MMF ćwiczenia nr 1 - Równania różnicowe

Wielkość: px
Rozpocząć pokaz od strony:

Download "MMF ćwiczenia nr 1 - Równania różnicowe"

Transkrypt

1 MMF ćwiczia r - Rówaia różicow Rozwiązać rówaia różicow pirwszgo rzędu: y + y = y = y + y =! y = Wsk Podzilić rówai przz! i podstawić z y /( )! Rozwiązać rówaia różicow drugigo rzędu: 5 6 F F F F F (ciąg Fiboaccigo) (c) y y y y 4 y Wsk Zlogarytmować rówai i potm podstawić z l y 3 Rozwiązać rówai: y( ) y y() = 3 WskPodstawić = k po czym rozwiązać rówai a y k 4 Obliczyć wyzaczik D zdfiioway jako:

2 MMF ćwiczia r Fukcj zspolo Zalźć graficzi liczby: z 3 3 z l z dla z (4 ) oraz ( 3 ) z Rozwiązać rówaia a : i i i i 3 Wyrazić przz zwykł fukcj trygoomtrycz/hiprbolicz astępując wyrażia: si(i) cos(i) tg(i) sh(i) ch(i) th(i) 4 Oszacować wartość wyrażia W = si(i+/4) 5 Zalźć obraz odcika L przy odwzorowaiu F(z) jśli: F(z) = z L odcik AB o końcach A=() B = ( ) lub L prosta o rówaiu y = / F(z) = iz L odcik AB o końcach A=() B = ( ) (c) F(z) = i z L oś Oy 6 Stosując mtodę fukcji zspoloych rozwiązać rówai: ' ' F cos t Wsk Dokoać zamiay: a z=+iy oraz cost a it 7 Obliczyć całki: d I = si I = cos d 4 I 3 = ( i) d

3 MMF ćwiczia r 3 Fukcj Eulra Wyrazić przz fukcj Eulra a astępi uprościć całki: 5 ( t ) d / 3 dt 6 d / 3 3 / ( t) ( t) dt 3/ ( lt) dt 4 / (ta t) / 3 dt 7 Wyprowadzić zwarty wzór a silię (- + ½) N 8 Obliczyć dla którgo wyrażi l osiąga maksimum MMF ćwiczia r 4 Trasformacja Laplac a Obliczyć trasformaty Laplac a fukcji: Zalźć fukcję f(t) dla którj trasformata Laplac a wyosi; ~ s f ( s) s s 3 ~ s f ( s) ( s s ) f ( t) t sit 3 Mtodą trasformat Laplac a rozwiązać rówaia: ~ f ( s) s g( t) siht s 4s 3 h( t) cosh t f f t t f ( ) 4 f () f f 6 f f ( ) f () (c) f f t 4 Podobą mtodą rozwiązać układ rówań: f ( ) f () f g f g 3t 4 f ( ) g() 3 5 Okrślić przbig atężia prądu lktryczgo I(t) w obwodzi RC podłączoym do stałgo apięcia U Przyjąć ż początkowo kodsator i był aładoway: Q() = 6 Okrślić przbig atężia prądu lktryczgo I(t) w obwodzi RL podłączoym do zmigo apięcia U (t) = U sit Przyjąć ż I() =

4 MMF ćwiczia r 5 6 Wilomiay ortogoal Zortogoalizować wilomiay: ; ; dla Napisać rówaia różiczkow dla wilomiaów Lagurr a i Czbyszwa 3 Podać rozwiązai rówaia: ( ) f f f f()= 4 Korzystając z wzoru Rodrigusa obliczyć współczyiki a i b przy pirwszych dwóch ajwyższych potęgach wilomiaów Lgdr a P i Lagurra (m = ) m L 5 Obliczyć wartość wilomiau m L (m = ) dla = 6 Obliczyć kwadraty orm wilomiaów Lagurr a i Czbyszwa: L m oraz P 7 Napisać związki rkurcyj dla wilomiaów Lagurr a i Czbyszwa 8 Korzystając z związków rkurcyjych dla wilomiaów obliczyć całki: H ) H ( ) d ( 3 L ( ) L ( ) d 3 9 Korzystając z odpowidich fukcji tworzących obliczyć P () ; H () ; L () ; L () Korzystając z rówaia rkurcyjgo dla wilomiaów Czbyszwa sprawdzić wzór: T ( ) cos( arccos ) > T () = Okrślić wszystki mijsca zrow wilomiau T 5 () Sprawdzić rozwiięci dla fukcji tworzącj dla wilomiaów Czbyszwa: 4 w 4 4w w w T ( ) Wsk Pomożyć cał rówai przz miaowik lwj stroy a astępi przyrówywać współczyiki przy tych samych potęgach zmij w po obu stroach otrzymaj rówości Porówac wyiki z rówaim rkurcyjym dla tych wilomiaów

5 MMF ćwiczia r 7 - Fukcj sfrycz Napisać jaw wzory a wszystki fukcj sfrycz Y lm () wywodząc się z wilomiau Lgdr a P (t) gdzi t = cos Obliczyć ormę Y 3 Wyrazić wilomia P l (t) przz fukcj sfrycz Y lm (t) 4 Wyrazić fukcję f(yz) = y przz fukcj sfrycz Y lm () 5 Na sfrz jdostkowj zazaczyć pukty gdzi Y () = 6 Sprawdzić ż rówai Laplac a jst spłio rówiż przz fukcję l f ( r ) r Yl m( ) [izalżi od fukcji f ( r ) r l Y l m( ) ] 7 Wykazać ż fukcj sfrycz są fukcjami własymi opratora trzcij składowj L 3 momtu pędu tz ż ( - stała Placka podziloa przz ) gdzi L 3 = i 8 Sprawdzić ż fukcja ( y z) L 3 Yl m myl m f = imu ( z icos u iysiu) du l spłia rówai Laplac a Na tj podstawi podać z dokładością do stałj - całkow przdstawii fukcji sfryczych

6 MMF ćwiczia r Fukcj Bssla Wykazać ż J ( ) ( ) J ( ) ( liczba aturala) Podać (iosobliw) rozwiązai rówaia: f f (4 9) f 3 Podać szrb Bssla dla rówaia: f f ( v ) f 4 Wyrazić fukcj si oraz cos przz fukcj Bssla (w wzorz a fukcję tworzącą podstawić w = i ) 5 Wykazać ż k J ( y) J ( ) J ( y) k k (Wsk Fukcj tworząc) 6 Zapisać w postaci szrgu liczbowgo całkę I = cos( si 3 ) d 7 Wykazać ż trasformata Laplac a fukcji Bssla J (t) wyosi J ~ ( ) / s s zaś fukcji J ( t ) wyosi / s s 8 Wyrazić przz fukcj lmtar fukcję J 3 ) ( / 9 Zalźć dwa związki między fukcjami J oraz J (Wsk Wzory rkurcyj dla fukcji Bssla) Udowodić ż J J v v v To samo dla sfryczych fukcji Bssla: J v j l j l l j l l( l ) Rozwiązać rówai: R '' R k R R = R(r) r r Wsk Dokoać zamiay zmiych: r y = kr R S = czyli r y k R y / S y R 3 Sprawdzić ortogoalość fukcji J ) / ( oraz J ) / ( dla L =

7 MMF ćwiczia r - - Dystrybucj Sporządzić wykrsy fukcji: fukcja schodkowa Havisid a ( ) ( a ) ( a ) ( 4 3) gdzi () Obliczyć sploty dwóch ciągów (a ) i (b ) : b = liczba całkowita 3 a a oraz a b gdzi a 3 Obliczyć sploty fukcyj f g dla: f ( ) ( ) g( ) ( ) f ( ) ( (c) f ( ) G ( ) g( ) G ( ) G fukcja Gaussa rówa ) g( ) ( ) G ( ) / Na podstawi otrzymago wyiku apisać zwarty wzór a kroty splot: G G G 4 Obliczyć wartości głów całk: I = P 4 d I = P d Porówaj z całką: lim A A A d 5 Zalźć graic ciągów przy : P 6 Zalźć graic ciągów dystrybucyjych: cos 7 Napisać ciąg -podoby ( ) startując z fukcji (- f F ( ) f ( ) f F () P cos ( / ) f ( ) ) gdzi fukcja Frmigo 8 Uprościć iloczyy: A = 9 Uprościć sploty: A = ( 3 ) ( 3 ) B = B = ( 4) ( 4) C = C = si( ) ( 4) si( ) ( 4) Naszkicować wykrsy pirwszj i drugij pochodj dystrybucyjj dla fukcji: f ( ) f ( ) ( ) si Obliczyć pochodą dystrybucyją fukcji f () = l( ) Uprościć wyrażia: A = () B = 3 Rozwiązać rówai: f ( r) k f ( r) ( r) (Wsk Skorzystać z wzoru a laplasja fukcji ( ) fo ( r) r r : f C = 3 ( ) f 4( r ) )

8 MMF ćwiczia r Trasformacja Fourira Obliczyć trasformaty Fourira dla fukcji: (c) f ( ) f ( ) (d) f ( ) cos f ( ) Obliczyć dwuwymiarow trasformaty Fourira dla fukcji: r f ( y) ( R r) r y f ( y) r W zadaiu przyjąć astępującą dfiicję trasformaty: fˆ( q) R i qr f ( r) d r 3 Obliczyć trówymiarow trasformaty Fourira dla fukcji: f ( y z) ( R r) r y z f ( y z) r r 4 Obliczyć dystrybucyj trasformaty Fourira dla fukcji: (c) 3 f ( ) f ( ) si (d) f ( ) cos f ( ) P 5 Zalźć szczgól rozwiązaia rówaia: f ( ) 4 f ( ) ( ) f ( ) f ( ) f ( ) ( )

9 MMF ćwiczia r 4 - Szrgi Fourira Napisać wykładiczy i trygoomtryczy szrg Fourira dla fukcji okrsowych: f () f ( ) si 3 (dla ) ) oraz f() = (dla ) ) Okrs priodyczości L = (c) f() = dla - ) L = Rozwiąć w (wykładiczy i trygoomtryczy) szrg Fourira dystrybucj: m f ( ) ( m ) [ m f ( ) ( 4m ) ( 4m )] (c) f() = (si) 3 Napisać skończoy szrg Fourira  dla ciągu A = v = N-

10 TEMATYKA WYKŁADÓW Liczba wykładów Wstęp Fukcj zspolo Fukcj Eulra 3 Trasformacja Laplac a 4 Wilomiay ortogoal 5 Fukcj sfrycz 6 Fukcj Bssla 7 Dystrybucj 8 Trasformacja Fourira 9 Szrgi Fourira Kolokwia - Siódmy i cztrasty tydziń zajęć (zamiast wykładów) - Każd kolokwium: 5 zadań po pukty (łączi za dwa kolokwia pkt) - Osoby któr uzyskają 6 lub więcj puktów mogą być zwolio z gzamiu (z ocą końcową 3; 35 ; 4; 45 ; lub 5) - Dopuszczal 3 iusprawidliwio iobcości Każda astępa jd pukt ujmy

Egzaminy. na wyższe uczelnie 2003. zadania

Egzaminy. na wyższe uczelnie 2003. zadania zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji:

ELEKTROTECHNIKA Semestr 2 Rok akad. 2015 / 2016. ZADANIA Z MATEMATYKI Zestaw 1. 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: ZADANIA Z MATEMATYKI Zestaw 1 1. Oblicz pochodne cząstkowe funkcji: a) f(x, y) = x sin y x b) f(x, y) = e y 1+x 2 c) f(x, y, z) = z cos x+y z 2. Oblicz pochodne cząstkowe rzędu drugiego funkcji: 3. Wyznacz

Bardziej szczegółowo

OCHRONA PRZECIWPOŻAROWA BUDYNKÓW

OCHRONA PRZECIWPOŻAROWA BUDYNKÓW 95 V. OCHRONA PRZCWPOŻAROWA BUDYNKÓW 34 tapy rozwoju pożaru Ohroa prziwpożarowa uwzględia astępują fazy rozwoju pożaru:. Lokala iijaja pożaru i jgo arastai.. Radiayja i kowkyja wymiaa ipła między źródłm

Bardziej szczegółowo

ANALIZA FOURIEROWSKA szybkie transformaty Fouriera

ANALIZA FOURIEROWSKA szybkie transformaty Fouriera AALIZA FOURIEROWSKA szybi trasformaty Fourira dowola fuję priodyzą F( w zasi lub przstrzi (tx, ors T) moża przdstawić jao () F( b o + [ a si( + b os( ] gdzi π / T lub ω zauważmy, ż ω, jst ajiższą zęstośią

Bardziej szczegółowo

Metody Obliczeniowe w Nauce i Technice laboratorium

Metody Obliczeniowe w Nauce i Technice laboratorium Marci Rociek Iformatyka, II rok Metody Obliczeiowe w Nauce i Techice laboratorium zestaw 1: iterpolacja Zadaie 1: Zaleźć wzór iterpolacyjy Lagrage a mając tablicę wartości: 3 5 6 y 1 3 5 6 Do rozwiązaia

Bardziej szczegółowo

WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU

WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU WYDAWNICTWO PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Karolina Kalińska MATEMATYKA: PRZYKŁADY I ZADANIA Włocławek 2011 REDAKCJA WYDAWNICTWA PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ WE WŁOCŁAWKU Matematyka:

Bardziej szczegółowo

0.1 ROZKŁADY WYBRANYCH STATYSTYK

0.1 ROZKŁADY WYBRANYCH STATYSTYK 0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.

Bardziej szczegółowo

Chemia Teoretyczna I (6).

Chemia Teoretyczna I (6). Chemia Teoretycza I (6). NajwaŜiejsze rówaia róŝiczkowe drugiego rzędu o stałych współczyikach w chemii i fizyce cząstka w jedowymiarowej studi potecjału Cząstka w jedowymiarowej studi potecjału Przez

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

Egzamin maturalny z matematyki CZERWIEC 2011

Egzamin maturalny z matematyki CZERWIEC 2011 Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki Marzec 2012

Materiał ćwiczeniowy z matematyki Marzec 2012 Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0

Bardziej szczegółowo

Przetwarzanie sygnałów biomedycznych

Przetwarzanie sygnałów biomedycznych Prztwarzani sygnałów biomdycznych dr hab. inż. Krzysztof Kałużyński, prof. PW Człowik- najlpsza inwstycja Projkt współfinansowany przz Unię Europjską w ramach Europjskigo Funduszu Społczngo Wykład XI Filtracja

Bardziej szczegółowo

MATEMATYKA. Sporządził: Andrzej Wölk

MATEMATYKA. Sporządził: Andrzej Wölk MATEMATYKA Sporządzł: Adrzej ölk . adae Rozwązać rówae różczkowe: b) e X X e rozwązuję całkę żeb wzaczć e X e X z tego wka, że e X X e X e adae a) s d t dt d ( t ) dt dt pochoda d dt s d s s s s d = C

Bardziej szczegółowo

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D. Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)

Bardziej szczegółowo

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych Laboratorium Półprzwodniki Dilktryki Magntyki Ćwiczni nr Badani matriałów frromagntycznych I. Zagadninia do przygotowania:. Podstawow wilkości charaktryzując matriały magntyczn. Związki pomiędzy B, H i

Bardziej szczegółowo

1. Pochodna funkcji. Twierdzenie Rolle a i twierdzenie Lagrange a.

1. Pochodna funkcji. Twierdzenie Rolle a i twierdzenie Lagrange a. Ćwiczenia 3032010 - omówienie zadań 1-4 z egzaminu poprawkowego Konwersatorium 3032010 - omówienie zadań 5-8 z egzaminu poprawkowego Ćwiczenia 4032010 (zad 445-473) Kolokwium nr 1, 10032010 (do zad 473)

Bardziej szczegółowo

Inwestycje. MPK = R/P = uc (1) gdzie uc - realny koszt pozyskania kapitału. Przyjmując, że funkcja produkcji ma postać Cobba-Douglasa otrzymamy: (3)

Inwestycje. MPK = R/P = uc (1) gdzie uc - realny koszt pozyskania kapitału. Przyjmując, że funkcja produkcji ma postać Cobba-Douglasa otrzymamy: (3) Dr Barłomij Rokicki Ćwiczia z Makrokoomii II Iwsycj Iwsycj są ym składikim PB, kóry wykazuj ajwiększą skłoość do flukuacji czyli wahań. Spadk popyu a dobra i usługi jaki js obsrwoway podczas rcsji zwykl

Bardziej szczegółowo

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia

Bardziej szczegółowo

LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.

LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Komisja Egzamiacyja la Akuariuszy LIII Egzami la Akuariuszy z 3 paźzirika 0 r. Część II Mamayka ubzpiczń życiowych Imię i azwisko osoby gzamiowaj:... Czas gzamiu: 00 miu Warszawa, 3 paźzirika 0 r. Mamayka

Bardziej szczegółowo

Tw: (O promieniu zbieżności R szeregu potęgowego ) Jeżeli istnieje granica. to R = ) ciąg liczb zespolonych

Tw: (O promieniu zbieżności R szeregu potęgowego ) Jeżeli istnieje granica. to R = ) ciąg liczb zespolonych Automatya i Rootya Aaliza Wyład dr Adam Ćmil cmil@agh.du.pl SZEREGI POTĘGOWE ( c ciąg licz zspoloych c ( z z - szrg potęgowy, gdzi ( c - ciąg współczyiów szrgu, z C - środ, ctrum (ustalo, z C - zmia. Dla

Bardziej szczegółowo

Podstawy informatyki 2. Podstawy informatyki 2. Wykład nr 9 (09.05.2007) Plan wykładu nr 9. Politechnika Białostocka. - Wydział Elektryczny

Podstawy informatyki 2. Podstawy informatyki 2. Wykład nr 9 (09.05.2007) Plan wykładu nr 9. Politechnika Białostocka. - Wydział Elektryczny odstawy iforatyki Wykład r 9 /44 odstawy iforatyki olitechika Białostocka - Wydział Elektryczy Elektrotechika, seestr II, studia stacjoare Rok akadeicki 006/007 la wykładu r 9 Obliczaie liczby π etodą

Bardziej szczegółowo

Materiały dydaktyczne. Matematyka. Semestr II

Materiały dydaktyczne. Matematyka. Semestr II Projekt współfiasowa ze środków Uii Europejskiej w ramach Europejskiego Fuduszu Społeczego Materiał ddaktcze Matematka Semestr II Ćwiczeia Projekt Rozwój i promocja kieruków techiczch w Akademii Morskiej

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E20 BADANIE UKŁADU

Bardziej szczegółowo

Analiza drgań wybranych dźwigarów powierzchniowych metodą elementów brzegowych

Analiza drgań wybranych dźwigarów powierzchniowych metodą elementów brzegowych a prawach rękopisu Istytut Iżyierii Lądowej Politechiki Wrocławskiej Aaliza drgań wybraych dźwigarów powierzchiowych metodą elemetów brzegowych Raport serii PRE r 5/ Praca doktorska autor mgr iż. Jacek

Bardziej szczegółowo

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem 9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

MATHCAD 2000 - Obliczenia iteracyjne, macierze i wektory

MATHCAD 2000 - Obliczenia iteracyjne, macierze i wektory MTHCD - Obliczei itercyje, mcierze i wektory Zmiee zkresowe. Tblicowie fukcji Wzór :, π.. π..8.9...88.99..8....8.98. si().9.88.89.9.9.89.88.9 -.9 -.88 -.89 -.9 - Opis, :,, przeciek, Ctrl+Shift+P, /,, ;średik,

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały Lekcja 1. Lekcja orgaizacyja kotrakt Podręczik: W. Babiański, L. Chańko, D. Poczek Mateatyka. Zakres podstawowy. Wyd. Nowa Era. Zakres ateriału: Liczby rzeczywiste Wyrażeia algebraicze Rówaia i ierówości

Bardziej szczegółowo

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

ĆWICZENIA NR 1 Z MATEMATYKI (Finanse i Rachunkowość, studia zaoczne, I rok) Zad. 1. Wyznaczyć dziedziny funkcji: 1 = 1, b) ( x) , c) h ( x) x x

ĆWICZENIA NR 1 Z MATEMATYKI (Finanse i Rachunkowość, studia zaoczne, I rok) Zad. 1. Wyznaczyć dziedziny funkcji: 1 = 1, b) ( x) , c) h ( x) x x ĆWICZENIA NR Z MATEMATYKI (Fiase i Rachukowość studia zaocze I rok) Zad Wyzaczyć dziedziy fukcji: a) f ( ) b) ( ) + + 6 f c) f ( ) + + d) f ( ) + e) ( ) f l f) f ( ) l( + ) + l( ) g) f ( ) l( si ) h) f

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy

Bardziej szczegółowo

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów

Bardziej szczegółowo

Pierwsze kolokwium z Mechaniki i Przyległości dla nanostudentów (wykład prof. J. Majewskiego)

Pierwsze kolokwium z Mechaniki i Przyległości dla nanostudentów (wykład prof. J. Majewskiego) Pierwsze kolokwium z Mechaniki i Przylełości dla nanostudentów (wykład prof. J. Majewskieo) Zadanie Dane są cztery wektory A, B, C oraz D. Wyrazić liczbę (A B) (C D), przez same iloczyny skalarne tych

Bardziej szczegółowo

Farmakokinetyka furaginy jako przykład procesu pierwszego rzędu w modelu jednokompartmentowym zawierającym sztuczną nerkę jako układ eliminujący lek

Farmakokinetyka furaginy jako przykład procesu pierwszego rzędu w modelu jednokompartmentowym zawierającym sztuczną nerkę jako układ eliminujący lek 1 Matriał tortyczny do ćwicznia dostępny jst w oddzilnym dokumnci, jak równiż w książc: Hrmann T., Farmakokintyka. Toria i praktyka. Wydawnictwa Lkarski PZWL, Warszawa 2002, s. 13-74 Ćwiczni 6: Farmakokintyka

Bardziej szczegółowo

L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3

L.Kowalski zadania ze statystyki matematycznej-zestaw 3 ZADANIA - ZESTAW 3 L.Kowalski zadaia ze statystyki matematyczej-zestaw 3 ZADANIA - ZESTAW 3 Zadaie 3. Cecha X populacji ma rozkład N m,. Z populacji tej pobrao próbę 7 elemetową i otrzymao wyiki x7 = 9, 3, s7 =, 5 a Na poziomie

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrówawcze z fizyki -Zestaw 5 -Teoria Optyka geometrycza i optyka falowa. Prawo odbicia i prawo załamaia światła, Bieg promiei świetlych w pryzmacie, soczewki i zwierciadła. Zjawisko dyfrakcji

Bardziej szczegółowo

CHARAKTERYSTYKA OBCIĄŻENIOWA

CHARAKTERYSTYKA OBCIĄŻENIOWA Opracowani: dr inż. Ewa Fudalj-Kostrzwa CHARAKTERYSTYKA OBCIĄŻENIOWA Charaktrystyki obciążniow są wyznaczan w ramach klasycznych statycznych badań silników zarówno dla silników o zapłoni iskrowym jak i

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

Przeczytaj, zanim zaczniesz rozwiązywać

Przeczytaj, zanim zaczniesz rozwiązywać Przeczytaj, zaim zacziesz rozwiązywać Maturzysto! Zaim rozpocziesz rozwiązywaie zadań z aszych arkuszy: Przygotuj: u Arkusz I 5 kartek papieru podaiowego w kratkę a czystopis i a brudopis; Arkusz II 5

Bardziej szczegółowo

REGULAMIN PSKO 2016. I. Kryteria i wymagania dla zawodników Optimist PSKO. II. Mistrzostwa PSKO. III. Puchar Polski PSKO

REGULAMIN PSKO 2016. I. Kryteria i wymagania dla zawodników Optimist PSKO. II. Mistrzostwa PSKO. III. Puchar Polski PSKO I. Krytria i wymagania dla zawodników Optimist PSKO 1. W rgatach PSKO mogą startować zawodnicy do lat 15 posiadający licncję sportową PZŻ, aktualn ubzpiczni OC i będący członkami PSKO, spłniający wymagania

Bardziej szczegółowo

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

MODEL EKONOMETRYCZNY KLASYFIKACJA MODELI EKONOMETRYCZNYCH

MODEL EKONOMETRYCZNY KLASYFIKACJA MODELI EKONOMETRYCZNYCH Ekoomri mrił ( foli ) do wkłdu D.Miszczńsk, M.Miszczński MODEL EKONOMERYCZNY Modl js o schmcz uproszczi, pomijjąc iiso spk w clu wjśii wwęrzgo dziłi, form lub kosrukcji brdzij skomplikowgo mchizmu. (Lwrc

Bardziej szczegółowo

Struktura czasowa stóp procentowych (term structure of interest rates)

Struktura czasowa stóp procentowych (term structure of interest rates) Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

- Jeśli dany papier charakteryzuje się wskaźnikiem beta równym 1, to premia za ryzyko tego papieru wartościowego równa się wartości premii rynkowej.

- Jeśli dany papier charakteryzuje się wskaźnikiem beta równym 1, to premia za ryzyko tego papieru wartościowego równa się wartości premii rynkowej. Śrdni waŝony koszt kapitału (WACC) Spółki mogą korzystać z wilu dostępnych na rynku źródł finansowania: akcj zwykł, kapitał uprzywiljowany, krdyty bankow, obligacj, obligacj zaminn itd. W warunkach polskich

Bardziej szczegółowo

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1)

ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL. sin x2 (1) ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ NIELINIOWYCH PRZY POMOCY DODATKU SOLVER PROGRAMU MICROSOFT EXCEL 1. Problem Rozważmy układ dwóch równań z dwiema niewiadomymi (x 1, x 2 ): 1 x1 sin x2 x2 cos x1 (1) Nie jest

Bardziej szczegółowo

BLOK I. , x = 2 2. 3. Korzystając z definicji pochodnej w punkcie, obliczyć pochodne podanych funkcji we wskazanych punktach:

BLOK I. , x = 2 2. 3. Korzystając z definicji pochodnej w punkcie, obliczyć pochodne podanych funkcji we wskazanych punktach: BLOK I. Rachunek różniczkowy i całkowy. Znaleźć przyrost funkcji f(x) = 3x 3 przy x = zakładając, że przyrost x zmiennej niezależnej jest równy: a), ; b), ;, 5.. Znaleźć iloraz różnicowy funkcji y = f(x)

Bardziej szczegółowo

Fundamentalna tabelka atomu. eureka! to odkryli. p R = nh -

Fundamentalna tabelka atomu. eureka! to odkryli. p R = nh - TEKST TRUDNY Postulat kwatowaia Bohra, czyli założoy ad hoc związek pomiędzy falą de Broglie a a geometryczymi własościami rozważaego problemu, pozwolił bez większych trudości teoretyczie przewidzieć rozmiary

Bardziej szczegółowo

Rachunek operatorowy. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. TRANSFORMATA LAPLACE'A

Rachunek operatorowy. Akademia Morska w Gdyni Katedra Automatyki Okrętowej Teoria sterowania. Mirosław Tomera 1. TRANSFORMATA LAPLACE'A kdmi Mrk w Gdyi Kdr umyki Okręwj Tri rwi Rchuk prrwy Mirłw Tmr. TRNSFORMT LPLCE' Trfrm Lplc' j jdym z rzędzi mmyczych łużących d rzwiązywi liiwych rówń różiczkwych zwyczjych. W prówiu z mdą klyczą, md

Bardziej szczegółowo

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna

Rozdział 9. Funkcja pierwotna. 9.1 Funkcja pierwotna Rozdział 9 Funkcja pierwotna 9. Funkcja pierwotna Definicja funkcji pierwotnej. Niech f będzie funkcją określoną na przedziale P. Mówimy, że funkcja F : P R jest funkcją pierwotną funkcji f w przedziale

Bardziej szczegółowo

Analiza matematyczna. Robert Rałowski

Analiza matematyczna. Robert Rałowski Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................

Bardziej szczegółowo

Kurs Start plus - matematyka poziom podstawowy, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1.

Kurs Start plus - matematyka poziom podstawowy, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1. Projekt Fizyka Plus nr POKL.04.0.0-00-034/ współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki Kurs Start plus - matematyka

Bardziej szczegółowo

LABORATORIUM PODSTAW SILNIKÓW I NAPĘDÓW SPALINOWYCH. Ćwiczenie 2 POMIARY PODSTAWOWYCH PARAMETRÓW PRACY SILNIKÓW SPALINOWYCH

LABORATORIUM PODSTAW SILNIKÓW I NAPĘDÓW SPALINOWYCH. Ćwiczenie 2 POMIARY PODSTAWOWYCH PARAMETRÓW PRACY SILNIKÓW SPALINOWYCH Dr inŝ. Sławomir Makowski WYDZIAŁ MECHANICZNY POLITECHNIKI GDAŃSKIEJ KATEDRA SILNIKÓW SPALINOWYCH I SPRĘśAREK Kirownik katdry: prof. dr hab. inŝ. Andrzj Balcrski, prof. zw. PG LABORATORIUM PODSTAW SILNIKÓW

Bardziej szczegółowo

1. Powtórka ze szkoły. Wykład: 4.10.2004 (4 godziny), ćwiczenia: 7.10.2004, kolokwium nr 1: 11.10.2004

1. Powtórka ze szkoły. Wykład: 4.10.2004 (4 godziny), ćwiczenia: 7.10.2004, kolokwium nr 1: 11.10.2004 ANALIZA MATEMATYCZNA A dla I roku, 2004/2005 1. Powtórka ze szkoły. Wykład: 4.10.2004 (4 godziny), ćwiczenia: 7.10.2004, kolokwium nr 1: 11.10.2004 Obliczyć sumy (postępów arytmetycznych i goemetrycznych):

Bardziej szczegółowo

Sprawozdanie finansowe za20l0 rok

Sprawozdanie finansowe za20l0 rok Krjowy Ruch kologiczno- Spolczny ul. Kuroptwy 9 05-500 Mysidlo NP123-10-32-147 RGON015563734 Sprwozdni finnsow z20l0 rok Urz4d Skrbowy w Pisczni Ul. Czjwicz 2/4 05-500 Pisczno Mysidlo, dn. 30.03.201 1r.

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych dr inż. Adam Kisiel kisiel@if.pw.edu.pl pokój 117b (12b) 1 Materiały do wykładu Transparencje do wykładów: http://www.if.pw.edu.pl/~kisiel/kadd/kadd.html Literatura

Bardziej szczegółowo

ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO

ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO Łukasz MACH Strszczni: W artykul przdstawiono procs budowy modlu rgrsji logistycznj, którgo clm jst wspomagani

Bardziej szczegółowo

a n 7 a jest ciągiem arytmetycznym.

a n 7 a jest ciągiem arytmetycznym. ZADANIA MATURALNE - CIĄGI LICZBOWE - POZIOM PODSTAWOWY Opracowała mgr Dauta Brzezińska Zad.1. ( pkt) Ciąg a określoy jest wzorem 5.Wyzacz liczbę ujemych wyrazów tego ciągu. Zad.. ( 6 pkt) a Day jest ciąg

Bardziej szczegółowo

Analiza matematyczna 2 Lista zadań

Analiza matematyczna 2 Lista zadań Analiza matematyczna Lista zadań Opracowanie: dr Marian Gewert, doc Zbigniew Skoczylas Lista Korzystając z definicji zbadać zbieżność całek niewłaściwych pierwszego rodzaju: + ; (b) + ; (c) sin; (d) arcctg;

Bardziej szczegółowo

Wprowadzenie. metody elementów skończonych

Wprowadzenie. metody elementów skończonych Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów

Bardziej szczegółowo

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ

WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ WYDZIAŁ ELEKTRYCZNY POLITECHNIKI WARSZAWSKIEJ INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI I GOSPODARKI ELEKTROENERGETYCZNEJ LABORATORIUM RACHUNEK EKONOMICZNY W ELEKTROENERGETYCE INSTRUKCJA DO ĆWICZENIA

Bardziej szczegółowo

Matematyka dla kierunku Finanse i Rachunkowość - ćwiczenia. Aktualizacja: 8 stycznia 2008

Matematyka dla kierunku Finanse i Rachunkowość - ćwiczenia. Aktualizacja: 8 stycznia 2008 Matematyka dla kierunku Finanse i Rachunkowość - ćwiczenia Aktualizacja: 8 stycznia 8 Spis treści Funkcje Funkcje logarytmiczne i wykładnicze Elementy logiki i teorii mnogości 6 4 Ciąg i granica ciągu

Bardziej szczegółowo

Instalacje i Urządzenia Elektryczne Automatyki Przemysłowej. Modernizacja systemu chłodzenia Ciągu Technologicznego-II część elektroenergetyczna

Instalacje i Urządzenia Elektryczne Automatyki Przemysłowej. Modernizacja systemu chłodzenia Ciągu Technologicznego-II część elektroenergetyczna stalacje i Urządzeia Eletrycze Automatyi Przemysłowej Moderizacja systemu chłodzeia Ciągu echologiczego- część eletroeergetycza Wyoali: Sebastia Marczyci Maciej Wasiuta Wydział Eletryczy Politechii Szczecińsiej

Bardziej szczegółowo

METODYKA WYKONYWANIA POMIARÓW ORAZ OCENA NIEPEWNOŚCI I BŁĘDÓW POMIARU

METODYKA WYKONYWANIA POMIARÓW ORAZ OCENA NIEPEWNOŚCI I BŁĘDÓW POMIARU METODYKA WYKONYWANIA POMIARÓW ORAZ OCENA NIEPEWNOŚCI I BŁĘDÓW POMIARU Celem każdego ćwiczeia w laboratorium studeckim jest zmierzeie pewych wielkości, a astępie obliczeie a podstawie tych wyików pomiarów

Bardziej szczegółowo

Matematyka 2 wymagania edukacyjne

Matematyka 2 wymagania edukacyjne Matematyka wymagania edukacyjne Zakres podstawowy POZIOMY WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Rachunek różniczkowy i całkowy II (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod (4) Studia

Bardziej szczegółowo

Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości)

Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości) Kospekt lekcji (Kółko matematycze, kółko przedsiębiorczości) Łukasz Godzia Temat: Paradoks skąpej wdowy. O procecie składaym ogólie. Czas lekcji 45 miut Cele ogóle: Uczeń: Umie obliczyć procet składay

Bardziej szczegółowo

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ

WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANEJ PODCZAS ZDERZENIA CIAŁ 9 Cel ćwczea Ćwczee 9 WYZNACZANIE WARTOŚCI ENERGII ROZPRASZANE PODCZAS ZDERZENIA CIAŁ Celem ćwczea jest wyzaczee wartośc eerg rozpraszaej podczas zderzea cał oraz współczyka restytucj charakteryzującego

Bardziej szczegółowo

ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol

ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA. oprac. I. Gorgol ZADANIA DO SAMODZIELNEGO ROZWIĄZNIA oprac. I. Gorgol Spis treści. Elementy logiki. Elementy rachunku zbiorów 4. Funkcje zdaniowe i kwantyfikatory. 4 4. Funkcja złożona i odwrotna 6 5. Granica ciągu liczbowego

Bardziej szczegółowo

3. Funkcje elementarne

3. Funkcje elementarne 3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących

Bardziej szczegółowo

6 Układy równań różniczkowych. Równania wyższych rzędów.

6 Układy równań różniczkowych. Równania wyższych rzędów. Układy równań. Równania wyższych rzędów. 6 1 6 Układy równań różniczkowych. Równania wyższych rzędów. 6.1 Podstawowe pojęcia dla układów równań różniczkowych zwyczajnych Definicja. Układem n równań różniczkowych

Bardziej szczegółowo

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych.

Równania różniczkowe. Lista nr 2. Literatura: N.M. Matwiejew, Metody całkowania równań różniczkowych zwyczajnych. Równania różniczkowe. Lisa nr 2. Lieraura: N.M. Mawiejew, Meody całkowania równań różniczkowych zwyczajnych. W. Krysicki, L. Włodarski, Analiza Maemayczna w Zadaniach, część II 1. Znaleźć ogólną posać

Bardziej szczegółowo

3 Potęgi i pierwiastki

3 Potęgi i pierwiastki Potęgi i pierwiastki W tej lekcji przypomnimy sobie podstawowe własności działań na potęgach i pierwiastkach. Prosimy o zapoznanie się z regulaminem na ostatniej stronie..1 Potęga o wykładniku całkowitym

Bardziej szczegółowo

Rachunek ekonomiczny i siły sprawcze stosowania OZE i termomodernizacji

Rachunek ekonomiczny i siły sprawcze stosowania OZE i termomodernizacji Rachuk koomiczy i siły sprawcz stosowaia OZE i trmomodrizacji M.Bogacki, S.Pasirb I. DZIAŁASZ EKONOMICZNIE WIĘC RACHUJESZ 1. Miimum koomii w Twoich dcyzjach 1.1. Kidy i o czym dcydujsz Przd ami i przd

Bardziej szczegółowo

Projektowanie procesu doboru próby

Projektowanie procesu doboru próby Projkowai procsu doboru próby Okrśli populacji gralj i badaj Okrśli jdoski próby 3 Okrśli wykazu badaj populacji 4 Okrśli liczbości próby 5 Wybór mody doboru próby losowgo ilosowgo Usali ko lub co moż

Bardziej szczegółowo

Ł Ź Ą Ż Ż Ź Ł Ż Ć Ć Ż Ż ć Ź Ż Ż Ż Ć Ż Ć ź ć Ż ż ż Ż Ż ć Ż ż Ż Ż Ż ć Ż ż ć Ć ź Ą Ż Ż ż ć Ź Ż ż Ą Ą Ż ć Ź ź Ż ź ć Ą ć ć ż ż ź ź ć ć ż ż ż ź ć ć Ą ż Ą ż ż Ż Ż Ż ć ż Ż ć ż Ł Ż Ą Ż ź ż ć Ż Ż Ż Ć Ź Ź Ż Ą ć

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY Cetrala Komisja Egzamiacyja Arkusz zawiera iformacje prawie chroioe do mometu rozpoczęcia egzamiu. Układ graficzy CKE 2010 KOD WISUJE ZDAJĄCY ESEL Miejsce a aklejkę z kodem EGZAMIN MATURALNY Z INORMATYKI

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera Istrukcja do ćwiczeń laboratoryjych z przedmiotu: Badaia operacyje Temat ćwiczeia: Problemy trasportowe cd Problem komiwojażera Zachodiopomorski Uiwersytet Techologiczy Wydział Iżyierii Mechaiczej i Mechatroiki

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

Akustyczno-fonetyczne cechy mowy polskiej

Akustyczno-fonetyczne cechy mowy polskiej II PRACOWNIA FIZYCZNA Akustyczo-foetycze cechy mowy polskiej Opis ćwiczeia w ramach II Pracowi Fizyczej Adrzej Wicher Aleksader Sęk Jacek Koieczy Istytut Akustyki UAM Pozań, 5 . WSTĘP... 3. SYGNAŁY ORAZ

Bardziej szczegółowo

Zastosowanie Excela w obliczeniach inżynierskich.

Zastosowanie Excela w obliczeniach inżynierskich. Zastosowanie Excela w obliczeniach inżynierskich. Część I Różniczkowanie numeryczne. Cel ćwiczenia: Zapoznanie się z ilorazami różnicowymi do obliczania wartości pochodnych. Pochodna jest miarą szybkości

Bardziej szczegółowo

1 Równania różniczkowe zwyczajne liniowe pierwszego rzędu

1 Równania różniczkowe zwyczajne liniowe pierwszego rzędu Równania różniczkowe zwyczajne liniowe I-go rzędu 1 1 1 Równania różniczkowe zwyczajne liniowe pierwszego rzędu Równaniem różniczkowym zwyczajnym liniowym pierwszego rzędu nazywamy równanie postaci (RL1)

Bardziej szczegółowo

ZASTOSOWANIE SILNIKÓW O DUśEJ SPRAWNOŚCI DO NAPĘDÓW WENTYLATORÓW MŁYNOWYCH

ZASTOSOWANIE SILNIKÓW O DUśEJ SPRAWNOŚCI DO NAPĘDÓW WENTYLATORÓW MŁYNOWYCH Zeszyty Problemowe Maszyy Elektrycze Nr 88/2010 135 Grzegorz Badowski, Jerzy Hickiewicz, Krystya Macek-Kamińska, Marci Kamiński Politechika Opolska, Opole Piotr Pluta, PGE Elektrowia Opole SA, Brzezie

Bardziej szczegółowo

SYLABUS PRZEDMIOTU MATEMATYKA W RAMACH ZAJ

SYLABUS PRZEDMIOTU MATEMATYKA W RAMACH ZAJ SYLABUS PRZEDMIOTU MATEMATYKA W RAMACH ZAJĘĆ WYRÓWNAWCZYCH Z MATEMATYKI DLA STUDENTÓW I ROKU BUDOWNICTWA WNT UWM W ROKU AKADEMICKIM 2012/2013 Nazwa przedmiotu: Zajęcia wyrównawcze z matematyki Rodzaj studiów:

Bardziej szczegółowo

E - 0 Z W 7 - a l a I P P A B X E - 2 E N T R A L A I P P A B X O X Y T Z l 4 W a s 4 R i s S s j S X i f S W k 0 j 4 W a l W 4 ś 0 i a - i a W 7 k 4 - z ś 0 i R 4 - ó W a W i Z 4 f Z - 7 O W a s O X Y

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

CIĄGI LICZBOWE N = zbiór liczb naturalnych. R zbiór liczb rzeczywistych (zbiór reprezentowany przez punkty osi liczbowej).

CIĄGI LICZBOWE N = zbiór liczb naturalnych. R zbiór liczb rzeczywistych (zbiór reprezentowany przez punkty osi liczbowej). MATEMATYKA I - Lucj Kowlski {,,,... } CIĄGI LICZBOWE N zbiór liczb turlych. R zbiór liczb rzeczywistych (zbiór reprezetowy przez pukty osi liczbowej. Nieskończoy ciąg liczbowy to przyporządkowie liczbom

Bardziej szczegółowo

dr inż. Ryszard Rębowski 1 WPROWADZENIE

dr inż. Ryszard Rębowski 1 WPROWADZENIE dr inż. Ryszard Rębowski 1 WPROWADZENIE Zarządzanie i Inżynieria Produkcji studia stacjonarne Konspekt do wykładu z Matematyki 1 1 Postać trygonometryczna liczby zespolonej zastosowania i przykłady 1 Wprowadzenie

Bardziej szczegółowo

Zasilanie budynków użyteczności publicznej oraz budynków mieszkalnych w energię elektryczną

Zasilanie budynków użyteczności publicznej oraz budynków mieszkalnych w energię elektryczną i e z b ę d i k e l e k t r y k a Julia Wiatr Mirosław Miegoń Zasilaie budyków użyteczości publiczej oraz budyków mieszkalych w eergię elektryczą Zasilacze UPS oraz sposoby ich doboru, układy pomiarowe

Bardziej szczegółowo

PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH.

PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RZĘDU PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH. Równaniem różniczkowym zwyczajnym nazywamy równanie zawierające pochodne funkcji y(x) względem

Bardziej szczegółowo

Fraktale. Definicja ogólna. fraktala. w naturze. Samopodobieństwo. w naturze. Śnieżynka von Kocha

Fraktale. Definicja ogólna. fraktala. w naturze. Samopodobieństwo. w naturze. Śnieżynka von Kocha Defiicja ogóla fraktala Fraktale dr iż.. Piotr Steć Fraktalem azywamy obiekt, który wykazuje cechy dokładego lub statystyczego podobieństwa Fraktal jest obiektem, którego wymiar jest ułamkiem Słowo fraktal

Bardziej szczegółowo

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d.

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d. 2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d.) 10 października 2009 r. 20. Która liczba jest większa,

Bardziej szczegółowo

Najprostsze z zadań z prawdopodobieństwa robi się korzystając z dystrybuanty. Zacznijmy od tego - tu mamy rozkład (wyniki pomiarów):

Najprostsze z zadań z prawdopodobieństwa robi się korzystając z dystrybuanty. Zacznijmy od tego - tu mamy rozkład (wyniki pomiarów): Najprostsze z zadań z prawdopodobieństwa robi się korzystając z dystrybuanty. Zacznijmy od tego - tu mamy rozkład (wyniki pomiarów): Ok. Średnia to środek zbioru. Zazwyczaj mamy podane także odchylenie

Bardziej szczegółowo