaru i jgo arastai.. Radiayja i kowkyja wymiaa ipła między źródłm pożaru a kostrukją.. Gwałtow wydzilaia się dymu, gazów spaliowyh i toksy. V. Przpływy ipła w lmtah kostrukji. V. woluja aprężń wywoła pożarm oraz koskwj pożaru dla trwałośi i waruków ksploatayjyh budowli. Podstawy wymóg ohroy prziwpożarowj to taki zaprojktowai budyku, łązi z drogami wakuaji, aby w iągu okrślogo zasu (mi. 2mi) od iijaji pożaru ludzi mogli opuśić obikt. Poszzgól fazy arastaia pożaru w pomiszziah budyku przdstawia się a rysuku a) b) t > ) t 2 3mi j t = log + 1 t j t >> Rys azy rozwoju pożaru: a) lokala iijaja pożaru, b) pożar pły, ) zaikai pożaru

2 96 W pirwszj koljośi alży wyzazyć rozkłady tmpratury w przkrojah kostrukji wywoła przz przkaz rgii od mijsa spalaia do powirzhi kostrukji. Mamy tu do zyiia główi z kowkyjym i radiayjym przpływm ipła, którgo podstawy podao w rozdzial pray. Wpływ t w uproszzoj formi przyjmuj się jako zmiaę tmpratury θ a powirzhi kostrukji w fukji zasu θ = = 345 lg (8t 1), (34.1) + gdzi, tmpratura aktuala i pozątkowa C, t zas w miutah. Zają rozkład tmpratur w przkroju pręta, uzyskay z rówaia przwoditwa, wyzazamy dformaj trmiz, a dalj aprężia. x q ( x) q Rys Rozkład tmpratury w przkroju lmtu 35 Naprężia pożarow w kostrukji stalowj Zają rozkład tmpratur jstśmy w stai wyzazyć aprężia oraz okrślić mijsa, w któryh kostrukja ulgi ziszziu. Potrafimy jdak uwzględiać tylko liiow rozkłady tmpratur. Wob tgo alży przkrój zgiay podzilić a warstwy i w każdj z ih założyć liiow rozkłady tmpratury lub przyjąć, ż a dol warstwy wystąpi tmpratura a a górz. Rozkład tmpratur wywoła w układzi siłę osiową i momty zgiają.

3 97 σ/g Kowjoal płyięi plastyz Graia plastyzośi ylko odkształi sprężyst Dyfuzja po graiah Płyięi plastyz,5 1, Dyfuzja wzdłuż liii dyslokaji Płzaia dyslokayj Dyfuzja objętośiowa Dyfuzja objętośiowa / M Rys Mhaizmy odkształia plastyzgo przy różyh aprężiah i tmpraturah Rozważaia mhaiz rozpozimy od przyjęia rozkładu dformaji ε a zęść sprężystą ε, lpką ε i iplą ε ε = ε + ε + ε. (35.1) Otrzymamy stąd rówai a aprężia σ w torii starzia σ m ε = + A( ) σ + α, (35.2) σ m gdzi ε =, ε = A( ) σ, ε = α. oria lpkigo płyięia aalizuj przyrosty stau dformaji w zasi pożaru. oria ta lpij opisuj pros Rówaia fizyz w tym przypadku mają formę & ε = & ε + & ε + & ε. (35.3) & σ & ε = + B& ( ) σ + α &. (35.4)

4 98 W rówaiu tym prędkość odkształń lpkih jst proporjoala do -tj potęgi aprężń. s ds z ε ε d σ κ Rys Dformaj i aprężia pożarow Rówai a odkształia włóki przkroju w zasi pożaru mają postać & ε = & κ z + & ε. (35.5) W dalszyh rozważaiah dla prostoty przyjmujmy, ż ε. Rówai fizyz torii lpkigo płyięia przy uwzględiiu rówań gomtryzyh (35.5) & σ & ε = + B& ( ) σ z& d + α (35.6) i sałkowaiu po zgiaym przkroju prowadzi do rakji 2 1 & κ z d = z d B & σ + & + & ( ) σ zd α zd z którj wyzazamy prędkość zmia krzywizy pręta, (35.7) M& 1 α ˆ & κ = + B( ) σ zd + &. (35.8) Z klasyzj mhaiki kostrukji zaa jst rlaja między prędkośiami przmiszzń i krzywiz postai u& = κ& a ds. (35.9)

5 Podobi w mhai kostrukji, siły wwętrz są liiowymi fukjami obiążń P i sił adlizbowyh X 99 & a X& M = + b P&. (35.1) Wstawiają ( ) do ( ) a astępi do ( ) otrzymujmy rówaia statyki 1 1 α ˆ u& = < ( a X& + b P& ) + B& ( ) z d ds σ + > a (35.11) kostrukji stalowyh w zasi pożaru. Z tgo ogólgo rówaia jako przypadk szzgóly, kidy u& =, wyikają rówaia, z któryh moża wyzazyć ajpirw siły adlizbow X, a dalj aprężia w kostrukji stalowj w zasi pożaru. Aalizować będzimy traz okrs przjśiowy od płgo pożaru do jgo zaikaia, kidy występują ajwiększ, prawi ustalo stay aprężń Wtdy moża założyć, ż P & oraz X &. Ulgą wówzas dużmu uproszziu rówai mairzow (35.9). Będzi 1 & u & = { B& ( ) z d α }a ds σ + (35.12) Wtdy tż zmiay prędkośi przmiszzń u & = u& ( t + h) u& ( t) jako progoza stopia wzrostu dformaji popożarowyh, okrślo zostaą irówośią: 1 B& & u u t h u t & & = & ( + ) &( ) = a ds u& gr.(35.13) { h G z d + α h} t Przykład V.1 Nalży oszaować prędkośi arastaia przmiszzń w statyzi wyzazalj kostrukji stalowj objętj pożarm. Zamy rozkłady tmpratur w poszzgólyh przkrojah kostrukji (t ; s, z) oraz obiążia stał P, tak ż P & =. Odpowidź: Korzystać będzimy z ogólj zalżośi (35.8) a prędkość przmiszzń u. W zalżośi tj dla X = - zadai statyzi iwykoal i P & =, ziki pirwsza ałka. tąd 1 u & ( t; s ) = < B& ( ) z d + ˆ > a( s, s ) ds l σ α.

6 1 Wktor przmiszzń u = u, u... u ) zawira przmiszzia w - ( 1 2, puktah kostrukji, atomiast wktor a = [ M 1( s1),... M 1( s )] - to układ momtów pohodząyh od sił jdostkowyh przyłożoyh koljo w przkrojah s, s,...,. W wytyzyh ohroy ogiowj zajdują się 1 2 s ograizia prędkośi arastaia przmiszzń u& [ m gr ]. h spłii s w aszym zadaiu prowadzi do rlaji u & & ) u&. ( u gr

ANALIZA FOURIEROWSKA szybkie transformaty Fouriera

ANALIZA FOURIEROWSKA szybkie transformaty Fouriera AALIZA FOURIEROWSKA szybi trasformaty Fourira dowola fuję priodyzą F( w zasi lub przstrzi (tx, ors T) moża przdstawić jao () F( b o + [ a si( + b os( ] gdzi π / T lub ω zauważmy, ż ω, jst ajiższą zęstośią

Bardziej szczegółowo

MMF ćwiczenia nr 1 - Równania różnicowe

MMF ćwiczenia nr 1 - Równania różnicowe MMF ćwiczia r - Rówaia różicow Rozwiązać rówaia różicow pirwszgo rzędu: y + y = y = y + y =! y = Wsk Podzilić rówai przz! i podstawić z y /( )! Rozwiązać rówaia różicow drugigo rzędu: 5 6 F F F F F (ciąg

Bardziej szczegółowo

- Jeśli dany papier charakteryzuje się wskaźnikiem beta równym 1, to premia za ryzyko tego papieru wartościowego równa się wartości premii rynkowej.

- Jeśli dany papier charakteryzuje się wskaźnikiem beta równym 1, to premia za ryzyko tego papieru wartościowego równa się wartości premii rynkowej. Śrdni waŝony koszt kapitału (WACC) Spółki mogą korzystać z wilu dostępnych na rynku źródł finansowania: akcj zwykł, kapitał uprzywiljowany, krdyty bankow, obligacj, obligacj zaminn itd. W warunkach polskich

Bardziej szczegółowo

Inwestycje. MPK = R/P = uc (1) gdzie uc - realny koszt pozyskania kapitału. Przyjmując, że funkcja produkcji ma postać Cobba-Douglasa otrzymamy: (3)

Inwestycje. MPK = R/P = uc (1) gdzie uc - realny koszt pozyskania kapitału. Przyjmując, że funkcja produkcji ma postać Cobba-Douglasa otrzymamy: (3) Dr Barłomij Rokicki Ćwiczia z Makrokoomii II Iwsycj Iwsycj są ym składikim PB, kóry wykazuj ajwiększą skłoość do flukuacji czyli wahań. Spadk popyu a dobra i usługi jaki js obsrwoway podczas rcsji zwykl

Bardziej szczegółowo

Rachunek ekonomiczny i siły sprawcze stosowania OZE i termomodernizacji

Rachunek ekonomiczny i siły sprawcze stosowania OZE i termomodernizacji Rachuk koomiczy i siły sprawcz stosowaia OZE i trmomodrizacji M.Bogacki, S.Pasirb I. DZIAŁASZ EKONOMICZNIE WIĘC RACHUJESZ 1. Miimum koomii w Twoich dcyzjach 1.1. Kidy i o czym dcydujsz Przd ami i przd

Bardziej szczegółowo

Rachunek ekonomiczny i siły sprawcze stosowania OZE i termomodernizacji

Rachunek ekonomiczny i siły sprawcze stosowania OZE i termomodernizacji Rachuk koomiczy i siły sprawcz stosowaia OZE i trmomodrizacji M.Bogacki, S.Pasirb I. DZIAŁASZ EKONOMICZNIE WIĘC RACHUJESZ 1. Miimum koomii w Twoich dcyzjach 1.1. Kidy i o czym dcydujsz Przd ami i przd

Bardziej szczegółowo

Farmakokinetyka furaginy jako przykład procesu pierwszego rzędu w modelu jednokompartmentowym zawierającym sztuczną nerkę jako układ eliminujący lek

Farmakokinetyka furaginy jako przykład procesu pierwszego rzędu w modelu jednokompartmentowym zawierającym sztuczną nerkę jako układ eliminujący lek 1 Matriał tortyczny do ćwicznia dostępny jst w oddzilnym dokumnci, jak równiż w książc: Hrmann T., Farmakokintyka. Toria i praktyka. Wydawnictwa Lkarski PZWL, Warszawa 2002, s. 13-74 Ćwiczni 6: Farmakokintyka

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = =

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = = WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Wprowadzeie. Przy przejśiu światła z jedego ośrodka do drugiego występuje zjawisko załamaia zgodie z prawem Selliusa siα

Bardziej szczegółowo

LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.

LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Komisja Egzamiacyja la Akuariuszy LIII Egzami la Akuariuszy z 3 paźzirika 0 r. Część II Mamayka ubzpiczń życiowych Imię i azwisko osoby gzamiowaj:... Czas gzamiu: 00 miu Warszawa, 3 paźzirika 0 r. Mamayka

Bardziej szczegółowo

Instrukcja dodawania reklamy

Instrukcja dodawania reklamy Istrukja dodawaa rklam b s tu P w r st la m uj m C S ku t r k www.p.om www.sawa.om www.orst.om fabook.om/p a h Krok 1 Rjstraja owgo użtkowka la m uj m 1. Whodm a jd trh portal, klkam a lk dodaj rklamę

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia

Bardziej szczegółowo

Ćwiczenie nr 5 BADANIE SOCZEWKI

Ćwiczenie nr 5 BADANIE SOCZEWKI Ćwizeie r 5 BADANIE SOCZEWKI. Wprowazeie Zolość sozewe o załamywaia promiei świetlyh uzależioa jest o astępująyh zyiów: a) ształtu powierzhi załamująyh promieie rzywiz b) materiału z tórego są wyoae współzyi

Bardziej szczegółowo

CHARAKTERYSTYKA OBCIĄŻENIOWA

CHARAKTERYSTYKA OBCIĄŻENIOWA Opracowani: dr inż. Ewa Fudalj-Kostrzwa CHARAKTERYSTYKA OBCIĄŻENIOWA Charaktrystyki obciążniow są wyznaczan w ramach klasycznych statycznych badań silników zarówno dla silników o zapłoni iskrowym jak i

Bardziej szczegółowo

ZASTOSOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZESPOŁU PRĄDOTWÓRCZEGO W SIŁOWNI OKRĘTOWEJ

ZASTOSOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZESPOŁU PRĄDOTWÓRCZEGO W SIŁOWNI OKRĘTOWEJ Chybowski L. Grzbiniak R. Matuszak Z. Maritim Acadmy zczcin Poland ZATOOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZEPOŁU PRĄDOTWÓRCZEGO W IŁOWNI OKRĘTOWEJ ummary: Papr prsnts issus of application

Bardziej szczegółowo

ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO

ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO Łukasz MACH Strszczni: W artykul przdstawiono procs budowy modlu rgrsji logistycznj, którgo clm jst wspomagani

Bardziej szczegółowo

Zakład Ubezpieczeń Społecznych Departament Zamówień Publicznych ul. Szamocka 3, 5, 01-748 Warszawa tel: 22 667 17 04, fax: 22 667 17 33

Zakład Ubezpieczeń Społecznych Departament Zamówień Publicznych ul. Szamocka 3, 5, 01-748 Warszawa tel: 22 667 17 04, fax: 22 667 17 33 Zakład Ubzpiczń Społcznych Dpartamnt Zamówiń Publicznych ul. Szamocka 3, 5, 01-748 Warszawa tl: 22 667 17 04, fax: 22 667 17 33 993200/271/IN- 268/15 Warszawa, dnia 19.03.2015 r. Informacja dla Wykonawców,

Bardziej szczegółowo

Zeszyty Problemowe Maszyny Elektryczne Nr 73/2005 37

Zeszyty Problemowe Maszyny Elektryczne Nr 73/2005 37 Zszyty Problmo Maszyy lktrycz Nr 7/2005 7 Tadusz Glika BOBRM Koml, Katoic ZUŻYCI NRGII LKTRYCZNJ UKŁADACH NAPĘDOYCH PRZNOŚNIKÓ TAŚMOYCH LCTRICAL NRGY CONSUMPTION BY CONVYOR BLTS DRIV SYSTM Abstract: High

Bardziej szczegółowo

Wprowadzenie. metody elementów skończonych

Wprowadzenie. metody elementów skończonych Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów

Bardziej szczegółowo

Tw: (O promieniu zbieżności R szeregu potęgowego ) Jeżeli istnieje granica. to R = ) ciąg liczb zespolonych

Tw: (O promieniu zbieżności R szeregu potęgowego ) Jeżeli istnieje granica. to R = ) ciąg liczb zespolonych Automatya i Rootya Aaliza Wyład dr Adam Ćmil cmil@agh.du.pl SZEREGI POTĘGOWE ( c ciąg licz zspoloych c ( z z - szrg potęgowy, gdzi ( c - ciąg współczyiów szrgu, z C - środ, ctrum (ustalo, z C - zmia. Dla

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA Wydział Elektrotechniki i Automatyki Katedra Energoelektroniki i Maszyn Elektrycznych LABORATORIUM

POLITECHNIKA GDAŃSKA Wydział Elektrotechniki i Automatyki Katedra Energoelektroniki i Maszyn Elektrycznych LABORATORIUM POLITECHNIKA GDAŃSKA Wydział Elktrotchniki i Automatyki Katdra Enrgolktroniki i Maszyn Elktrycznych LABORATORIUM SYSTEMY ELEKTROMECHANICZNE TEMATYKA ĆWICZENIA MASZYNA SYNCHRONICZNA BADANIE PRACY W SYSTEMIE

Bardziej szczegółowo

Zmiana wartości pieniądza

Zmiana wartości pieniądza Ziaa watości piiądza w czasi topa dyskotowa Wydatki i fkty astępują w óży czasi, tzba więc uwzględić fakt, ż watość piiądza ziia się w czasi, więc taka saa sua piiędzy będzi iała ią watość w óży czasi.

Bardziej szczegółowo

Daniel Lazur Podborze 100 Zespół Szkół w Mielcu

Daniel Lazur Podborze 100 Zespół Szkół w Mielcu Danil Lazur Podborz 00 Zspół Szkół w Milcu Tmat 8. Zaangażowani gmin na rzcz rozwoju Odnawialnych Źródł Enrgii czy twoja gmina jst aktywna? Przdstawini możliwości rozwoju OZE w Gmini Przcław, na tl zaangażowania

Bardziej szczegółowo

OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD

OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI ALGORYTM DO PROGRAMU MATHCAD 1 PRAWA AUTORSKIE BUDOWNICTWOPOLSKIE.PL GRUDZIEŃ 2010 Rozpatrujemy belkę swobodie podpartą obciążoą siłą skupioą, obciążeiem rówomierie

Bardziej szczegółowo

W wielu przypadkach zadanie teorii sprężystości daje się zredukować do dwóch

W wielu przypadkach zadanie teorii sprężystości daje się zredukować do dwóch Wykład 5 PŁASKI ZADANI TORII SPRĘŻYSTOŚCI Płaski sta arężeia W wielu rzyadkach zadaie teorii srężystości daje się zredukować do dwóch wymiarów Przykładem może być cieka tarcza obciążoa siłami działającymi

Bardziej szczegółowo

Przykład 2.6. Przekrój złożony z trzech kształtowników walcowanych.

Przykład 2.6. Przekrój złożony z trzech kształtowników walcowanych. Przkłd 6 Przkrój złożon z trzh ksztłtowników wlownh Polni: Wznzć główn ntrln momnt bzwłdnośi orz kirunki główn dl poniższgo przkroju złożongo z trzh ksztłtowników wlownh 0800 0 80800 Dn dotzą ksztłtowników

Bardziej szczegółowo

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi Zatem rzyszła wartość kaitału o okresie kaitalizacji wyosi m k m* E Z E( m r) 2 Wielkość K iterretujemy jako umowa włatę, zastęującą w rówoważy sosób, w sesie kaitalizacji rostej, m włat w wysokości E

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ Opracował: Dr iż. Grzegorz

Bardziej szczegółowo

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja

Wykład. Inwestycja. Inwestycje. Inwestowanie. Działalność inwestycyjna. Inwestycja Iwestycja Wykład Celowo wydatkowae środki firmy skierowae a powiększeie jej dochodów w przyszłości. Iwestycje w wyiku użycia środków fiasowych tworzą lub powiększają majątek rzeczowy, majątek fiasowy i

Bardziej szczegółowo

LABORATORIUM PODSTAW SILNIKÓW I NAPĘDÓW SPALINOWYCH. Ćwiczenie 2 POMIARY PODSTAWOWYCH PARAMETRÓW PRACY SILNIKÓW SPALINOWYCH

LABORATORIUM PODSTAW SILNIKÓW I NAPĘDÓW SPALINOWYCH. Ćwiczenie 2 POMIARY PODSTAWOWYCH PARAMETRÓW PRACY SILNIKÓW SPALINOWYCH Dr inŝ. Sławomir Makowski WYDZIAŁ MECHANICZNY POLITECHNIKI GDAŃSKIEJ KATEDRA SILNIKÓW SPALINOWYCH I SPRĘśAREK Kirownik katdry: prof. dr hab. inŝ. Andrzj Balcrski, prof. zw. PG LABORATORIUM PODSTAW SILNIKÓW

Bardziej szczegółowo

REGULAMIN ŚWIADCZENIA USŁUGI DORADZTWA DLA PRZEDSIĘBIORSTW W EFIX DOM MAKLERSKI S.A.

REGULAMIN ŚWIADCZENIA USŁUGI DORADZTWA DLA PRZEDSIĘBIORSTW W EFIX DOM MAKLERSKI S.A. REGULAMIN ŚWIADCZENIA USŁUGI DORADZTWA DLA PRZEDSIĘBIORSTW W EFIX DOM MAKLERSKI S.A. Rozdział I. POSTANOWIENIA OGÓLNE 1. Rgulamin okrśla zasady świadcznia usługi doradztwa dla przdsiębiorstw w zakrsi:

Bardziej szczegółowo

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił 3.7.. Reducja dowolego uładu sił do sił i par sił Dowolm uładem sił będiem awać uład sił o liiach diałaia dowolie romiescoch w prestrei. tm pucie ajmiem się sprowadeiem (reducją) taiego uładu sił do ajprostsej

Bardziej szczegółowo

Elementy matematyki finansowej

Elementy matematyki finansowej Elmty matmatyki fiasowj RZEDMIIOT : EFEKTYWNOŚĆ SYSTEMÓW IINFORMATYCZNYCH Elmty matmatyki fiasowj Wykład: Elmty Matmatyki Fiasowj la Wykładu Tmat: Elmty matmatyki fiasowj Zaczi czasu w oci fktywości iwstycji

Bardziej szczegółowo

Przetwarzanie sygnałów biomedycznych

Przetwarzanie sygnałów biomedycznych Prztwarzani sygnałów biomdycznych dr hab. inż. Krzysztof Kałużyński, prof. PW Człowik- najlpsza inwstycja Projkt współfinansowany przz Unię Europjską w ramach Europjskigo Funduszu Społczngo Wykład XI Filtracja

Bardziej szczegółowo

REGULAMIN PSKO 2016. I. Kryteria i wymagania dla zawodników Optimist PSKO. II. Mistrzostwa PSKO. III. Puchar Polski PSKO

REGULAMIN PSKO 2016. I. Kryteria i wymagania dla zawodników Optimist PSKO. II. Mistrzostwa PSKO. III. Puchar Polski PSKO I. Krytria i wymagania dla zawodników Optimist PSKO 1. W rgatach PSKO mogą startować zawodnicy do lat 15 posiadający licncję sportową PZŻ, aktualn ubzpiczni OC i będący członkami PSKO, spłniający wymagania

Bardziej szczegółowo

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 + Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch

Bardziej szczegółowo

ĆWICZENIE 11 OPTYMALIZACJA NIEZAWODNOŚCIOWA STRUKTURY ELEKTRONICZNEGO SYSTEMU BEZPIECZEŃSTWA

ĆWICZENIE 11 OPTYMALIZACJA NIEZAWODNOŚCIOWA STRUKTURY ELEKTRONICZNEGO SYSTEMU BEZPIECZEŃSTWA ĆWICZENIE OPTYMALIZACJA NIEZAWODNOŚCIOWA STUKTUY ELEKTONICZNEGO SYSTEMU EZPIECZEŃSTWA Cl ćwicznia: zapoznani z analizą nizawodnościowo-ksploaacyjną lkronicznych sysmów bzpiczńswa; wyznaczni wybranych wskaźników

Bardziej szczegółowo

Ć W I C Z E N I E N R E-14

Ć W I C Z E N I E N R E-14 INSTYTUT FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I TECHNOLOGII MATERIAŁÓW POLITECHNIKA CZĘSTOCHOWSKA PRACOWNIA ELEKTRYCZNOŚCI I MAGNETYZMU Ć W I C Z E N I E N R E-14 WYZNACZANIE SZYBKOŚCI WYJŚCIOWEJ ELEKTRONÓW

Bardziej szczegółowo

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych Laboratorium Półprzwodniki Dilktryki Magntyki Ćwiczni nr Badani matriałów frromagntycznych I. Zagadninia do przygotowania:. Podstawow wilkości charaktryzując matriały magntyczn. Związki pomiędzy B, H i

Bardziej szczegółowo

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi.

N ( µ, σ ). Wyznacz estymatory parametrów µ i. Y które są niezależnymi zmiennymi losowymi. 3 Metody estymacj N ( µ, σ ) Wyzacz estymatory parametrów µ 3 Populacja geerala ma rozład ormaly mometów wyorzystując perwszy momet zwyły drug momet cetraly z prób σ metodą 3 Zmea losowa ma rozład geometryczy

Bardziej szczegółowo

Ć wiczenie 17 BADANIE SILNIKA TRÓJFAZOWEGO KLATKOWEGO ZASILANEGO Z PRZEMIENNIKA CZĘSTOTLIWOŚCI

Ć wiczenie 17 BADANIE SILNIKA TRÓJFAZOWEGO KLATKOWEGO ZASILANEGO Z PRZEMIENNIKA CZĘSTOTLIWOŚCI Ć wiczeie 7 BADANIE SILNIKA TRÓJFAZOWEGO KLATKOWEGO ZASILANEGO Z RZEIENNIKA CZĘSTOTLIWOŚCI Wiadomości ogóle Rozwój apędów elektryczych jest ściśle związay z rozwojem eergoelektroiki Współcześie a ogół

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 760 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 59 2013

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 760 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 59 2013 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 760 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 59 2013 KAROL MAREK KLIMCZAK SYMULACJA FINANSOWA SPÓŁKI ZA POMOCĄ MODELU ZYSKU REZYDUALNEGO Słowa kluczow:

Bardziej szczegółowo

Katastrofą budowlaną jest nie zamierzone, gwałtowne zniszczenie obiektu budowlanego lub jego części, a także konstrukcyjnych elementów rusztowań,

Katastrofą budowlaną jest nie zamierzone, gwałtowne zniszczenie obiektu budowlanego lub jego części, a także konstrukcyjnych elementów rusztowań, O A A O O! Katastrofą budowlaną jst ni zamirzon, gwałtown zniszczni obiktu budowlango lub jgo części, a takż konstrukcyjnych lmntów rusztowań, lmntów formujących, ściank szczlnych i obudowy wykopów (art.

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

Niepewności pomiarowe

Niepewności pomiarowe Niepewości pomiarowe Obserwacja, doświadczeie, pomiar Obserwacja zjawisk fizyczych polega a badaiu ych zjawisk w warukach auralych oraz a aalizie czyików i waruków, od kórych zjawiska e zależą. Waruki

Bardziej szczegółowo

Ubezpieczenie w razie poważnego zachorowania. Maj 2012

Ubezpieczenie w razie poważnego zachorowania. Maj 2012 LifProtct Ubzpiczni w razi poważngo zachorowania. Maj 2012 Nasz plan ubzpiczniowy dotyczący poważnych zachorowań stanowi najbardzij komplksową ochronę tgo typu dostępną w Irlandii. Podniśliśmy jakość polisy

Bardziej szczegółowo

Elektrony, kwanty, fotony

Elektrony, kwanty, fotony Wstęp. Elktrony, kwanty, fotony dr Janusz B. Kępka Sir Isaa Nwton (angilski fizyk i filozof, 16-177) w swym znakomitym dzil Optiks (170 r.) rozważał zarówno korpuskularny jak i falowy araktr światła, z

Bardziej szczegółowo

PARCIE GRUNTU. Przykłady obliczeniowe. Zadanie 1.

PARCIE GRUNTU. Przykłady obliczeniowe. Zadanie 1. MECHANIA GRUNTÓW ćwicznia, dr inż. Irnusz Dyka irunk studiów: Budownictwo Rok III, s. V Zadani. PARCIE GRUNTU Przykłady obliczniow Przdstawion zostały wyniki obliczń parcia czynngo i birngo (odporu) oraz

Bardziej szczegółowo

Statystyczna kontrola procesu karty kontrolne Shewharta.

Statystyczna kontrola procesu karty kontrolne Shewharta. tatystyza kotrola proesu karty kotrole hewharta. Każe przesiębiorstwo proukyje, ąży o tego, aby proukty które wytwarza były jak ajlepszej jakośi. W zisiejszyh zasah, to właśie jakość pozwala utrzymać się

Bardziej szczegółowo

WYMAGANIA PROGRMOWE NA STOPNIE W KLASIE 6 PRZYRODA, WITAJ Szkoły Podstawowej w Rogowie Sobóckim

WYMAGANIA PROGRMOWE NA STOPNIE W KLASIE 6 PRZYRODA, WITAJ Szkoły Podstawowej w Rogowie Sobóckim WYMAGANIA PROGRMOWE NA STOPNIE W KLASIE 6 PRZYRODA, WITAJ Szkoły Podstawowj w Rogowi Sobóckim tmat lkcji Wymagania podstawow Uczń: ocna dopuszczająca ocna dostatczna ocna dobra Wymagania ponadpodstawow

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA NIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTT EKSPLOATACJI MASZYN I TRANSPORT ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E13 BADANIE ELEMENTÓW

Bardziej szczegółowo

WPŁYW STÓP PROCENTOWYCH W USA I W STREFIE EURO NA STOPY PROCENTOWE W POLSCE I. STOPY PROCENTOWE W GOSPODARCE OTWARTEJ.

WPŁYW STÓP PROCENTOWYCH W USA I W STREFIE EURO NA STOPY PROCENTOWE W POLSCE I. STOPY PROCENTOWE W GOSPODARCE OTWARTEJ. Ewa Czapla Instytut Ekonomii i Zarządzania Politchnika Koszalińska WPŁYW STÓP PROCENTOWYCH W USA I W STREFIE EURO NA STOPY PROCENTOWE W POLSCE I. STOPY PROCENTOWE W GOSPODARCE OTWARTEJ. Stopy procntow

Bardziej szczegółowo

METODYKA WYKONYWANIA POMIARÓW ORAZ OCENA NIEPEWNOŚCI I BŁĘDÓW POMIARU

METODYKA WYKONYWANIA POMIARÓW ORAZ OCENA NIEPEWNOŚCI I BŁĘDÓW POMIARU METODYKA WYKONYWANIA POMIARÓW ORAZ OCENA NIEPEWNOŚCI I BŁĘDÓW POMIARU Celem każdego ćwiczeia w laboratorium studeckim jest zmierzeie pewych wielkości, a astępie obliczeie a podstawie tych wyików pomiarów

Bardziej szczegółowo

EKONOMETRIA. Ekonometryczne modele specjalne. Zbigniew.Tarapata zbigniew.tarapata.akcja.pl/p_ekonometria/ tel.

EKONOMETRIA. Ekonometryczne modele specjalne.   Zbigniew.Tarapata zbigniew.tarapata.akcja.pl/p_ekonometria/ tel. EKONOMETRIA Tmat wykładu: Ekonomtryczn modl spcjaln Prowadzący: dr inż. Zbigniw TARAPATA -mail: Zbigniw.Tarapata Tarapata@isi.wat..wat.du.pl http:// zbigniw.tarapata.akcja.pl/p_konomtria/ tl.: 0-606-45-54-80

Bardziej szczegółowo

REGULAMIN PRZYJMOWANIA I PRZEKAZYWANIA ZLECEŃ NABYCIA LUB ZBYCIA INSTRUMENTÓW FINANSOWYCH PRZEZ EFIX DOM MAKLERSKI S.A.

REGULAMIN PRZYJMOWANIA I PRZEKAZYWANIA ZLECEŃ NABYCIA LUB ZBYCIA INSTRUMENTÓW FINANSOWYCH PRZEZ EFIX DOM MAKLERSKI S.A. REGULAMIN PRZYJMOWANIA I PRZEKAZYWANIA ZLECEŃ NABYCIA LUB ZBYCIA INSTRUMENTÓW FINANSOWYCH PRZEZ EFIX DOM MAKLERSKI S.A. Rozdział I. POSTANOWIENIA OGÓLNE 1. Rgulamin okrśla zasady przyjmowania i przkazywania

Bardziej szczegółowo

.pl KSIĄŻKA ZNAKU. Portal Kulturalny Warmii i Mazur. www.eświatowid.pl. Przygotował: Krzysztof Prochera. Zatwierdził: Antoni Czyżyk

.pl KSIĄŻKA ZNAKU. Portal Kulturalny Warmii i Mazur. www.eświatowid.pl. Przygotował: Krzysztof Prochera. Zatwierdził: Antoni Czyżyk Portalu Kulturalngo Warmii i Mazur www.światowid Przygotował: Krzysztof Prochra... Zatwirdził: Antoni Czyżyk... Elbląg, dn. 4.12.2014 Płna forma nazwy prawnj: www.światowid Formy płnj nazwy prawnj nalży

Bardziej szczegółowo

Termodynamika defektów sieci krystalicznej

Termodynamika defektów sieci krystalicznej Termodyamika defektów sieci krystaliczej Defekty sieci krystaliczej puktowe (wakasje, atomy międzywęzłowe, obce atomy) jedowymiarowe (dyslokacje krawędziowe i śrubowe) dwuwymiarowe (graice międzyziarowe,

Bardziej szczegółowo

ANALIZA PRACY SYSTEMU ENERGETYCZNO-NAPĘDOWEGO STATKU TYPU OFFSHORE Z WYKORZYSTANIEM METODY DRZEW USZKODZEŃ

ANALIZA PRACY SYSTEMU ENERGETYCZNO-NAPĘDOWEGO STATKU TYPU OFFSHORE Z WYKORZYSTANIEM METODY DRZEW USZKODZEŃ MGR INŻ. LSZK CHYBOWSKI Politchnik Szczcińsk Wydził Mchniczny Studium Doktorncki ANALIZA PRACY SYSTMU NRGTYCZNO-NAPĘDOWGO STATKU TYPU OFFSHOR Z WYKORZYSTANIM MTODY DRZW USZKODZŃ STRSZCZNI W mtril przdstwiono

Bardziej szczegółowo

Czujniki pola magnetycznego stan obecny i kierunki rozwoju

Czujniki pola magnetycznego stan obecny i kierunki rozwoju Sławoir TUMAŃSKI Polithnika Warzawka, Intytut Elktrothniki Tortyznj i Mirnitwa Elktryzngo Czujniki pola agntyzngo tan obny i kirunki rozwoju Strzzni. Przdtawiono porównani najzęśij obni używanyh zujników

Bardziej szczegółowo

Projektowanie procesu doboru próby

Projektowanie procesu doboru próby Projkowai procsu doboru próby Okrśli populacji gralj i badaj Okrśli jdoski próby 3 Okrśli wykazu badaj populacji 4 Okrśli liczbości próby 5 Wybór mody doboru próby losowgo ilosowgo Usali ko lub co moż

Bardziej szczegółowo

Perspektywy rozwoju rolnictwa ekologicznego w Polsce

Perspektywy rozwoju rolnictwa ekologicznego w Polsce Anna urczak Zachodniopomorska Szkoła Biznsu w Szczcini Prspktywy rozwoju rolnictwa kologiczngo w Polsc Strszczni W artykul wyjaśniono istotę rolnictwa kologiczngo Następni szczgółowo omówiono zasady, na

Bardziej szczegółowo

4.5. PODSTAWOWE OBLICZENIA HAŁASOWE 4.5.1. WPROWADZENIE

4.5. PODSTAWOWE OBLICZENIA HAŁASOWE 4.5.1. WPROWADZENIE 4.5. PODTAWOWE OBCZENA HAŁAOWE 4.5.. WPROWADZENE Z dotychczasowych ozważań wiemy już dużo w zakesie oisu, watościowaia i omiau hałasu w zemyśle. Wato więc tę wiedzę odsumować w jedym zwatym ukcie, co umożliwi

Bardziej szczegółowo

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO Agieszka Jakubowska ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO. Wstęp Skąplikowaie współczesego życia gospodarczego powoduje, iż do sterowaia procesem zarządzaia

Bardziej szczegółowo

Vario Compact ABS 2 generacja Część 2: Wskazówki dotyczące instalacji

Vario Compact ABS 2 generacja Część 2: Wskazówki dotyczące instalacji Vario ompat S 2 gnraja zęść 2: Wskazówki otyzą instalaji 3. Wyani roszura ta ni polga służbi zmian. Now wrsj znają Państwo w INFORM na naszyh stronah intrntowyh www.wabo-auto.om 2007 WO Zastrzga się prawo

Bardziej szczegółowo

LIDER. Systemy polietylenowe PE 100, Safe Tech RC n i Wavin TS DOQ. Katalog produktów

LIDER. Systemy polietylenowe PE 100, Safe Tech RC n i Wavin TS DOQ. Katalog produktów EPIC B52, G11, G12, X71 listopad 2013 Systmy politylnow PE 100, Saf Tch RC n i Wavin TS DOQ Katalog produktów LIDER rynku instalacji DO BUDOWY SIECI WODOCIĄGOWYCH, SIECI DYSTRYBUCYJNYCH GAZU, SIECI KANALIZACJI

Bardziej szczegółowo

INFORMATOR TECHNICZNY

INFORMATOR TECHNICZNY INFRMATR TECHNICZNY YTEMY RURWE PE - WDA - KANALIZACJA P.P.H.U. MIL-pol sp. z o.o. 42-0 Częstochowa ul. partańska 8/10 http://www.milo-pol.pl, -mail: milo@milo-pol.pl tl./fax +48 34 362 72 11, 362 83 12

Bardziej szczegółowo

Egzaminy. na wyższe uczelnie 2003. zadania

Egzaminy. na wyższe uczelnie 2003. zadania zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia

Bardziej szczegółowo

INWESTYCJE MATERIALNE

INWESTYCJE MATERIALNE OCENA EFEKTYWNOŚCI INWESTYCJI INWESTCJE: proces wydatkowaia środków a aktywa, z których moża oczekiwać dochodów pieiężych w późiejszym okresie. Każde przedsiębiorstwo posiada pewą liczbę możliwych projektów

Bardziej szczegółowo

WYGRYWAJ NAGRODY z KAN-therm

WYGRYWAJ NAGRODY z KAN-therm SYSTEM KAN-therm Nowoczese istalacje wode i grzewcze WYGRYWAJ NAGRODY z KAN-therm HP DESIGNJET T790 może być Twój! Szczegóły a www.kokurs-ka.pl ISO 9001 Projektuj istalacje w Systemie KAN-therm i walcz

Bardziej szczegółowo

Laboratorium Sensorów i Pomiarów Wielkości Nieelektrycznych. Ćwiczenie nr 1

Laboratorium Sensorów i Pomiarów Wielkości Nieelektrycznych. Ćwiczenie nr 1 1. Cel ćwiczeia: Laboratorium Sesorów i Pomiarów Wielkości Nieelektryczych Ćwiczeie r 1 Pomiary ciśieia Celem ćwiczeia jest zapozaie się z kostrukcją i działaiem czujików ciśieia. W trakcie zajęć laboratoryjych

Bardziej szczegółowo

Załącznik nr 2 LISTA SPRAWDZAJĄCA DO WERYFIKACJI ADMINISTRACYJNEJ WNIOSKU O PŁATNOŚĆ

Załącznik nr 2 LISTA SPRAWDZAJĄCA DO WERYFIKACJI ADMINISTRACYJNEJ WNIOSKU O PŁATNOŚĆ Minimlny zkrs pytń. List moż yć rozszrzn przz KK w zlżnośi o wymgń ngo progrmu EWT LISTA SPRAWDZAJĄCA DO WERYFIKACJI ADMINISTRACYJNEJ WNIOSKU O PŁATNOŚĆ lp. Nr projktu Tytuł projktu Nzw nfijnt Okrs rlizji

Bardziej szczegółowo

POLITYKA BEZPIECZEŃSTWA OKTAWAVE (dalej również: Polityka )

POLITYKA BEZPIECZEŃSTWA OKTAWAVE (dalej również: Polityka ) POLITYKA BEZPIECZEŃSTWA OKTAWAVE (dalj równiż: Polityka ) wrsja: 20150201.1 Wyrazy pisan wilką litrą, a nizdfiniowan w Polityc mają znacznia nadan im odpowidnio w Rgulamini świadcznia usług Oktawav dla

Bardziej szczegółowo

ZESZYTY NAUKOWE POLITECHNIKI GDAŃSKIEJ

ZESZYTY NAUKOWE POLITECHNIKI GDAŃSKIEJ ZESZYTY NAUKOWE POLITECHNIKI GDAŃSKIEJ Nr 573 Ekoomia XXXIX 2001 BŁAŻEJ PRUSAK Katedra Ekoomii i Zarządzaia Przedsiębiorstwem METODY OCENY PROJEKTÓW INWESTYCYJNYCH Celem artykułu jest przedstawieie metod

Bardziej szczegółowo

Powiatowy Urząd Pracy ul. Andersa 2 59 220 Legnica MONITORING ZAWODÓW DEFICYTOWYCH I NADWYŻKOWYCH W POWIECIE LEGNICKIM W 2009 ROKU

Powiatowy Urząd Pracy ul. Andersa 2 59 220 Legnica MONITORING ZAWODÓW DEFICYTOWYCH I NADWYŻKOWYCH W POWIECIE LEGNICKIM W 2009 ROKU Powiatowy Urzą Pray ul. Anrsa 2 59 220 Lgnia MONITORING ZAWODÓW DEFICYTOWYCH I NADWYŻKOWYCH W POWIECIE LEGNICKIM W 2009 ROKU LIPIEC 2010 CZĘŚĆ II PROGNOSTYCZNA Źrółm inormaji w tj zęśi raportu są wyniki

Bardziej szczegółowo

Pienińskich Portali Turystycznych

Pienińskich Portali Turystycznych Ofrta Pńskch Portal Turstczch b s z tu P w z c r st la m uj m C S ku z c t r k www.p.com www.szczawca.com www.czorszt.com facbook.com/p c a h Krótko o Pńskch Portalach Turstczch Pńsk Portal Turstcz został

Bardziej szczegółowo

FUNKCJA NIEZAWODNOŚCI I CZAS BEZAWARYJNEJ PRACY ODPOWIADAJĄCY EKSPONENCJALNEJ INTENSYWNOŚCI USZKODZEŃ

FUNKCJA NIEZAWODNOŚCI I CZAS BEZAWARYJNEJ PRACY ODPOWIADAJĄCY EKSPONENCJALNEJ INTENSYWNOŚCI USZKODZEŃ CZSOPISMO INŻYNIERII LĄDOWEJ, ŚRODOWISK I RCHIEKURY JOURNL OF CIVIL ENGINEERING, ENVIRONMEN ND RCHIECURE JCEE,. XXXII, z. 62 (3/I/5), lipi-wrzsiń 25, s. 3-327 Lszk OPYRCHŁ FUNKCJ NIEZWODNOŚCI I CZS EZWRYJNEJ

Bardziej szczegółowo

wydanie 3 / listopad 2015 znaków ewakuacji i ochrony przeciwpożarowej PN-EN ISO 7010 certyfikowanych pr zez C N B O P www.znaki-tdc.

wydanie 3 / listopad 2015 znaków ewakuacji i ochrony przeciwpożarowej PN-EN ISO 7010 certyfikowanych pr zez C N B O P www.znaki-tdc. Stosowani znaków wakuacji i ochron przciwpożarowj crtfikowanch pr zz C N B O P www.znaki-tdc.com wdani 3 / listopad 2015 AA 001 Wjści wakuacjn AA 010 Drzwi wakuacjn AA 009 Drzwi wakuacjn AA E001 E001 AA

Bardziej szczegółowo

Stateczność ramy - wersja komputerowa

Stateczność ramy - wersja komputerowa Stateczność ramy - wersja komputerowa Cel ćwiczenia : - Obliczenie wartości obciążenia krytycznego i narysowanie postaci wyboczenia. utraty stateczności - Obliczenie przemieszczenia i sił przekrojowych

Bardziej szczegółowo

Ć wiczenie 9 SILNIK TRÓJFAZOWY ZWARTY

Ć wiczenie 9 SILNIK TRÓJFAZOWY ZWARTY 145 Ć wiczeie 9 SILNIK TRÓJFAZOWY ZWARTY 1. Wiadomości ogóle 1.1. Ogóla budowa Siliki asychroicze trójfazowe, dzięki swoim zaletom ruchowym, prostocie kostrukcji, łatwej obsłudze są powszechie stosowae

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

Ćwiczenie PA6. Badanie działania regulatora PID zaimplementowanego w sterowniku S7-1200 firmy Siemens

Ćwiczenie PA6. Badanie działania regulatora PID zaimplementowanego w sterowniku S7-1200 firmy Siemens INSYU AUOMAYKI i ROBOYKI WYDZIAŁ MECHARONIKI - laboratorium Ćwiczni PA6 Badani działania rgulatora PID zaimplmntowango w strowniu S7-00 firmy Simns Instrucja laboratoryjna Opracowani : dr inż. Danuta Holjo

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

1. Metoda zdyskontowanych przyszłych przepływów pieniężnych

1. Metoda zdyskontowanych przyszłych przepływów pieniężnych Iwetta Budzik-Nowodzińska SZACOWANIE WARTOŚCI DOCHODOWEJ PRZEDSIĘBIORSTWA STUDIUM PRZYPADKU Wprowadzeie Dochodowe metody wycey wartości przedsiębiorstw są postrzegae, jako ajbardziej efektywe sposoby określaia

Bardziej szczegółowo

Ekonomiczno-techniczne aspekty wykorzystania gazu w energetyce

Ekonomiczno-techniczne aspekty wykorzystania gazu w energetyce Ekonomiczno-chniczn aspky wykorzysania gazu w nrgyc anusz oowicz Wydział Inżynirii i Ochrony Środowiska Polichnika Częsochowska zacowani nakładów inwsycyjnych na projky wykorzysania gazu w nrgyc anusz

Bardziej szczegółowo

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały Lekcja 1. Lekcja orgaizacyja kotrakt Podręczik: W. Babiański, L. Chańko, D. Poczek Mateatyka. Zakres podstawowy. Wyd. Nowa Era. Zakres ateriału: Liczby rzeczywiste Wyrażeia algebraicze Rówaia i ierówości

Bardziej szczegółowo

Teoria struktury kapitału

Teoria struktury kapitału Toria strutury apitału Dr Tomasz Słońsi Toria strutury apitału, Moigliani-Millr (MM), Nobl w zizini onomii Powaliny nowoczsnj torii strutury apitału zostały położon w rou 1958 w molu, tóry opirał się o

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E20 BADANIE UKŁADU

Bardziej szczegółowo

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ MECHANICZNY TECHNOLOGICZNY. Optymalizacja układów powierzchniowych z wykorzystaniem algorytmów ewolucyjnych

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ MECHANICZNY TECHNOLOGICZNY. Optymalizacja układów powierzchniowych z wykorzystaniem algorytmów ewolucyjnych POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ MECHANICZNY TECHNOLOGICZNY Katdra Wytrzymałości Matriałów i Mtod Komputrowych Mchaniki Rozprawa doktorska Tytuł: Optymalizacja układów powirzchniowych z wykorzystanim

Bardziej szczegółowo

TRENDS 2011. e-learning w biznesie

TRENDS 2011. e-learning w biznesie Raport Summr 2011 I Edycja 12 lipca 2011 www.langloo.com -larning Pirwsz w Polsc ddykowan badani intrnautów na tmat -larningu przy współpracy z firmą badawczą Gmius Partnr badania www.tstbynt.com -larning

Bardziej szczegółowo

Regulamin kart debetowych Visa

Regulamin kart debetowych Visa Rgulmin krt btowyh Vis Roił 1 Postnowini ogóln 1. Rgulmin krt btowyh VISA, wny lj Rgulminm, okrśl sy wywni i obsługi krt btowyh VISA wywnyh pr Bnk Spółily w Silh or sy rolini trnskji okonnyh pry użyiu

Bardziej szczegółowo

Termodynamika Techniczna dla MWT, Rozdział 9. AJ Wojtowicz IF UMK

Termodynamika Techniczna dla MWT, Rozdział 9. AJ Wojtowicz IF UMK Trmodynamka Thnzna dla MWT, Rozdzał 9. AJ Wojtowz IF UMK Rozdzał 9. Przykłady urządzń USUP.. Wymnnk pła.. Dysza dyfuzor.3. Dławk gazu.4. Turbna.5. SpręŜarka/pompa.6. Prosta słowna parowa.7. Chłodzarka

Bardziej szczegółowo

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D. Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)

Bardziej szczegółowo

4. WYZNACZANIE PARAMETRÓW HYDRAULICZNYCH STUDNI

4. WYZNACZANIE PARAMETRÓW HYDRAULICZNYCH STUDNI 4. WYZNACZANIE PARAMETRÓW HYDRAULICZNYCH STUDNI Na wielkość depresji zwieriadła wody w pompowanej studni wpływ mają zjawiska hydraulizne wywołane przepływem laminarnym, występująym w ujętej warstwie wodonośnej

Bardziej szczegółowo

Na podstawie art. 55a ustawy z dnia 7 lipca 1994 r. Prawo budowlane (Dz. U. z 2013 r. poz. 1409) zarządza się, co następuje:

Na podstawie art. 55a ustawy z dnia 7 lipca 1994 r. Prawo budowlane (Dz. U. z 2013 r. poz. 1409) zarządza się, co następuje: Projekt z dia 16.12.2013 r. Rozporządzeie Miistra Ifrastruktury i Rozwoju 1) z dia.. 2013 r. w sprawie metodologii obliczaia charakterystyki eergetyczej budyku i lokalu mieszkalego lub części budyku staowiącej

Bardziej szczegółowo

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy Wstęp Numeryczne Modeowanie Układów Ciągłych Podstawy Metody Eementów Skończonych Metoda Eementów Skończonych służy do rozwiązywania probemów początkowo-brzegowych, opisywanych równaniami różniczkowymi

Bardziej szczegółowo

ROZPORZĄDZENIE PARLAMENTU EUROPEJSKIEGO I RADY (WE) NR 1223/2009 z dnia 30 listopada 2009 r. dotyczące produktów kosmetycznych

ROZPORZĄDZENIE PARLAMENTU EUROPEJSKIEGO I RADY (WE) NR 1223/2009 z dnia 30 listopada 2009 r. dotyczące produktów kosmetycznych 22.12.2009 Dzinnik Urzęowy Unii Europjskij L 342/59 ROZPORZĄDZENIE PARLAMENTU EUROPEJSKIEGO I RADY (WE) NR 1223/2009 z ni 30 listop 2009 r. otyzą prouktów kosmtyznyh (wrsj przksztłon) (Tkst mjąy znzni

Bardziej szczegółowo

Analiza danych jakościowych

Analiza danych jakościowych Analiza danych jakościowych Ccha ciągła a ccha dyskrtna! Ciągła kg Dyskrtna Cchy jakościow są to cchy, których jdnoznaczn i oczywist scharaktryzowani za pomocą liczb jst nimożliw lub bardzo utrudnion.

Bardziej szczegółowo