ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO"

Transkrypt

1 ZASTOSOWANIE REGRESJI LOGISTYCZNEJ DO OKREŚLENIA PRAWDOPODOBIEŃSTWA SPRZEDAŻY ZASOBU MIESZKANIOWEGO Łukasz MACH Strszczni: W artykul przdstawiono procs budowy modlu rgrsji logistycznj, którgo clm jst wspomagani procsu podjmowania dcyzji na rynku miszkaniowym. Opracowany modl rgrsji logistycznj, będzi dfiniował prawdopodobiństwo dokonania transakcji na rynku miszkaniowym (rynk wtórny) oraz będzi wskazywał zminn statystyczni istotni wpływając na kształtowani się popytu. Wartość uzyskango prawdopodobiństwa, będzi stanowić jdną z podstawowych przsłank dcyzyjnych. Słowa kluczow: prognozowani, rgrsja logistyczna, podjmowani dcyzji. 1. Wprowadzni Poprawni przygotowany oraz mrytoryczni przprowadzony procs podjmowania dcyzji jst kluczowym czynnikim wpływającym na zmnijszni luki informacyjnj co implikuj poprawę konkurncyjności przdsiębiorstw. Dobrz przygotowany procs dcyzyjny pozwala zminimalizować ryzyko źl podjętych dcyzji oraz pozwala wzmocnić pozycję konkurncyjną przdsiębiorstw. W dobi globalngo kryzysu gospodarczgo, przdsiębiorstwa powinny szczgólną uwagę przywiązywać do trafnych dcyzji, szczgólni w branżach szczgólni narażonych na oddziaływani kryzysu. Uwzględniając torię konomii, głównym czynnikim wpływającym na konkurncyjność gospodark są inwstycj, któr w znacznym stopniu są implikowan przz branżę budowlaną (m.in.. łatwość sprzdaży zasobu miszkaniowgo). Cl ninijszgo artykułu, jst opracowani jakościowgo modlu dcyzyjngo, którgo głównym zadanim będzi okrślni prawdopodobiństwa dokonania transakcji na rynku niruchomości oraz wskazani zminnych istotni wpływających na dokonani transakcji. Zdfiniowany modl bazuj na rgrsji logistycznj, która z powodznim jst wykorzystywana w procsach dcyzyjnych, w których zminna zalżna na charaktr dychotomiczny. Wybór modlu bazującgo na funkcji logistycznj ma równiż swoj uzasadnini, gdyż większości zjawisk społczno-konomicznych, ma paramtry zbliżon do przbigu funkcji logistycznj. Artykuł składa się z trzch głównych części. W pirwszj opisano możliwość analizy zminnj zalżnj typu dychotomiczngo za pomocą rgrsji logistycznj. Część druga pokazuję przykład praktyczngo zastosowania rgrsji logistycznj do wyznaczania prawdopodobiństwa sukcsu (sprzdaży miszkania), natomiast część trzcia to wnioski z przprowadzonych badań. Zastosowani trójtapowgo podjścia opisywango problmu pozwala na jgo komplksow rozwiązani. 181

2 . Analiza danych jakościowych za pomocą rgrsji logistycznj W wilu przypadkach procsy dcyzyjn bazują na modlach rgrsji wilorakij, tzn., takij, w którj analizujmy wpływ kilku zminnych nizalżnych na jdną zminną zalżną typu mirzalngo [,5]. Autor ninijszj publikacji zajmował się tym zagadninim w wczśnijszych pracach badawczych, w których za pomocą modlowania liniowgo (rgrsji wilorakij), wskazywał na istotn dtrminanty okrślając cnę niruchomości na rynku miszkaniowym [4]. Natomiast w sytuacji, gdy zminna zalżna jst typu dychotomiczngo, powinniśmy zastosować rgrsją logistyczną. W badaniach konomicznych, bardzo popularnym przykładm zastosowania rgrsji logistycznj jst analiza zdolności spłaty zaciągniętych krdytów bankowych, natomiast w badaniach społcznych możliwość wskazania prawdopodobiństwa np. zakupu nowgo produktu przz klinta, z punktu widznia okrślonych (statystyczni istotnych) cch dotyczących produktu oraz spcyfiki procsu dcyzyjngo nabywcy. Autor kontynuując wczśnijsz badania dotycząc rynku miszkaniowgo (dotycząc zastosowania rgrsji wilorakij), w ninijszj publikacji zastosował rgrsję logistyczną do okrślnia prawdopodobiństwa sprzdaży niruchomości miszkaniowj, z punktu widznia czasu oczkiwania niruchomości na sprzdaż (prawdopodobiństwo sprzdaży niruchomości w czasi krótszym od śrdnigo czasu oczkiwania). Zaltą rgrsji logistycznj jst to, ż intrprtacja wyników jst bardzo podobna do mtod stosowanych w rgrsji klasycznj. Jdnakż, nalży równiż zaznaczyć, ż rgrsja logistyczna w porównaniu do rgrsji wilorakij jst bardzij skomplikowaną obliczniowo, oraz wyliczni wartości i sporządzni wykrsów rszt często ni wnosi nic nowgo do modlu [6]. Logistyczny modl rgrsji dla zminnj dychotomicznj wyrażony jst wzorm 1 [,5,6]. gdzi P( Y = 1/,,..., ) = a + 1+ k 1 (1) k k i = 1 a + a i i i = 1 a i, i =,1,,..., k - paramtry strukturaln modlu w rgrsji logistycznj,,...,, k 1 zminn nizalżn, któr mogą być zarówno ilościow jak i jakościow. Do oszacowania współczynników rgrsji, ni możmy użyć popularnj mtody najmnijszych kwadratów, gdyż wymaga ona założnia o stałości wariancji. Z tgo względu do stymacji paramtrów w rgrsji logistycznj wykorzystuj się mtodę największj wiarygodności (MNW) [,5,6]. W rgrsji logistycznj, prócz intrprtacji współczynników rgrsji, dochodzi jszcz jdn paramtr tj. iloraz szans. Jst to stosunk prawdopodobiństwa, ż jakiś zdarzni wystąpi do prawdopodobiństwa, ż tn przypadk się ni pojawi. Dla okrślongo przykładu A, możmy to zapisać w postaci wzoru [6]. a i i 18

3 S( A) P( A) 1 P( A) = () Intrprtacja szans wyrażonych wzorm jst przydatna do wyjaśninia oszacowango modlu logistyczngo. Możmy udowodnić, ż gdy wybrana zminna nizalżna wzrośni o jdnostkę, to iloraz szans zmini się a ) razy. Jśli p( a ) > 1 to nalży się p( i spodziwać wzrostu ilorazu szans, natomiast gdy p( a ) < 1 to jgo spadku. W przypadku, gdy zminna nizalżna jst zminną zro-jdynkową, to a ) oznacza, 18 i i p( i il razy wzrasta iloraz dla wartości zminnj zalżnj równj jdności []. W koljnym kroku procsu budowy modlu logistyczngo powinniśmy okrślić miary dopasowania modlu oraz dokonać wryfikacji poprawności modlu (tstowani modlu). Miary dopasowania modlu możmy wyrazić za pomocą wartości psudo-r McFaddna, jak równiż za pomocą miar R-kwadrat Cragga-Uhlra, Naglkrk czy Coa-Snlla. W uwagi na nico inn podjści obliczniow, nalży zachować szczgólną uwagę przy porównywaniu modli logistycznych, w których zostały okrślon miary dopasowania różnych autorów [6]. Procdura tstowania wyników stymacji w modlowaniu logistycznym jst dokonywana za pomocą wartości statystyki tstu ilorazu wiarygodności. Hipotza zrowa dla tak zdfiniowanych założń mówi, ż wszystki paramtry modlu, bz wyrazu wolngo są równ zru. Statystyka tstu jst wyrażona jst wzorm nr [,5,6]. MP MZ (ln L ln L ) () gdzi: ln L MP - logarytm funkcji wiarygodności dla modlu płngo; ln L MZ - logarytm funkcji wiarygodności dla modlu zrdukowango; oraz z założnia ma rozkład λ z liczbą stopni swobody równą liczbi zminnych objaśniających modlu płngo. Nalży równiż zaznaczyć, ż dobór zminnych do modlu jst poddany tym samym wymaganiom, co w klasycznym modlu liniowym. W końcowym tapi budowy modlu logistyczngo można obliczyć prognozę -post wartości zminnj zalżnj dla każdj obsrwacji. Przyjmuj się, ż trafność prognozy -post wygoni jst przdstawić za pomocą tablicy trafności. Obliczając prognozę -post obowiązują dwi zasady, tj. zasada standardowa stosowana przy próbi zbilansowanj oraz zasada optymalnj wartości granicznj []. Założnia poprawności analizy rgrsji logistycznj [6]: - wybór próby nalży przprowadzić w sposób losowy, - w procsi przygotowania danych usunąć dan odstając - zastosować odpowidni kodowani, tzn., zminnj zalżnj wartość jdn przypisać dl przypadku nas intrsującgo, - włączyć do modlu wszystki zminn istotn statystyczni, - wyłączyć z modlu wszystki niistotn zminn, - pamiętać o liniowj zalżność transformacji logitowj od zminnych nizalżnych,

4 - unikać zjawiska współliniowości, - pamiętać o dużj liczbności próby, tj. powinno być spłnion założni N > 1 ( k + 1), gdzi k jst liczbą paramtrów. Jdnakż, za minimalną liczbność powinno się okrślić na 1 - lmntów.. Zastosowani rgrsji logistycznj w praktyc studium przypadku Przy budowi modlu rgrsji logistycznj w pirwszj koljności sprawdzono czy występują obsrwacj odstając. Procs liminacji obsrwacji odstających przprowadzono, dla każdj zminnj mirzalnj. W tym clu na bazi wykrsu plot-bo oraz obliczonych miar położnia (mdiana, kwartyl1, kwartyl) odrzucono wszystki obsrwacj podjrzan o odstając (za krytrium klasyfikacji zminnj jako odstającj przyjęto +/- 1,5 IQR). Następni zdfiniowano cl badania, którym jst zbudowani modlu logistyczngo, sprawdzającgo prawdopodobiństwo sprzdaży miszkania w czasi krótszym niż śrdnia czasu oczkiwania na sprzdaż z wszystkich ofrt wystawionych do sprzdaży. Dla rkordów wykorzystanych w ninijszym badaniu śrdni czas oczkiwania niruchomości na sprzdaż wynosi 88,64 dni. Wjściowy modl rgrsji logistycznj został zapisany w postaci formalnj w wzorz nr 4. a ( = 1/,,..., 1 ) = 1+ + a + a + a + a + a + a + a + a + a + a Y 1 a + a + a + a + a + a + a + a + a + a + a 1 1 (4) gdzi: 1 - logarytm naturalny cny miszkania; - powirzchnia miszkania; - liczba pokoi w miszkaniu; 4 - piętro, na którym znajduj się miszkani; - kuchnia w miszkaniu; 5 - ocna położnia miszkania; 6 - standard wykończnia miszkania; 7 - liczba kondygnacji w budynku; 8 - tchnologia budowy; 9 - lokalizacja miszkania w budynku; 1 a1, a,..., a, a paramtry strukturaln modlu. 1 Po zbudowaniu formalngo modlu rgrsji logistycznj, przprowadzono stymację jgo paramtrów strukturalnych. W tabli 1 przdstawiono wyniki stymacji z zastosowanim mtody Quasi-Nwtona. 184

5 Tab. 1. Wstępn wyniki stymacji modlu rgrsji logistycznj Stała X1 X. X X4 X5 X6 X7 X8 X9 X ,6 -,4 - -,1 - - Ocna 4,1,9,9 5,7 8 1,,65,8,15 Błąd 14,,7,7,1 1,4,,1,57,56,69,56 standardowy ,1 -,6 - -,8 - - t(11),,7,77 5,78 5 1,8 1,16 1,11,7,,5,4 Poziom p,77,94,1,1,7,5,91,79 Analizując przdstawion wyniki zminnymi istotni wpływającymi na zminną Y są, 4,, 6. Po koljnym odrzucniu zminnych niistotnych statystyczni, ostatczna postać modlu rgrsji logistycznj przyjęła postać wyrażoną wzorm 5. gdzi: - powirzchnia miszkania; - liczba pokoi w miszkaniu;,67,1 P + 1,7, 4 1,18 ( 6 Y ),67,1 + 1,7, 1, 18 = (5) piętro, na którym znajduj się miszkani; - ocna położnia miszkania. 6 Natomiast podsumowani procsu stymacji przdstawiono w tabli. Tab.. Wyniki procsu stymacji dla zminnych istotnych Stała X X X4 X6 Ocna,67 -,1 1,7 -, -1,18 Błąd standardowy,95,,6,1,55 t(11),88 -,48,8 -,9 -,16 Poziom p,,,1,, -95%CL 1,79 -,16,5 -,5 -,6 +95%CL 5,55 -,4,96 -,1 -,1 Chi-kwadrat Walda 15, 1,1 7,8 8,51 4,68 Poziom p,,,1,, Iloraz szans z jnd. 9,5,9 5,65,74,1-95%CL 6,,85 1,66,61,1 +95%CL 57,6,96 19,7,91,91 Iloraz szans zakr., 575,88,4,1-95%CL, 1,46,,

6 +95%CL, 656,,5,91 Wartość statystyki p dla całgo modlu przyjęła wartość,5, co świadczy o istotności modlu w porównaniu do modlu tylko z wyrazm wolnym, co potwirdza cl badania, ż zbudowany modl wnosi coś nowgo. Ponadto, nalży poddać intrprtacji, tzw. logarytm wiarygodności, który jst miarą dopasowania całgo modlu. Logarytm tn obliczany jst za pomocą statystyki log z maksimum wiarygodności zbudowango modlu i modlu tylko zawirającym wyraz wolny. W zbudowanym modlu wartości t wynoszą odpowidnio 1, oraz 147,. Duża różnica pomiędzy tymi statystykami, ma rozkład zbliżony do chi-kwadrat. Statystyka ta to pirwszy krok wryfikacji istotności modlu. Na bazi powyższych wartości obliczono psudo R McFaddna i wyniósł on,17. Dokonując intrprtacji otrzymanych wyników możmy wnioskować, ż: - każdy dodatkowy pokój w miszkaniu zwiększa 5,65 razy prawdopodobiństwo sprzdaży niruchomości; - mamy 5% szans na sprzdaż miszkania, jśli zwiększymy jgo powirzchnię o 1 m, natomiast 1% szans na sprzdaż, gdy powirzchnię zwiększymy o m,w stosunku do powirzchni bazowj; - w tabli widzimy, ż miszkani na piętrz w stosunku do miszkania na 1 piętrz ma o połowę mnijszą szansę na sprzdaż, natomiast jszcz mnijsz szans na sprzdaż (,) ma miszkani znajdując się na 5 piętrz (w porównaniu do miszkania znajdującgo się na 1 piętrz). Tab.. Iloraz szans na sprzdaż miszkania w zalżności od liczby piętra Piętro Wilkość zmnijsznia,74,55,41,,,16,1,9,7 W tabli 4 przdstawiono poprawni i nipoprawni zakwalifikowan przypadki dla wyliczongo modlu. Obliczono równiż iloraz szans jako stosunk iloczynu poprawni zaklasyfikowanych przypadków do iloczynu nipoprawni zakwalifikowanych i wynosi on 4,76. Wartość większa od jdności oznacza, ż ta klasyfikacja jst lpsza od tj, którą zostałaby przprowadzona przz przypadk. Tab. 4. Tablica trafności Przwidywan Przwidywan 1. Procnt poprawności, 14, 5, 5,9 1, 8, 68, 89,47 4. Podsumowani Przprowadzony procs badawczy potwirdza przydatność zbudowango modlu logistyczngo, w procsi podjmowania dcyzji na rynku miszkaniowym. Zbudowany modl moż być stosowany, jako narzędzi wspomagając podjęci trafnj dcyzji inwstycyjnych przz dwloprów jak i indywidualnych sprzdających. Przyjmując za krytrium czas sprzdaży miszkania (liczbę dni potrzbną na sprzdaż miszkania), 186

7 możmy przy okrślonych paramtrach wartościujących miszkani wskazać prawdopodobiństwo powodznia transakcji oraz możmy przprowadzić wilowymiarową intrprtację paramtrów. W przdstawionym artykul przdstawiono szczgółową analizę modlu rgrsji logistycznj, którgo clm jst okrślni prawdopodobiństwa sprzdaży niruchomości w czasi krótszym od śrdnigo czasu oczkiwania na sprzdaż. Autor ninijszj publikacji podjął równiż próbę budowy modli rgrsji logistycznj, w których clm było okrślni prawdopodobiństwa sprzdaży niruchomości w czasi krótszym niż jdn misiąc oraz w czasi krótszym niż jdn tydziń. Nistty na bazi posiadanych danych w obydwu modlach wszystki zminn nizalżn okazały się niistotn statystyczni. W dalszych tapach badawczych, próbując poprawić jakość zbudowango modlu rgrsji logistycznj, będzi podjęta próba poprawy jakości danych wjściowych użytych do budowy modlu (np. poprzz zwiększni rkordów wykorzystywanych do analizy). Litratura 1. Churrchill, G.A. Badania marktingow, Podstawy mtodologiczn, PWN, Warszawa,.. Dittmann P., Prognozowani w przdsiębiorstwi. Mtody i ich zastosowani, Oficyna Ekonomiczna, Kraków 4.. Gruszczyński M., Kuszwski T., Podgórska M. (rd.), Ekonomtria i badania opracyjn, PWN, Warszawa, Mach Ł., Economtric modl structur as a support tool in ral proprty markt paramtrs faturing, Th 19th Intrnational DAAAM SYMPOSIUM "Intllignt Manufacturing & Automation: Focus on Nt Gnration of Intllignt Systms and Solutions", -5th Octobr 8, Vinna. 5. Maddala G.S., Ekonomtria, Wydawnictwo PWN, Warszawa, Stanisz A., Przystępny kurs statystyki z zastosowanim Statistica PL na przykładach z mdycyny. T. Modl liniow i niliniow, Statsoft, Kraków, 7. Dr inż. Łukasz MACH Politchnika Opolska Wydział Zarządzania i Inżynirii Produkcji 45-7 Opol, ul. Ozimska 75 tlfon: mail: 187

Analiza danych jakościowych

Analiza danych jakościowych Analiza danych jakościowych Ccha ciągła a ccha dyskrtna! Ciągła kg Dyskrtna Cchy jakościow są to cchy, których jdnoznaczn i oczywist scharaktryzowani za pomocą liczb jst nimożliw lub bardzo utrudnion.

Bardziej szczegółowo

Perspektywy rozwoju rolnictwa ekologicznego w Polsce

Perspektywy rozwoju rolnictwa ekologicznego w Polsce Anna urczak Zachodniopomorska Szkoła Biznsu w Szczcini Prspktywy rozwoju rolnictwa kologiczngo w Polsc Strszczni W artykul wyjaśniono istotę rolnictwa kologiczngo Następni szczgółowo omówiono zasady, na

Bardziej szczegółowo

ZASTOSOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZESPOŁU PRĄDOTWÓRCZEGO W SIŁOWNI OKRĘTOWEJ

ZASTOSOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZESPOŁU PRĄDOTWÓRCZEGO W SIŁOWNI OKRĘTOWEJ Chybowski L. Grzbiniak R. Matuszak Z. Maritim Acadmy zczcin Poland ZATOOWANIE METODY GRAFÓW WIĄZAŃ DO MODELOWANIA PRACY ZEPOŁU PRĄDOTWÓRCZEGO W IŁOWNI OKRĘTOWEJ ummary: Papr prsnts issus of application

Bardziej szczegółowo

Uświadomienie potrzeby badawczej.

Uświadomienie potrzeby badawczej. III. BADANIA MARKETINGOWE PROWADZENIA BADAŃ 1. W badaniach marktingowych poszukuj się odpowidzi na trzy rodzaj pytań: pytania o fakty o różnym stopniu złożoności co jst? pytania o cchy (właściwości) stwirdzanych

Bardziej szczegółowo

CHARAKTERYSTYKA OBCIĄŻENIOWA

CHARAKTERYSTYKA OBCIĄŻENIOWA Opracowani: dr inż. Ewa Fudalj-Kostrzwa CHARAKTERYSTYKA OBCIĄŻENIOWA Charaktrystyki obciążniow są wyznaczan w ramach klasycznych statycznych badań silników zarówno dla silników o zapłoni iskrowym jak i

Bardziej szczegółowo

MODELE POPYTU KONSUMPCYJNEGO DLA BRANŻ PIWOWARSKIEJ I SPIRYTUSOWEJ

MODELE POPYTU KONSUMPCYJNEGO DLA BRANŻ PIWOWARSKIEJ I SPIRYTUSOWEJ Michał Purczyński * MODELE POPYTU KONSUMPCYJNEGO DLA BRANŻ PIWOWARSKIEJ I SPIRYTUSOWEJ Wstęp Tmatyka modli popytu konsumpcyjngo dla branż piwowarskij i spirytusowj jst szroko obcna w litraturz polskij

Bardziej szczegółowo

WPŁYW STÓP PROCENTOWYCH W USA I W STREFIE EURO NA STOPY PROCENTOWE W POLSCE I. STOPY PROCENTOWE W GOSPODARCE OTWARTEJ.

WPŁYW STÓP PROCENTOWYCH W USA I W STREFIE EURO NA STOPY PROCENTOWE W POLSCE I. STOPY PROCENTOWE W GOSPODARCE OTWARTEJ. Ewa Czapla Instytut Ekonomii i Zarządzania Politchnika Koszalińska WPŁYW STÓP PROCENTOWYCH W USA I W STREFIE EURO NA STOPY PROCENTOWE W POLSCE I. STOPY PROCENTOWE W GOSPODARCE OTWARTEJ. Stopy procntow

Bardziej szczegółowo

- Jeśli dany papier charakteryzuje się wskaźnikiem beta równym 1, to premia za ryzyko tego papieru wartościowego równa się wartości premii rynkowej.

- Jeśli dany papier charakteryzuje się wskaźnikiem beta równym 1, to premia za ryzyko tego papieru wartościowego równa się wartości premii rynkowej. Śrdni waŝony koszt kapitału (WACC) Spółki mogą korzystać z wilu dostępnych na rynku źródł finansowania: akcj zwykł, kapitał uprzywiljowany, krdyty bankow, obligacj, obligacj zaminn itd. W warunkach polskich

Bardziej szczegółowo

Farmakokinetyka furaginy jako przykład procesu pierwszego rzędu w modelu jednokompartmentowym zawierającym sztuczną nerkę jako układ eliminujący lek

Farmakokinetyka furaginy jako przykład procesu pierwszego rzędu w modelu jednokompartmentowym zawierającym sztuczną nerkę jako układ eliminujący lek 1 Matriał tortyczny do ćwicznia dostępny jst w oddzilnym dokumnci, jak równiż w książc: Hrmann T., Farmakokintyka. Toria i praktyka. Wydawnictwa Lkarski PZWL, Warszawa 2002, s. 13-74 Ćwiczni 6: Farmakokintyka

Bardziej szczegółowo

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska Anna Stankiewicz Izabela Słomska Wstęp- statystyka w politologii Rzadkie stosowanie narzędzi statystycznych Pisma Karla Poppera

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A

Definicja: Wektor nazywamy uogólnionym wektorem własnym rzędu m macierzy A Uogólnion wktory własnw Dfinicja: Wktor nazywamy uogólnionym wktorm własnym rzędu m macirzy A m do wartości własnj λ jśli ( A - I) m m- λ al ( A - λ I) Przykład: Znajdź uogólniony wktor własny rzędu do

Bardziej szczegółowo

Ekonometria. Modelowanie zmiennej jakościowej. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Modelowanie zmiennej jakościowej. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Modelowanie zmiennej jakościowej Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Ćwiczenia 8 Zmienna jakościowa 1 / 25 Zmienna jakościowa Zmienna ilościowa może zostać zmierzona

Bardziej szczegółowo

APROKSYMACJA ZJAWISK RYNKOWYCH NARZĘDZIEM WSPOMAGAJĄCYM PODEJMOWANIE DECYZJI

APROKSYMACJA ZJAWISK RYNKOWYCH NARZĘDZIEM WSPOMAGAJĄCYM PODEJMOWANIE DECYZJI APROKSYMACJA ZJAWISK RYNKOWYCH NARZĘDZIEM WSPOMAGAJĄCYM PODEJMOWANIE DECYZJI Łukasz MACH Streszczenie: W artykule przedstawiono wybrane aspekty prognozowania czynników istotnie określających sytuację na

Bardziej szczegółowo

EKONOMETRIA. Ekonometryczne modele specjalne. Zbigniew.Tarapata zbigniew.tarapata.akcja.pl/p_ekonometria/ tel.

EKONOMETRIA. Ekonometryczne modele specjalne.   Zbigniew.Tarapata zbigniew.tarapata.akcja.pl/p_ekonometria/ tel. EKONOMETRIA Tmat wykładu: Ekonomtryczn modl spcjaln Prowadzący: dr inż. Zbigniw TARAPATA -mail: Zbigniw.Tarapata Tarapata@isi.wat..wat.du.pl http:// zbigniw.tarapata.akcja.pl/p_konomtria/ tl.: 0-606-45-54-80

Bardziej szczegółowo

Statystyka I. Regresja dla zmiennej jakościowej - wykład dodatkowy (nieobowiązkowy)

Statystyka I. Regresja dla zmiennej jakościowej - wykład dodatkowy (nieobowiązkowy) Statystyka I Regresja dla zmiennej jakościowej - wykład dodatkowy (nieobowiązkowy) 1 Zmienne jakościowe qzmienne jakościowe niemierzalne kategorie: np. pracujący / bezrobotny qzmienna binarna Y=0,1 qczasami

Bardziej szczegółowo

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych

Laboratorium Półprzewodniki Dielektryki Magnetyki Ćwiczenie nr 11 Badanie materiałów ferromagnetycznych Laboratorium Półprzwodniki Dilktryki Magntyki Ćwiczni nr Badani matriałów frromagntycznych I. Zagadninia do przygotowania:. Podstawow wilkości charaktryzując matriały magntyczn. Związki pomiędzy B, H i

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 760 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 59 2013

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 760 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 59 2013 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO NR 760 FINANSE, RYNKI FINANSOWE, UBEZPIECZENIA NR 59 2013 KAROL MAREK KLIMCZAK SYMULACJA FINANSOWA SPÓŁKI ZA POMOCĄ MODELU ZYSKU REZYDUALNEGO Słowa kluczow:

Bardziej szczegółowo

Budowa praktycznego modelu regresji opisującego zależności występujące na rynku nieruchomości mieszkaniowych

Budowa praktycznego modelu regresji opisującego zależności występujące na rynku nieruchomości mieszkaniowych 291 Zeszyty Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Politechnika Opolska Budowa praktycznego modelu regresji opisującego zależności występujące na rynku nieruchomości mieszkaniowych Streszczenie.

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Autor: Dariusz Piwczyński :07

Autor: Dariusz Piwczyński :07 Autor: Dariusz Piwczyński 011-1-01 14:07 Analiza danych jakościowych tsty opart o statystykę χ. Cchy jakościow są to cchy, których jdnoznaczn i oczywist scharaktryzowani za pomocą liczb jst nimożliw lub

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, 诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ MECHANICZNY TECHNOLOGICZNY. Optymalizacja układów powierzchniowych z wykorzystaniem algorytmów ewolucyjnych

POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ MECHANICZNY TECHNOLOGICZNY. Optymalizacja układów powierzchniowych z wykorzystaniem algorytmów ewolucyjnych POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ MECHANICZNY TECHNOLOGICZNY Katdra Wytrzymałości Matriałów i Mtod Komputrowych Mchaniki Rozprawa doktorska Tytuł: Optymalizacja układów powirzchniowych z wykorzystanim

Bardziej szczegółowo

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część

Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część Populacja generalna (zbiorowość generalna) zbiór obejmujący wszystkie elementy będące przedmiotem badań Próba (podzbiór zbiorowości generalnej) część populacji, którą podaje się badaniu statystycznemu

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji.

Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. Ćwiczenie: Wybrane zagadnienia z korelacji i regresji. W statystyce stopień zależności między cechami można wyrazić wg następującej skali: Skala Guillforda Przedział Zależność Współczynnik [0,00±0,20)

Bardziej szczegółowo

Michał Brzozowski Wykład 40 h Makrokonomia zaawansowana Część I: Ekonomia Montarna Dyżur: onidziałki.30 2.45, p. 409 E-mail: brzozowski@wn.uw.du.pl http://coin.wn.uw.du.pl/brzozowski lan wykładu. Czym

Bardziej szczegółowo

3. Modele tendencji czasowej w prognozowaniu

3. Modele tendencji czasowej w prognozowaniu II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa

Bardziej szczegółowo

Sieci neuronowe - uczenie

Sieci neuronowe - uczenie Sici nuronow - uczni http://zajcia.jakubw.pl/nai/ Prcptron - przypomnini x x x n w w w n wi xi θ y w p. p. y Uczni prcptronu Przykład: rozpoznawani znaków 36 wjść Wyjści:, jśli na wjściu pojawia się litra

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

Proces modelowania zjawiska handlu zagranicznego towarami

Proces modelowania zjawiska handlu zagranicznego towarami Załącznik nr 1 do raportu końcowego z wykonania pracy badawczej pt. Handel zagraniczny w województwach (NTS2) realizowanej przez Centrum Badań i Edukacji Statystycznej z siedzibą w Jachrance na podstawie

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

gdzie. Dla funkcja ma własności:

gdzie. Dla funkcja ma własności: Ekonometria, 21 listopada 2011 r. Modele ściśle nieliniowe Funkcja logistyczna należy do modeli ściśle nieliniowych względem parametrów. Jest to funkcja jednej zmiennej, zwykle czasu (t). Dla t>0 wartośd

Bardziej szczegółowo

Pobieranie prób i rozkład z próby

Pobieranie prób i rozkład z próby Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.

Bardziej szczegółowo

Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Instrukcja do pracowni specjalistycznej

Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Instrukcja do pracowni specjalistycznej Politchnika Białotocka Wydział Elktryczny Katdra Tlkomunikacji i Aparatury Elktronicznj Intrukcja do pracowni pcjalitycznj Tmat ćwicznia: Dokładność ciągłych i dykrtnych układów rgulacji Numr ćwicznia:

Bardziej szczegółowo

Ocena porównawcza silników dwupaliwowych o zapłonie samoczynnym w układach napędowych zbiornikowców LNG

Ocena porównawcza silników dwupaliwowych o zapłonie samoczynnym w układach napędowych zbiornikowców LNG NAFTA-GAZ styczń 2012 RO LXVIII Andrzj Adamkiwicz, Czary Bhrndt Akadmia Morska w Szczcini Ocna porównawcza silników dwupaliwowych o zapłoni samoczynnym w układach napędowych zbiornikowców LNG Wprowadzni

Bardziej szczegółowo

Matematyka - Statystyka matematyczna Mathematical statistics 2, 2, 0, 0, 0

Matematyka - Statystyka matematyczna Mathematical statistics 2, 2, 0, 0, 0 Nazwa przedmiotu: Kierunek: Matematyka - Statystyka matematyczna Mathematical statistics Inżynieria materiałowa Materials Engineering Rodzaj przedmiotu: Poziom studiów: forma studiów: obowiązkowy studia

Bardziej szczegółowo

STUDIA I STOPNIA EGZAMIN Z EKONOMETRII

STUDIA I STOPNIA EGZAMIN Z EKONOMETRII NAZWISKO IMIĘ Nr albumu Nr zestawu Zadanie 1. Dana jest macierz Leontiefa pewnego zamkniętego trzygałęziowego układu gospodarczego: 0,64 0,3 0,3 0,6 0,88 0,. 0,4 0,8 0,85 W okresie t stosunek zuŝycia środków

Bardziej szczegółowo

Metody Ilościowe w Socjologii

Metody Ilościowe w Socjologii Metody Ilościowe w Socjologii wykład 2 i 3 EKONOMETRIA dr inż. Maciej Wolny AGENDA I. Ekonometria podstawowe definicje II. Etapy budowy modelu ekonometrycznego III. Wybrane metody doboru zmiennych do modelu

Bardziej szczegółowo

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych

Bardziej szczegółowo

W1. Wprowadzenie. Statystyka opisowa

W1. Wprowadzenie. Statystyka opisowa W1. Wprowadzenie. Statystyka opisowa dr hab. Jerzy Nakielski Zakład Biofizyki i Morfogenezy Roślin Plan wykładu: 1. O co chodzi w statystyce 2. Etapy badania statystycznego 3. Zmienna losowa, rozkład

Bardziej szczegółowo

LABORATORIUM PODSTAW SILNIKÓW I NAPĘDÓW SPALINOWYCH. Ćwiczenie 2 POMIARY PODSTAWOWYCH PARAMETRÓW PRACY SILNIKÓW SPALINOWYCH

LABORATORIUM PODSTAW SILNIKÓW I NAPĘDÓW SPALINOWYCH. Ćwiczenie 2 POMIARY PODSTAWOWYCH PARAMETRÓW PRACY SILNIKÓW SPALINOWYCH Dr inŝ. Sławomir Makowski WYDZIAŁ MECHANICZNY POLITECHNIKI GDAŃSKIEJ KATEDRA SILNIKÓW SPALINOWYCH I SPRĘśAREK Kirownik katdry: prof. dr hab. inŝ. Andrzj Balcrski, prof. zw. PG LABORATORIUM PODSTAW SILNIKÓW

Bardziej szczegółowo

Projektowanie procesu doboru próby

Projektowanie procesu doboru próby Projkowai procsu doboru próby Okrśli populacji gralj i badaj Okrśli jdoski próby 3 Okrśli wykazu badaj populacji 4 Okrśli liczbości próby 5 Wybór mody doboru próby losowgo ilosowgo Usali ko lub co moż

Bardziej szczegółowo

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego

Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Testowanie hipotez statystycznych związanych ą z szacowaniem i oceną ą modelu ekonometrycznego Ze względu na jakość uzyskiwanych ocen parametrów strukturalnych modelu oraz weryfikację modelu, metoda najmniejszych

Bardziej szczegółowo

Rachunek Prawdopodobieństwa MAP1151, 2011/12 Wydział Elektroniki Wykładowca: dr hab. Agnieszka Jurlewicz

Rachunek Prawdopodobieństwa MAP1151, 2011/12 Wydział Elektroniki Wykładowca: dr hab. Agnieszka Jurlewicz 1 Rachunk Prawdopodobiństwa MAP1151, 011/1 Wydział Elktroniki Wykładowca: dr hab. Agniszka Jurlwicz Listy zadań nr 5-6 Opracowani: dr hab. Agniszka Jurlwicz Lista 5. Zminn losow dwuwymiarow. Rozkłady łączn,

Bardziej szczegółowo

Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń Problem Przykłady

Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń Problem Przykłady Analiza wariancji w analizie regresji - weryfikacja prawdziwości przyjętego układu ograniczeń 1. Problem ozwaŝamy zjawisko (model): Y = β 1 X 1 X +...+ β k X k +Z Ηβ = w r Hipoteza alternatywna: Ηβ w r

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

Przetwarzanie sygnałów biomedycznych

Przetwarzanie sygnałów biomedycznych Prztwarzani sygnałów biomdycznych dr hab. inż. Krzysztof Kałużyński, prof. PW Człowik- najlpsza inwstycja Projkt współfinansowany przz Unię Europjską w ramach Europjskigo Funduszu Społczngo Wykład XI Filtracja

Bardziej szczegółowo

Zakład Ubezpieczeń Społecznych Departament Zamówień Publicznych ul. Szamocka 3, 5, 01-748 Warszawa tel: 22 667 17 04, fax: 22 667 17 33

Zakład Ubezpieczeń Społecznych Departament Zamówień Publicznych ul. Szamocka 3, 5, 01-748 Warszawa tel: 22 667 17 04, fax: 22 667 17 33 Zakład Ubzpiczń Społcznych Dpartamnt Zamówiń Publicznych ul. Szamocka 3, 5, 01-748 Warszawa tl: 22 667 17 04, fax: 22 667 17 33 993200/271/IN- 268/15 Warszawa, dnia 19.03.2015 r. Informacja dla Wykonawców,

Bardziej szczegółowo

.pl KSIĄŻKA ZNAKU. Portal Kulturalny Warmii i Mazur. www.eświatowid.pl. Przygotował: Krzysztof Prochera. Zatwierdził: Antoni Czyżyk

.pl KSIĄŻKA ZNAKU. Portal Kulturalny Warmii i Mazur. www.eświatowid.pl. Przygotował: Krzysztof Prochera. Zatwierdził: Antoni Czyżyk Portalu Kulturalngo Warmii i Mazur www.światowid Przygotował: Krzysztof Prochra... Zatwirdził: Antoni Czyżyk... Elbląg, dn. 4.12.2014 Płna forma nazwy prawnj: www.światowid Formy płnj nazwy prawnj nalży

Bardziej szczegółowo

Optymalizacja reguł przejścia systemu bonus-malus

Optymalizacja reguł przejścia systemu bonus-malus Optymalizaca rguł przścia systmu onus-malus Dr Marcin Topolwski Dr Michał Brnardlli Instytut Ekonomtrii Szkoła Główna Handlowa w Warszawi Plan: Inspiraca, motywaca, cl i zakrs adania Ryzyko Systm onus-malus

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr Temat: Karty kontrolne przy alternatywnej ocenie właściwości.

Bardziej szczegółowo

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8

Stanisław Cichocki Natalia Nehrebecka. Zajęcia 8 Stanisław Cichocki Natalia Nehrebecka Zajęcia 8 1. Testy diagnostyczne 2. Testowanie prawidłowości formy funkcyjnej modelu 3. Testowanie normalności składników losowych 4. Testowanie stabilności parametrów

Bardziej szczegółowo

Testy post-hoc. Wrocław, 6 czerwca 2016

Testy post-hoc. Wrocław, 6 czerwca 2016 Testy post-hoc Wrocław, 6 czerwca 2016 Testy post-hoc 1 metoda LSD 2 metoda Duncana 3 metoda Dunneta 4 metoda kontrastów 5 matoda Newman-Keuls 6 metoda Tukeya Metoda LSD Metoda Least Significant Difference

Bardziej szczegółowo

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde

Bardziej szczegółowo

Załącznik 5.1 Analiza statystyczna wyników badania dotyczącego zarządzania ryzykiem w przedsiębiorstwach

Załącznik 5.1 Analiza statystyczna wyników badania dotyczącego zarządzania ryzykiem w przedsiębiorstwach Załącznik 5.1 Analiza statystyczna wyników badania dotyczącgo zarządzania ryzykim w przdsiębiorstwach Spis trści Liczba pracowników w jdnostc lokalnj... 5 A.Przyczyny źródłow... 8 A1. Zarządzani BHP, w

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

Prognozowanie na podstawie modelu ekonometrycznego

Prognozowanie na podstawie modelu ekonometrycznego Prognozowanie na podstawie modelu ekonometrycznego Przykład. Firma usługowa świadcząca usługi doradcze w ostatnich kwartałach (t) odnotowała wynik finansowy (yt - tys. zł), obsługując liczbę klientów (x1t)

Bardziej szczegółowo

PRACA DOKTORSKA ANALIZA DYNAMICZNYCH I USTALONYCH STANÓW PRACY SILNIKA RELUKTANCYJNEGO MGR INŻ. JANUSZ KOŁODZIEJ ZE STRUMIENIEM POPRZECZNYM

PRACA DOKTORSKA ANALIZA DYNAMICZNYCH I USTALONYCH STANÓW PRACY SILNIKA RELUKTANCYJNEGO MGR INŻ. JANUSZ KOŁODZIEJ ZE STRUMIENIEM POPRZECZNYM POLITECHNIKA OPOLSKA WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI I INFORMATYKI MGR INŻ. JANUSZ KOŁODZIEJ ANALIZA DYNAMICZNYCH I USTALONYCH STANÓW PRACY SILNIKA RELUKTANCYJNEGO ZE STRUMIENIEM POPRZECZNYM PRACA

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

ANALIZA REGRESJI SPSS

ANALIZA REGRESJI SPSS NLIZ REGRESJI SPSS Metody badań geografii społeczno-ekonomicznej KORELCJ REGRESJ O ile celem korelacji jest zmierzenie siły związku liniowego między (najczęściej dwoma) zmiennymi, o tyle w regresji związek

Bardziej szczegółowo

Regresja linearyzowalna

Regresja linearyzowalna 1 z 5 2007-05-09 23:22 Medycyna Praktyczna - portal dla lekarzy Regresja linearyzowalna mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie Data utworzenia:

Bardziej szczegółowo

Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej

Ekonometria. Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych. Jakub Mućk. Katedra Ekonomii Ilościowej Ekonometria Prognozowanie ekonometryczne, ocena stabilności oszacowań parametrów strukturalnych Jakub Mućk Katedra Ekonomii Ilościowej Jakub Mućk Ekonometria Wykład 4 Prognozowanie, stabilność 1 / 17 Agenda

Bardziej szczegółowo

Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych

Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych dr Piotr Sulewski POMORSKA AKADEMIA PEDAGOGICZNA W SŁUPSKU KATEDRA INFORMATYKI I STATYSTYKI Porównanie generatorów liczb losowych wykorzystywanych w arkuszach kalkulacyjnych Wprowadzenie Obecnie bardzo

Bardziej szczegółowo

Uczelnia Łazarskiego Wydział Medyczny Kierunek Lekarski

Uczelnia Łazarskiego Wydział Medyczny Kierunek Lekarski Uczelnia Łazarskiego Wydział Medyczny Kierunek Lekarski Nazwa przedmiotu INFORMATYKA I BIOSTATYSTYKA Kod przedmiotu WL_ 10 Poziom studiów Jednolite studia magisterskie Status przedmiotu x podstawowy uzupełniający

Bardziej szczegółowo

Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych. Laboratorium VII: Regresja logistyczna

Inżynieria biomedyczna, I rok, semestr letni 2014/2015 Analiza danych pomiarowych. Laboratorium VII: Regresja logistyczna 1 Laboratorium VII: Regresja logistyczna Spis treści Laboratorium VII: Regresja logistyczna... 1 Wiadomości ogólne... 2 1. Wstęp teoretyczny.... 2 1.1. Wprowadzenie.... 2 2. Regresja logistyczna w STATISTICE...

Bardziej szczegółowo

Analiza niepewności pomiarów

Analiza niepewności pomiarów Teoria pomiarów Analiza niepewności pomiarów Zagadnienia statystyki matematycznej Dr hab. inż. Paweł Majda www.pmajda.zut.edu.pl Podstawy statystyki matematycznej Histogram oraz wielobok liczebności zmiennej

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI WYDZIAŁ GEOINŻYNIERII, GÓRNICTWA I GEOLOGII KARTA PRZEDMIOTU Nazwa w języku polskim: Statystyka matematyczna Nazwa w języku angielskim: Mathematical Statistics Kierunek studiów (jeśli dotyczy): Górnictwo

Bardziej szczegółowo

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013 Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 0/03 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Wykład 8 Dane kategoryczne

Wykład 8 Dane kategoryczne Wykład 8 Dane kategoryczne Wrocław, 19.04.2017r Zmienne kategoryczne 1 Przykłady zmiennych kategorycznych 2 Zmienne nominalne, zmienne ordynalne (porządkowe) 3 Zmienne dychotomiczne kodowanie zmiennych

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: ZIE n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2013/2014 Kod: ZIE n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Statystyka opisowa i ekonomiczna Rok akademicki: 2013/2014 Kod: ZIE-1-205-n Punkty ECTS: 6 Wydział: Zarządzania Kierunek: Informatyka i Ekonometria Specjalność: - Poziom studiów: Studia I

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

Wykład VIII: Odkształcenie materiałów - właściwości sprężyste

Wykład VIII: Odkształcenie materiałów - właściwości sprężyste Wykład VIII: Odkształcni matriałów - właściwości sprężyst JERZY LI Wydział Inżynirii Matriałowj i ramiki Katdra Tchnologii ramiki i Matriałów Ogniotrwałych Trść wykładu: 1. Właściwości matriałów wprowadzni

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Statystyka matematyczna (STA230) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Statystyka matematyczna (STA230) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Statystyka matematyczna (STA230) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: III/5 5. LICZBA PUNKTÓW ECTS: 6 6. LICZBA GODZIN: 30

Bardziej szczegółowo

Ekonomiczno-techniczne aspekty wykorzystania gazu w energetyce

Ekonomiczno-techniczne aspekty wykorzystania gazu w energetyce Ekonomiczno-chniczn aspky wykorzysania gazu w nrgyc anusz oowicz Wydział Inżynirii i Ochrony Środowiska Polichnika Częsochowska zacowani nakładów inwsycyjnych na projky wykorzysania gazu w nrgyc anusz

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 Regresja wielokrotna Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X 1, X 2, X 3,...) na zmienną zależną (Y).

Bardziej szczegółowo

Regresja i Korelacja

Regresja i Korelacja Regresja i Korelacja Regresja i Korelacja W przyrodzie często obserwujemy związek między kilkoma cechami, np.: drzewa grubsze są z reguły wyższe, drewno iglaste o węższych słojach ma większą gęstość, impregnowane

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Niestacjonarne zmienne czasowe własności i testowanie

Niestacjonarne zmienne czasowe własności i testowanie Materiał dla studentów Niestacjonarne zmienne czasowe własności i testowanie (studium przypadku) Część 3: Przykłady testowania niestacjonarności Nazwa przedmiotu: ekonometria finansowa I (22204), analiza

Bardziej szczegółowo

Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015

Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015 Projekt zaliczeniowy z Ekonometrii i prognozowania Wyższa Szkoła Bankowa w Toruniu 2014/2015 Nr indeksu... Imię i Nazwisko... Nr grupy ćwiczeniowej... Imię i Nazwisko prowadzącego... 1. Specyfikacja modelu

Bardziej szczegółowo

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15 VI WYKŁAD STATYSTYKA 9/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 6 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności, zasady

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2014/2015

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2014/2015 Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 201/2015 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:

Bardziej szczegółowo

Kilka uwag o testowaniu istotności współczynnika korelacji

Kilka uwag o testowaniu istotności współczynnika korelacji 341 Zeszyty Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Piotr Peternek Uniwersytet Ekonomiczny we Wrocławiu Marek Kośny Uniwersytet Ekonomiczny we Wrocławiu Kilka uwag o testowaniu istotności

Bardziej szczegółowo

REGULAMIN PSKO 2016. I. Kryteria i wymagania dla zawodników Optimist PSKO. II. Mistrzostwa PSKO. III. Puchar Polski PSKO

REGULAMIN PSKO 2016. I. Kryteria i wymagania dla zawodników Optimist PSKO. II. Mistrzostwa PSKO. III. Puchar Polski PSKO I. Krytria i wymagania dla zawodników Optimist PSKO 1. W rgatach PSKO mogą startować zawodnicy do lat 15 posiadający licncję sportową PZŻ, aktualn ubzpiczni OC i będący członkami PSKO, spłniający wymagania

Bardziej szczegółowo

WYKŁAD 8 ANALIZA REGRESJI

WYKŁAD 8 ANALIZA REGRESJI WYKŁAD 8 ANALIZA REGRESJI Regresja 1. Metoda najmniejszych kwadratów-regresja prostoliniowa 2. Regresja krzywoliniowa 3. Estymacja liniowej funkcji regresji 4. Testy istotności współczynnika regresji liniowej

Bardziej szczegółowo

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp tel.: +48 662 635 712 Liczba stron: 15 Data: 20.07.2010r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE

Bardziej szczegółowo

Metoda największej wiarogodności

Metoda największej wiarogodności Wprowadzenie Założenia Logarytm funkcji wiarogodności Metoda Największej Wiarogodności (MNW) jest bardziej uniwersalną niż MNK metodą szacowania wartości nieznanych parametrów Wprowadzenie Założenia Logarytm

Bardziej szczegółowo

Katastrofą budowlaną jest nie zamierzone, gwałtowne zniszczenie obiektu budowlanego lub jego części, a także konstrukcyjnych elementów rusztowań,

Katastrofą budowlaną jest nie zamierzone, gwałtowne zniszczenie obiektu budowlanego lub jego części, a także konstrukcyjnych elementów rusztowań, O A A O O! Katastrofą budowlaną jst ni zamirzon, gwałtown zniszczni obiktu budowlango lub jgo części, a takż konstrukcyjnych lmntów rusztowań, lmntów formujących, ściank szczlnych i obudowy wykopów (art.

Bardziej szczegółowo

PARCIE GRUNTU. Przykłady obliczeniowe. Zadanie 1.

PARCIE GRUNTU. Przykłady obliczeniowe. Zadanie 1. MECHANIA GRUNTÓW ćwicznia, dr inż. Irnusz Dyka irunk studiów: Budownictwo Rok III, s. V Zadani. PARCIE GRUNTU Przykłady obliczniow Przdstawion zostały wyniki obliczń parcia czynngo i birngo (odporu) oraz

Bardziej szczegółowo

ASY PALI. Tadeusz Uhl*, Maciej Kaliski*, Łukasz Sękiewicz* *Akademia Górniczo - Hutnicza w Krakowie STRESZCZENIE SŁOWA KLUCZOWE: NR 59-60/2007

ASY PALI. Tadeusz Uhl*, Maciej Kaliski*, Łukasz Sękiewicz* *Akademia Górniczo - Hutnicza w Krakowie STRESZCZENIE SŁOWA KLUCZOWE: NR 59-60/2007 Tadusz Uhl*, Macij Kaliski*, Łukasz Sękiwicz* *Akadmia Górniczo - Hutnicza w Krakowi ASY PALI IE I E II STRESZCZENIE Artykuł zawira informacj na tmat zastosowania ogniw paliwowych jako gnratorów nrgii

Bardziej szczegółowo

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych

Bardziej szczegółowo

Sterowanie wielkością zamówienia w Excelu - cz. 3

Sterowanie wielkością zamówienia w Excelu - cz. 3 Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok akademicki 2014/2015

Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok akademicki 2014/2015 Tryb studiów Niestacjonarne Nazwa kierunku studiów Finanse i Rachunkowość Poziom studiów Stopień pierwszy Rok studiów/ semestr II/4 Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok akademicki

Bardziej szczegółowo