Bładzenie przypadkowe i lokalizacja

Wielkość: px
Rozpocząć pokaz od strony:

Download "Bładzenie przypadkowe i lokalizacja"

Transkrypt

1 Bładzenie przypadkowe i lokalizacja Zdzisław Burda Jarosław Duda, Jean-Marc Luck, Bartłomiej Wacław Seminarium Wydziałowe WFiIS AGH, 07/11/2014

2 Plan referatu Wprowadzenie Zwykłe bładzenie przypadkowe (GRW) Bładzenie przypadkowe o maksymalnej entropii (MERW) Na regularnej sieci: GRW=MERW Losowe defekty na sieci lokalizacja Podsumowanie i spekulacje

3 Zwiazek dyfuzji z ruchami Browna A. Einstein (1905) i M. Smoluchowski (1906) K. Pearson (1905) RANDOM WALK Bładzenie przypadkowe / Bładzenie losowe

4 Zwiazek dyfuzji z ruchami Browna A. Einstein (1905) i M. Smoluchowski (1906) K. Pearson (1905) RANDOM WALK Bładzenie przypadkowe / Bładzenie losowe

5 Zwiazek dyfuzji z ruchami Browna A. Einstein (1905) i M. Smoluchowski (1906) K. Pearson (1905) RANDOM WALK Bładzenie przypadkowe / Bładzenie losowe

6 Lokalizacja P.W. Anderson (1958) Absence of Diffusion in Certain Random Lattice. Efekt kwantowy

7 Lokalizacja P.W. Anderson (1958) Absence of Diffusion in Certain Random Lattice. Efekt kwantowy

8 Bładzenie przypadkowe na grafach P(3 >1) Macierz sasiedztwa: A ij = 1(0), ij sa (nie sa) sasiadami Liczba koordynacyjna: k i = j A ij Prawdopodobieństwo przeskoku: P(i j) = P ij Macierz stochastyczna: 0 P ij A ij ; j P ij = 1

9 Bładzenie przypadkowe na grafach P(3 >1) Macierz sasiedztwa: A ij = 1(0), ij sa (nie sa) sasiadami Liczba koordynacyjna: k i = j A ij Prawdopodobieństwo przeskoku: P(i j) = P ij Macierz stochastyczna: 0 P ij A ij ; j P ij = 1

10 Bładzenie przypadkowe na grafach P(3 >1) Macierz sasiedztwa: A ij = 1(0), ij sa (nie sa) sasiadami Liczba koordynacyjna: k i = j A ij Prawdopodobieństwo przeskoku: P(i j) = P ij Macierz stochastyczna: 0 P ij A ij ; j P ij = 1

11 Bładzenie przypadkowe na grafach P(3 >1) Macierz sasiedztwa: A ij = 1(0), ij sa (nie sa) sasiadami Liczba koordynacyjna: k i = j A ij Prawdopodobieństwo przeskoku: P(i j) = P ij Macierz stochastyczna: 0 P ij A ij ; j P ij = 1

12 Ewolucja rozkładu prawdopodobieństwa Równanie Master: π i (t + 1) = j π j(t)p ji Stan stacjonarny: πi = j π j P ji Zwykłe bładzenie przypadkowe (GRW): P ij = A ij k i π i = k i 2L Przykład:

13 Ewolucja rozkładu prawdopodobieństwa Równanie Master: π i (t + 1) = j π j(t)p ji Stan stacjonarny: πi = j π j P ji Zwykłe bładzenie przypadkowe (GRW): P ij = A ij k i π i = k i 2L Przykład:

14 Ewolucja rozkładu prawdopodobieństwa Równanie Master: π i (t + 1) = j π j(t)p ji Stan stacjonarny: πi = j π j P ji Zwykłe bładzenie przypadkowe (GRW): P ij = A ij k i π i = k i 2L Przykład:

15 Ewolucja rozkładu prawdopodobieństwa Równanie Master: π i (t + 1) = j π j(t)p ji Stan stacjonarny: πi = j π j P ji Zwykłe bładzenie przypadkowe (GRW): P ij = A ij k i π i = k i 2L Przykład:

16 Ewolucja rozkładu prawdopodobieństwa Równanie Master: π i (t + 1) = j π j(t)p ji Stan stacjonarny: πi = j π j P ji Zwykłe bładzenie przypadkowe (GRW): P ij = A ij k i π i = k i 2L Przykład:

17 Ewolucja rozkładu prawdopodobieństwa Równanie Master: π i (t + 1) = j π j(t)p ji Stan stacjonarny: πi = j π j P ji Zwykłe bładzenie przypadkowe (GRW): P ij = A ij k i π i = k i 2L Przykład:

18 Ewolucja rozkładu prawdopodobieństwa Równanie Master: π i (t + 1) = j π j(t)p ji Stan stacjonarny: πi = j π j P ji Zwykłe bładzenie przypadkowe (GRW): P ij = A ij k i π i = k i 2L Przykład:

19 Ewolucja rozkładu prawdopodobieństwa Równanie Master: π i (t + 1) = j π j(t)p ji Stan stacjonarny: πi = j π j P ji Zwykłe bładzenie przypadkowe (GRW): P ij = A ij k i π i = k i 2L Przykład:

20 Ewolucja rozkładu prawdopodobieństwa Równanie Master: π i (t + 1) = j π j(t)p ji Stan stacjonarny: πi = j π j P ji Zwykłe bładzenie przypadkowe (GRW): P ij = A ij k i π i = k i 2L Przykład:

21 Ewolucja rozkładu prawdopodobieństwa Równanie Master: π i (t + 1) = j π j(t)p ji Stan stacjonarny: πi = j π j P ji Zwykłe bładzenie przypadkowe (GRW): P ij = A ij k i π i = k i 2L Przykład:

22 Trajektorie bładzenia przypadkowego γ (t) ab Prawdopodobieństwo: P(γ (t) i 0 i t ) = P i0 i 1 P i1 i 2... P it 1 i t GRW: P(γ (t) i 0 i t ) = 1 k i0 1 k i k it 1 Przykład: P(γ czerwona ) = = 1 P(γ zielona ) = = 1 MERW: P(γ (t) ab ) = F(t, a, b)? 1120 ; 1764 ;

23 Entropia trajektorii S ab,t = γ Γ (t) P(γ) ln P(γ) ab Produkcja entropii (Shannon, McMillan): s GRW = s lim t S ab,t t i k i ln k i 2L Maksymalna entropia: = i π i P ij ln P ij j Nierówność: s max = ln N ab,t t = ln(at ) ab t s GRW s max ln λ max

24 Największa wartość własna - tw. Frobeniusa-Perrona k min λ max k max Nowa nierówność: Example: exp (s GRW ) = ( i k k i i ) 1 2L λ max exp (s GRW ) = 108 1/ ; λ max = (1 + 17)/ ;

25 Równość s GRW = s max exp (s GRW ) = λ max ; Grafy k-regularne; λ max = k; Dwudzielne grafy regularne: λ max = k 1 k 2 ;

26 MERW Wektor własny FP: i ψ2 i = 1 A ij ψ j = λ max ψ i Prawdopodobieństwo przeskoku: j P ij = Prawdopodobieństwo trajektorii: A ij λ max ψ j ψ i P(γ (t) ab ) = 1 ψ b λ t max ψ a Stan stacjonarny: π i = ψ 2 i Produkcja entropii: s MERW = s max = ln λ max

27 MERW Wektor własny FP: i ψ2 i = 1 A ij ψ j = λ max ψ i Prawdopodobieństwo przeskoku: j P ij = Prawdopodobieństwo trajektorii: A ij λ max ψ j ψ i P(γ (t) ab ) = 1 ψ b λ t max ψ a Stan stacjonarny: π i = ψ 2 i Produkcja entropii: s MERW = s max = ln λ max

28 MERW Wektor własny FP: i ψ2 i = 1 A ij ψ j = λ max ψ i Prawdopodobieństwo przeskoku: j P ij = Prawdopodobieństwo trajektorii: A ij λ max ψ j ψ i P(γ (t) ab ) = 1 ψ b λ t max ψ a Stan stacjonarny: π i = ψ 2 i Produkcja entropii: s MERW = s max = ln λ max

29 MERW Wektor własny FP: i ψ2 i = 1 A ij ψ j = λ max ψ i Prawdopodobieństwo przeskoku: j P ij = Prawdopodobieństwo trajektorii: A ij λ max ψ j ψ i P(γ (t) ab ) = 1 ψ b λ t max ψ a Stan stacjonarny: π i = ψ 2 i Produkcja entropii: s MERW = s max = ln λ max

30 GRW vs. MERW na grafie liniowym

31 GRW vs. MERW na grafie liniowym

32 GRW vs. MERW na grafie liniowym

33 GRW vs. MERW na grafie liniowym

34 GRW vs. MERW na grafie liniowym

35 GRW vs. MERW na grafie liniowym

36 GRW vs. MERW na grafie liniowym

37 GRW vs. MERW na grafie liniowym

38 GRW vs. MERW na grafie liniowym

39 Odpychanie od defektów π i = 2 L+1 sin2 iπ L+1 ; i = 1,..., L Odpychanie od punktów końcowych (defektów)

40 Siatka z losowymi defektami

41 MERW na siatce z losowymi defektami 2-wymiarowa siatka + mała ilość defektów: q = ułamek usuniętych krawędzi; Przykład: 40 40; q = 0.001, 0.01, 0.05, 0.1:

42 Przykład 1-wymiarowy + argument Lifshitza graf drabinowy z losowo usuniętymi szczeblami: ψ i+1 + ψ i 1 + r i ψ i = λ max ψ i, r i = 1 z prawdop. p; 0 z (1 p) ; ψ i+1 + ψ i 1 2ψ i + (r i 1)ψ i = (λ max 3)ψ i Lifshitz, Nieuwenhuizen, Luck ( ψ) i + v i ψ i = E 0 ψ i ; v i = 1 r i ; E 0 = 3 λ max lokalizacja na najdłuższej sekwencji szczebli: Lp n (1 p) 2 1 n ln L/ ln p ψ i sin iπ/(n + 1); E 0 π 2 /n 2

43 Przykład 1-wymiarowy + argument Lifshitza graf drabinowy z losowo usuniętymi szczeblami: ψ i+1 + ψ i 1 + r i ψ i = λ max ψ i, r i = 1 z prawdop. p; 0 z (1 p) ; ψ i+1 + ψ i 1 2ψ i + (r i 1)ψ i = (λ max 3)ψ i Lifshitz, Nieuwenhuizen, Luck ( ψ) i + v i ψ i = E 0 ψ i ; v i = 1 r i ; E 0 = 3 λ max lokalizacja na najdłuższej sekwencji szczebli: Lp n (1 p) 2 1 n ln L/ ln p ψ i sin iπ/(n + 1); E 0 π 2 /n 2

44 Przykład 1-wymiarowy + argument Lifshitza graf drabinowy z losowo usuniętymi szczeblami: ψ i+1 + ψ i 1 + r i ψ i = λ max ψ i, r i = 1 z prawdop. p; 0 z (1 p) ; ψ i+1 + ψ i 1 2ψ i + (r i 1)ψ i = (λ max 3)ψ i Lifshitz, Nieuwenhuizen, Luck ( ψ) i + v i ψ i = E 0 ψ i ; v i = 1 r i ; E 0 = 3 λ max lokalizacja na najdłuższej sekwencji szczebli: Lp n (1 p) 2 1 n ln L/ ln p ψ i sin iπ/(n + 1); E 0 π 2 /n 2

45 Przykład 1-wymiarowy + argument Lifshitza graf drabinowy z losowo usuniętymi szczeblami: ψ i+1 + ψ i 1 + r i ψ i = λ max ψ i, r i = 1 z prawdop. p; 0 z (1 p) ; ψ i+1 + ψ i 1 2ψ i + (r i 1)ψ i = (λ max 3)ψ i Lifshitz, Nieuwenhuizen, Luck ( ψ) i + v i ψ i = E 0 ψ i ; v i = 1 r i ; E 0 = 3 λ max lokalizacja na najdłuższej sekwencji szczebli: Lp n (1 p) 2 1 n ln L/ ln p ψ i sin iπ/(n + 1); E 0 π 2 /n 2

46 Przykład numeryczny π i = ψ 2 i for L = 500; q =1 p = 0.01, 0.1. ln Πi ln Πi

47 Test numeryczny E 0 (π ln p / ln L) 2 L = 20,..., 960; q =1 p = 0.1 E0-1/ ln L

48 Sfery Lifshitza dla D > 1 ( ψ) i + v i ψ i = E 0 ψ i ( ψ) i = E 0 ψ i z warunkami Dirichleta w największym obszarze sferycznym bez defektów (SFERA LIFSHITZA); w 2-wymiarach promień sfery R (ln L/(π ln p )) 1/2

49 Podsumowanie GRW maksymalizuje lokalnie (zachłannie) entropię MERW maksymalizuje globalnie entropię trajektorii Podobna filozofia do zasady minimalnego działania GRW = MERW na sieci regularnej Lokalizacja MERW w przypadku losowych defektów Klasyczny przykład lokalizacji Lokalizacja zwiazana jest ze stanami Lifshitza Ciekawa nierówność: ( i k k i i ) 1 2L λ max

50 Podsumowanie GRW maksymalizuje lokalnie (zachłannie) entropię MERW maksymalizuje globalnie entropię trajektorii Podobna filozofia do zasady minimalnego działania GRW = MERW na sieci regularnej Lokalizacja MERW w przypadku losowych defektów Klasyczny przykład lokalizacji Lokalizacja zwiazana jest ze stanami Lifshitza Ciekawa nierówność: ( i k k i i ) 1 2L λ max

51 Podsumowanie GRW maksymalizuje lokalnie (zachłannie) entropię MERW maksymalizuje globalnie entropię trajektorii Podobna filozofia do zasady minimalnego działania GRW = MERW na sieci regularnej Lokalizacja MERW w przypadku losowych defektów Klasyczny przykład lokalizacji Lokalizacja zwiazana jest ze stanami Lifshitza Ciekawa nierówność: ( i k k i i ) 1 2L λ max

52 Podsumowanie GRW maksymalizuje lokalnie (zachłannie) entropię MERW maksymalizuje globalnie entropię trajektorii Podobna filozofia do zasady minimalnego działania GRW = MERW na sieci regularnej Lokalizacja MERW w przypadku losowych defektów Klasyczny przykład lokalizacji Lokalizacja zwiazana jest ze stanami Lifshitza Ciekawa nierówność: ( i k k i i ) 1 2L λ max

53 Zastosowania i spekulacje Kwantowe amplitudy w zakrzywionej czasoprzestrzeni K ab = e S E ; S E t t γ (t) ab Bariery entropiczne i dynamika szkła spinowego; Model quasi-gatunków

54 Zastosowania i spekulacje Kwantowe amplitudy w zakrzywionej czasoprzestrzeni K ab = e S E ; S E t t γ (t) ab Bariery entropiczne i dynamika szkła spinowego; Model quasi-gatunków

55 Zastosowania i spekulacje Kwantowe amplitudy w zakrzywionej czasoprzestrzeni K ab = e S E ; S E t t γ (t) ab Bariery entropiczne i dynamika szkła spinowego; Model quasi-gatunków

56 Dynamika MERW

57 Dynamika MERW

58 Dynamika MERW

59 Dynamika MERW

60 Dynamika MERW

61 Dynamika MERW

62 Dynamika MERW

63 Dynamika MERW

64 Dynamika MERW

65 Dynamika MERW

66 Dynamika MERW

Fizyka na usługach inżynierii finansowej 1

Fizyka na usługach inżynierii finansowej 1 Fizyka na usługach inżynierii finansowej 1 Plan referatu 1. Zwiazek ekonomii z naukami ścisłymi 2. Ekonofizyka 3. Metody fizyki w inżynierii finansowej Bładzenie przypadkowe Uniwersalność Korelacje Macierze

Bardziej szczegółowo

2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.

2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ. Zadania z Procesów Stochastycznych 1 1. Udowodnij, że z prawdopodobieństwem 1 trajektorie procesu Poissona są niemalejące, przyjmują wartości z Z +, mają wszystkie skoki równe 1 oraz dążą do nieskończoności.

Bardziej szczegółowo

Grafy Alberta-Barabasiego

Grafy Alberta-Barabasiego Spis treści 2010-01-18 Spis treści 1 Spis treści 2 Wielkości charakterystyczne 3 Cechy 4 5 6 7 Wielkości charakterystyczne Wielkości charakterystyczne Rozkład stopnie wierzchołków P(deg(x) = k) Graf jest

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego

Bardziej szczegółowo

Ośrodkowość procesów, proces Wienera. Ośrodkowość procesów, proces Wienera Procesy Stochastyczne, wykład, T. Byczkowski,

Ośrodkowość procesów, proces Wienera. Ośrodkowość procesów, proces Wienera Procesy Stochastyczne, wykład, T. Byczkowski, Procesy Stochastyczne, wykład, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 27 luty, 2012 Ośrodkowość procesów Dalej zakładamy, że (Ω, Σ, P) jest zupełną przestrzenią miarową. Definicja.

Bardziej szczegółowo

2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ.

2. Wykaż, że moment pierwszego skoku w procesie Poissona. S 1 := inf{t : N t > 0} jest zmienną losową o rozkładzie wykładniczym z parametrem λ. Zadania z Procesów Stochastycznych 1 1. Udowodnij, że z prawdopodobieństwem 1 trajektorie procesu Poissona są niemalejące, przyjmują wartości z Z +, mają wszystkie skoki równe 1 oraz dążą do nieskończoności.

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova

Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova M. Czoków, J. Piersa 2010-12-21 1 Definicja Własności Losowanie z rozkładu dyskretnego 2 3 Łańcuch Markova Definicja Własności Losowanie z rozkładu

Bardziej szczegółowo

Teoria ze Wstępu do analizy stochastycznej

Teoria ze Wstępu do analizy stochastycznej eoria ze Wstępu do analizy stochastycznej Marcin Szumski 22 czerwca 21 1 Definicje 1. proces stochastyczny - rodzina zmiennych losowych X = (X t ) t 2. trajektoria - funkcja (losowa) t X t (ω) f : E 3.

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład IV: dla łańcuchów Markowa 14 marca 2017 Wykład IV: Klasyfikacja stanów Kiedy rozkład stacjonarny jest jedyny? Przykład Macierz jednostkowa I wymiaru #E jest macierzą stochastyczną. Dla tej macierzy

Bardziej szczegółowo

Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.

Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy bez pamięci w których czas i stany są zbiorami dyskretnymi. Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. 2 Łańcuchem Markowa nazywamy proces będący ciągiem zmiennych

Bardziej szczegółowo

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 4 ZADANIA - ZESTAW 4

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 4 ZADANIA - ZESTAW 4 ZADANIA - ZESTAW 4 Zadanie 4. 0-0,4 c 0 0, 0, Wznacz c. Wznacz rozkład brzegowe. Cz, są niezależne? (odp. c = 0,3 Zadanie 4.- 0-0,4 0,3 0 0, 0, Wznaczć macierz kowariancji i korelacji. Cz, są skorelowane?

Bardziej szczegółowo

Superdyfuzja. Maria Knorps. Wydział Fizyki Technicznej i Matematyki stosowanej, Politechnika Gdańska

Superdyfuzja. Maria Knorps. Wydział Fizyki Technicznej i Matematyki stosowanej, Politechnika Gdańska VI Matematyczne Warsztaty KaeNeMów p. 1/2 Superdyfuzja Maria Knorps maria.knorps@gmail.com Wydział Fizyki Technicznej i Matematyki stosowanej, Politechnika Gdańska VI Matematyczne Warsztaty KaeNeMów p.

Bardziej szczegółowo

Układy statystyczne. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki

Układy statystyczne. Jacek Jurkowski, Fizyka Statystyczna. Instytut Fizyki Instytut Fizyki 2015 Stany mikroskopowe i makroskopowe w układzie wielopoziomowym Stany mikroskopowe i makroskopowe w układzie wielopoziomowym N rozróżnialnych cząstek, z których każda może mieć energię

Bardziej szczegółowo

Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova)

Wykład 2. Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) Wykład 2 Przykład zastosowania teorii prawdopodobieństwa: procesy stochastyczne (Markova) 1. Procesy Markova: definicja 2. Równanie Chapmana-Kołmogorowa-Smoluchowskiego 3. Przykład dyfuzji w kapilarze

Bardziej szczegółowo

Strategie kwantowe w teorii gier

Strategie kwantowe w teorii gier Uniwersytet Jagielloński adam.wyrzykowski@uj.edu.pl 18 stycznia 2015 Plan prezentacji 1 Gra w odwracanie monety (PQ penny flip) 2 Wojna płci Definicje i pojęcia Równowagi Nasha w Wojnie płci 3 Kwantowanie

Bardziej szczegółowo

Algorytmy stochastyczne laboratorium 03

Algorytmy stochastyczne laboratorium 03 Algorytmy stochastyczne laboratorium 03 Jarosław Piersa 10 marca 2014 1 Projekty 1.1 Problem plecakowy (1p) Oznaczenia: dany zbiór przedmiotów x 1,.., x N, każdy przedmiot ma określoną wagę w(x i ) i wartość

Bardziej szczegółowo

Modelowanie sieci złożonych

Modelowanie sieci złożonych Modelowanie sieci złożonych B. Wacław Instytut Fizyki UJ Czym są sieci złożone? wiele układów ma strukturę sieci: Internet, WWW, sieć cytowań, sieci komunikacyjne, społeczne itd. sieć = graf: węzły połączone

Bardziej szczegółowo

PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω)

PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) określonych na tej samej przestrzeni probabilistycznej

Bardziej szczegółowo

1 Relacje i odwzorowania

1 Relacje i odwzorowania Relacje i odwzorowania Relacje Jacek Kłopotowski Zadania z analizy matematycznej I Wykazać, że jeśli relacja ρ X X jest przeciwzwrotna i przechodnia, to jest przeciwsymetryczna Zbadać czy relacja ρ X X

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych

Komputerowa analiza danych doświadczalnych Komputerowa analiza danych doświadczalnych Wykład 3 11.03.2016 dr inż. Łukasz Graczykowski lgraczyk@if.pw.edu.pl Wykłady z poprzednich lat (dr inż. H. Zbroszczyk): http://www.if.pw.edu.pl/~gos/student

Bardziej szczegółowo

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład I: Istnienie procesów stochastycznych 2 marca 2015 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane są

Bardziej szczegółowo

Normy wektorów i macierzy

Normy wektorów i macierzy Rozdzia l 3 Normy wektorów i macierzy W tym rozdziale zak ladamy, że K C. 3.1 Ogólna definicja normy Niech ψ : K m,n [0, + ) b edzie przekszta lceniem spe lniaj acym warunki: (i) A K m,n ψ(a) = 0 A = 0,

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elementy modelowania matematycznego Łańcuchy Markowa: zagadnienia graniczne. Ukryte modele Markowa. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ KLASYFIKACJA STANÓW Stan i jest osiągalny

Bardziej szczegółowo

Model Pasywnego Trasera w Lokalnie Ergodycznym Środowisku

Model Pasywnego Trasera w Lokalnie Ergodycznym Środowisku w Lokalnie Ergodycznym Środowisku Tymoteusz Chojecki UMCS, Lublin Tomasz Komorowski IMPAN, Warszawa Kościelisko, 10 września 2016, XLV Konferencja Zastosowań Matematyki T. Komorowski, T. Chojecki w Lokalnie

Bardziej szczegółowo

19 marzec, Łańcuchy Markowa z czasem dyskretnym. Procesy Stochastyczne, wykład 6, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136

19 marzec, Łańcuchy Markowa z czasem dyskretnym. Procesy Stochastyczne, wykład 6, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 Procesy Stochastyczne, wykład 6, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1136 19 marzec, 2012 Przykłady procesów Markowa (i). P = (p ij ) - macierz stochastyczna, tzn. p ij 0, j p ij =

Bardziej szczegółowo

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2016/2017 Język wykładowy: Polski

Bardziej szczegółowo

Procesy stochastyczne

Procesy stochastyczne Wykład I: Istnienie procesów stochastycznych 21 lutego 2017 Forma zaliczenia przedmiotu Forma zaliczenia Literatura 1 Zaliczenie ćwiczeń rachunkowych. 2 Egzamin ustny z teorii 3 Do wykładu przygotowane

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka

Rachunek prawdopodobieństwa i statystyka Rachunek prawdopodobieństwa i statystyka Momenty Zmienna losowa jest wystarczająco dokładnie opisana przez jej rozkład prawdopodobieństwa. Względy praktyczne dyktują jednak potrzebę znalezienia charakterystyk

Bardziej szczegółowo

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka finansowa Rocznik: 2014/2015 Język wykładowy: Polski Semestr

Bardziej szczegółowo

R Z N C. p11. a!b! = b (a b)!b! d n dx n [xn sin x] = x n(n k) (sin x) (n) = n(n 1) (n k + 1) sin(x + kπ. n(n 1) (n k + 1) sin(x + lπ 2 )

R Z N C. p11. a!b! = b (a b)!b! d n dx n [xn sin x] = x n(n k) (sin x) (n) = n(n 1) (n k + 1) sin(x + kπ. n(n 1) (n k + 1) sin(x + lπ 2 ) 5 Z N p ) a a + b)! b ) a!b! a a! b a b)!b! p n n k nn k) n ) n k) d n d n [n sin ] n nn k) sin ) n) k n nn ) n k + ) sin + lπ ) k d n d n [n sin ] n k ) n n ) n k) sin ) k) k n k ) n nn ) n k + ) sin

Bardziej szczegółowo

Zadania z Rachunku Prawdopodobieństwa III - 1

Zadania z Rachunku Prawdopodobieństwa III - 1 Zadania z Rachunku Prawdopodobieństwa III - 1 Funkcją tworzącą momenty (transformatą Laplace a) zmiennej losowej X nazywamy funkcję M X (t) := Ee tx, t R. 1. Oblicz funkcję tworzącą momenty zmiennych o

Bardziej szczegółowo

Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań do analizy rzeczywistych sieci złożonych

Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań do analizy rzeczywistych sieci złożonych Gdańsk, Warsztaty pt. Układy Złożone (8 10 maja 2014) Agata Fronczak Zakład Fizyki Układów Złożonych Wydział Fizyki Politechniki Warszawskiej Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne

METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne METODY SZTUCZNEJ INTELIGENCJI algorytmy ewolucyjne dr hab. inż. Andrzej Obuchowicz, prof. UZ Instytut Sterowania i Systemów Informatycznych Uniwersytet Zielonogórski A. Obuchowicz: MSI - algorytmy ewolucyjne

Bardziej szczegółowo

Równowaga. równowaga metastabilna (niepełna) równowaga niestabilna (nietrwała) równowaga stabilna (pełna) brak równowagi rozpraszanie energii

Równowaga. równowaga metastabilna (niepełna) równowaga niestabilna (nietrwała) równowaga stabilna (pełna) brak równowagi rozpraszanie energii Równowaga równowaga stabilna (pełna) równowaga metastabilna (niepełna) równowaga niestabilna (nietrwała) brak równowagi rozpraszanie energii energia swobodna Co jest warunkiem równowagi? temperatura W

Bardziej szczegółowo

Stara i nowa teoria kwantowa

Stara i nowa teoria kwantowa Stara i nowa teoria kwantowa Braki teorii Bohra: - podane jedynie położenia linii, brak natężeń -nie tłumaczy ilości elektronów na poszczególnych orbitach - model działa gorzej dla atomów z więcej niż

Bardziej szczegółowo

28 maja, Problem Dirichleta, proces Wienera. Procesy Stochastyczne, wykład 14, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126

28 maja, Problem Dirichleta, proces Wienera. Procesy Stochastyczne, wykład 14, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 Problem Dirichleta, proces Wienera Procesy Stochastyczne, wykład 14, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 28 maja, 2012 Funkcje harmoniczne Niech będzie operatorem Laplace a w

Bardziej szczegółowo

Spis treści. Przedmowa PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII. 1 Grawitacja 3. 2 Geometria jako fizyka 14

Spis treści. Przedmowa PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII. 1 Grawitacja 3. 2 Geometria jako fizyka 14 Spis treści Przedmowa xi I PRZESTRZEŃ I CZAS W FIZYCE NEWTONOWSKIEJ ORAZ SZCZEGÓLNEJ TEORII WZGLĘDNOŚCI 1 1 Grawitacja 3 2 Geometria jako fizyka 14 2.1 Grawitacja to geometria 14 2.2 Geometria a doświadczenie

Bardziej szczegółowo

Ćwiczenie 3: Wprowadzenie do programu Matlab

Ćwiczenie 3: Wprowadzenie do programu Matlab Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Laboratorium modelowania i symulacji Ćwiczenie 3: Wprowadzenie do programu Matlab 1. Wyznaczyć wartość sumy 1 1 2 + 1 3 1 4 + 1

Bardziej szczegółowo

Liga zadaniowa Seria I, 2014/2015, Piotr Nayar, Marta Strzelecka

Liga zadaniowa Seria I, 2014/2015, Piotr Nayar, Marta Strzelecka Seria I, 04/05, Piotr Nayar, Marta Strzelecka Pytania dotyczące zadań prosimy kierować do Piotra Nayara na adres: nayar@mimuw.edu.pl. Rozwiązania można przesyłać Marcie Strzeleckiej na adres martast@mimuw.edu.pl,

Bardziej szczegółowo

Zadania z Procesów Stochastycznych 1

Zadania z Procesów Stochastycznych 1 Zadania z Procesów Stochastycznych 1 Definicja Procesem Poissona z parametrem (intensywnością) λ > 0 nazywamy proces stochastyczny N = (N t ) t 0 taki, że N 0 = 0; (P0) N ma przyrosty niezależne; (P1)

Bardziej szczegółowo

Zawansowane modele wyborów dyskretnych

Zawansowane modele wyborów dyskretnych Zawansowane modele wyborów dyskretnych Jerzy Mycielski Uniwersytet Warszawski grudzien 2013 Jerzy Mycielski (Uniwersytet Warszawski) Zawansowane modele wyborów dyskretnych grudzien 2013 1 / 16 Model efektów

Bardziej szczegółowo

Projekt 6: Równanie Poissona - rozwiązanie metodą algebraiczną.

Projekt 6: Równanie Poissona - rozwiązanie metodą algebraiczną. Projekt 6: Równanie Poissona - rozwiązanie metodą algebraiczną. Tomasz Chwiej 9 sierpnia 18 1 Wstęp 1.1 Dyskretyzacja n y V V 1 V 3 1 j= i= 1 V 4 n x Rysunek 1: Geometria układu i schemat siatki obliczeniowej

Bardziej szczegółowo

Logarytmiczne równanie Schrödingera w obracajacej się pułapce harmonicznej

Logarytmiczne równanie Schrödingera w obracajacej się pułapce harmonicznej Logarytmiczne równanie Schrödingera w obracajacej się pułapce harmonicznej Tomasz Sowiński Seminarium CFT p.1/17 Nieliniowa mechanika kwantowa Dwa konteksty nielinowej mechaniki kwantowej: czy istnieja

Bardziej szczegółowo

Komputerowa analiza danych doświadczalnych. Wykład dr inż. Łukasz Graczykowski

Komputerowa analiza danych doświadczalnych. Wykład dr inż. Łukasz Graczykowski Komputerowa analiza danych doświadczalnych Wykład 3 9.03.2018 dr inż. Łukasz Graczykowski lukasz.graczykowski@pw.edu.pl Semestr letni 2017/2018 Dwuwymiarowe rozkłady zmiennych losowych Jednoczesne pomiary

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda

Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda Wstęp do sieci neuronowych, wykład 10. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-13 1 Modele sieci rekurencyjnej Energia sieci 2 3 Modele sieci

Bardziej szczegółowo

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2 Instytut Matematyczny Uniwersytet Wrocławski Zakres egzaminu magisterskiego Wybrane rozdziały anazlizy i topologii 1 i 2 Pojęcia, fakty: Definicje i pojęcia: metryka, iloczyn skalarny, norma supremum,

Bardziej szczegółowo

Modelowanie rynków finansowych z wykorzystaniem pakietu R

Modelowanie rynków finansowych z wykorzystaniem pakietu R Modelowanie rynków finansowych z wykorzystaniem pakietu R Metody numeryczne i symulacje stochastyczne Mateusz Topolewski woland@mat.umk.pl Wydział Matematyki i Informatyki UMK Plan działania 1 Całkowanie

Bardziej szczegółowo

Metody Lagrange a i Hamiltona w Mechanice

Metody Lagrange a i Hamiltona w Mechanice Metody Lagrange a i Hamiltona w Mechanice Mariusz Przybycień Wydział Fizyki i Informatyki Stosowanej Akademia Górniczo-Hutnicza Wykład 6 M. Przybycień (WFiIS AGH) Metody Lagrange a i Hamiltona... Wykład

Bardziej szczegółowo

Stacjonarne procesy gaussowskie, czyli o zwiazkach pomiędzy zwykła

Stacjonarne procesy gaussowskie, czyli o zwiazkach pomiędzy zwykła Stacjonarne procesy gaussowskie, czyli o zwiazkach pomiędzy zwykła autokorelacji Łukasz Dębowski ldebowsk@ipipan.waw.pl Instytut Podstaw Informatyki PAN autokorelacji p. 1/25 Zarys referatu Co to sa procesy

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane.

Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane. Wstęp do sieci neuronowych, wykład 7. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 213-11-19 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda

Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda Wstęp do sieci neuronowych, wykład 9. M. Czoków, J. Piersa 2010-12-07 1 Sieci skierowane 2 Modele sieci rekurencyjnej Energia sieci 3 Sieci skierowane Sieci skierowane Sieci skierowane graf połączeń synaptycznych

Bardziej szczegółowo

Termodynamika. Część 11. Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 11. Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 11 Układ wielki kanoniczny Statystyki kwantowe Gaz fotonowy Ruchy Browna Janusz Brzychczyk, Instytut Fizyki UJ Układ otwarty rozkład wielki kanoniczny Rozważamy układ w równowadze termicznej

Bardziej szczegółowo

Fizyka statystyczna Zarys problematyki Kilka słów o rachunku prawdopodobieństwa. P. F. Góra

Fizyka statystyczna Zarys problematyki Kilka słów o rachunku prawdopodobieństwa. P. F. Góra Fizyka statystyczna Zarys problematyki Kilka słów o rachunku prawdopodobieństwa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Niektórzy mówia, z e fizyka statystyczna to 50% całej fizyki. Znajduje

Bardziej szczegółowo

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5)

1. Liczby zespolone Zadanie 1.1. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone (1) 1 i (2) (5) . Liczby zespolone Zadanie.. Przedstawić w postaci a + ib, a, b R, następujące liczby zespolone () i +i, () 3i, (3) ( + i 3) 6, (4) (5) ( +i ( i) 5, +i 3 i ) 4. Zadanie.. Znaleźć moduł i argument główny

Bardziej szczegółowo

Rachunek różniczkowy funkcji wielu zmiennych

Rachunek różniczkowy funkcji wielu zmiennych Wydział Matematyki Stosowanej Zestaw zadań nr 7 Akademia Górniczo-Hutnicza w Krakowie WFiIS, informatyka stosowana, I rok Elżbieta Adamus 13 grudnia 2018r. Rachunek różniczkowy funkcji wielu zmiennych

Bardziej szczegółowo

Geodezja fizyczna i geodynamika

Geodezja fizyczna i geodynamika Geodezja fizyczna i geodynamika Podstawowe równanie geodezji fizycznej, całka Stokesa, kogeoida Dr inż. Liliana Bujkiewicz 21 listopada 2018 Dr inż. Liliana Bujkiewicz Geodezja fizyczna i geodynamika 21

Bardziej szczegółowo

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Lista zadania nr 7 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie Jarosław Kotowicz Instytut Matematyki Uniwersytet w

Bardziej szczegółowo

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: ATOM WODORU Atom wodoru Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: U = 4πε Opis kwantowy: wykorzystując zasadę odpowiedniości

Bardziej szczegółowo

Drgania i fale II rok Fizyk BC

Drgania i fale II rok Fizyk BC 00--07 5:34 00\FIN00\Drgzlo00.doc Drgania złożone Zasada superpozycji: wychylenie jest sumą wychyleń wywołanych przez poszczególne czynniki osobno. Zasada wynika z liniowości związku między wychyleniem

Bardziej szczegółowo

A. Odrzywołek. Dziura w Statycznym Wszechświecie Einsteina

A. Odrzywołek. Dziura w Statycznym Wszechświecie Einsteina /28 A. Odrzywołek Dziura w Statycznym Wszechświecie Einsteina Seminarium ZTWiA IFUJ, Środa, 26..22 2/28 A. Odrzywołek 3-sfera o promieniu R(t): Równania Einsteina: Zachowanie energii-pędu: Równanie stanu

Bardziej szczegółowo

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów

Rozdział 2: Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów Rozdział : Metoda największej wiarygodności i nieliniowa metoda najmniejszych kwadratów W tym rozdziale omówione zostaną dwie najpopularniejsze metody estymacji parametrów w ekonometrycznych modelach nieliniowych,

Bardziej szczegółowo

Rzadkie gazy bozonów

Rzadkie gazy bozonów Rzadkie gazy bozonów Tomasz Sowiński Proseminarium Fizyki Teoretycznej 15 listopada 2004 Rzadkie gazy bozonów p.1/25 Bardzo medialne zdjęcie Rok 1995. Pierwsza kondensacja. Zaobserwowana w przestrzeni

Bardziej szczegółowo

Generowanie liczb o zadanym rozkładzie. ln(1 F (y) λ

Generowanie liczb o zadanym rozkładzie. ln(1 F (y) λ Wprowadzenie Generowanie liczb o zadanym rozkładzie Generowanie liczb o zadanym rozkładzie wejście X U(0, 1) wyjście Y z zadanego rozkładu F (y) = 1 e λy y = ln(1 F (y) λ = ln(1 0,1563 0, 5 0,34 Wprowadzenie

Bardziej szczegółowo

Inżynieria Systemów Dynamicznych (4)

Inżynieria Systemów Dynamicznych (4) Inżynieria Systemów Dynamicznych (4) liniowych (układów) Piotr Jacek Suchomski Katedra Systemów Automatyki WETI, Politechnika Gdańska 2 grudnia 2010 O czym będziemy mówili? 1 2 WE OKREŚLO 3 ASYMPTO 4 DYNAMICZ

Bardziej szczegółowo

Układy stochastyczne

Układy stochastyczne Instytut Informatyki Uniwersytetu Śląskiego 21 stycznia 2009 Definicja Definicja Proces stochastyczny to funkcja losowa, czyli funkcja matematyczna, której wartości leżą w przestrzeni zdarzeń losowych.

Bardziej szczegółowo

5. Analiza dyskryminacyjna: FLD, LDA, QDA

5. Analiza dyskryminacyjna: FLD, LDA, QDA Algorytmy rozpoznawania obrazów 5. Analiza dyskryminacyjna: FLD, LDA, QDA dr inż. Urszula Libal Politechnika Wrocławska 2015 1 1. Liniowe funkcje dyskryminacyjne Liniowe funkcje dyskryminacyjne mają ogólną

Bardziej szczegółowo

czyli o szukaniu miejsc zerowych, których nie ma

czyli o szukaniu miejsc zerowych, których nie ma zerowych, których nie ma Instytut Fizyki im. Mariana Smoluchowskiego Centrum Badania Systemów Złożonych im. Marka Kaca Uniwersytet Jagielloński Metoda Metoda dla Warszawa, 9 stycznia 2006 Metoda -Raphsona

Bardziej szczegółowo

Maksymalne powtórzenia w tekstach i zerowa intensywność entropii

Maksymalne powtórzenia w tekstach i zerowa intensywność entropii Maksymalne powtórzenia w tekstach i zerowa intensywność entropii Łukasz Dębowski ldebowsk@ipipan.waw.pl i Instytut Podstaw Informatyki PAN Warszawa 1 Wprowadzenie 2 Ograniczenia górne i dolne 3 Przykłady

Bardziej szczegółowo

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka ubezpieczeniowa Rocznik: 2013/2014 Język wykładowy: Polski

Bardziej szczegółowo

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka finansowa Rocznik: 2013/2014 Język wykładowy: Polski Semestr

Bardziej szczegółowo

Rozkłady wielu zmiennych

Rozkłady wielu zmiennych Rozkłady wielu zmiennych Uogólnienie pojęć na rozkład wielu zmiennych Dystrybuanta, gęstość prawdopodobieństwa, rozkład brzegowy, wartości średnie i odchylenia standardowe, momenty Notacja macierzowa Macierz

Bardziej szczegółowo

Prawa potęgowe w grafach przepływu informacji dla geometrycznych sieci neuronowych

Prawa potęgowe w grafach przepływu informacji dla geometrycznych sieci neuronowych w grafach przepływu informacji dla geometrycznych sieci neuronowych www.mat.uni.torun.pl/~piersaj 2009-06-10 1 2 3 symulacji Graf przepływu ładunku Wspóczynnik klasteryzacji X (p) p α Rozkłady prawdopodobieństwa

Bardziej szczegółowo

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne

Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Wydział: Matematyki Stosowanej Kierunek: Matematyka Poziom studiów: Studia II stopnia Forma i tryb studiów: Stacjonarne Specjalność: Matematyka w informatyce Rocznik: 2013/2014 Język wykładowy: Polski

Bardziej szczegółowo

Analiza Algorytmów 2018/2019 (zadania na laboratorium)

Analiza Algorytmów 2018/2019 (zadania na laboratorium) Analiza Algorytmów 2018/2019 (zadania na laboratorium) Wybór lidera (do 9 III) Zadanie 1 W dowolnym języku programowania zaimplementuj symulator umożliwiający przetestowanie algorytmu wyboru lidera ELECT

Bardziej szczegółowo

V. KWANTOWE BRAMKI LOGICZNE Janusz Adamowski

V. KWANTOWE BRAMKI LOGICZNE Janusz Adamowski V. KWANTOWE BRAMKI LOGICZNE Janusz Adamowski 1 1 Wprowadzenie Wykład ten poświęcony jest dokładniejszemu omówieniu własności kwantowych bramek logicznych (kwantowych operacji logicznych). Podstawowymi

Bardziej szczegółowo

Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi.

Procesy stochastyczne WYKŁAD 2-3. Łańcuchy Markowa. Łańcuchy Markowa to procesy bez pamięci w których czas i stany są zbiorami dyskretnymi. Procesy stochastyczne WYKŁAD 2-3 Łańcuchy Markowa Łańcuchy Markowa to procesy "bez pamięci" w których czas i stany są zbiorami dyskretnymi. Przykład Symetryczne błądzenie przypadkowe na prostej. 1 2 Łańcuchem

Bardziej szczegółowo

6. Dyfuzja w ujęciu atomowym

6. Dyfuzja w ujęciu atomowym 6. Dyfuzja w ujęciu atomowym Do tej pory rozpatrywaliśmy dyfuzję w kategoriach makroskopowych - wszystkie nasze równania odnosiły się do sytuacji, w których opisywany układ traktowany był jako ciągłe medium.

Bardziej szczegółowo

r. akad. 2005/ 2006 Jan Królikowski Fizyka IBC

r. akad. 2005/ 2006 Jan Królikowski Fizyka IBC VIII.1 Pojęcia mikrostanu i makrostanu układu N punktów materialnych. Prawdopodobieństwo termodynamiczne. Entropia. VIII. Rozkład Boltzmanna VIII.3 Twierdzenie o wiriale Jan Królikowski Fizyka IBC 1 Uwagi

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda

Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda Wstęp do sieci neuronowych, wykład 9. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2018-12-10 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu

Bardziej szczegółowo

Transformaty. Kodowanie transformujace

Transformaty. Kodowanie transformujace Transformaty. Kodowanie transformujace Kodowanie i kompresja informacji - Wykład 10 10 maja 2009 Szeregi Fouriera Każda funkcję okresowa f (t) o okresie T można zapisać jako f (t) = a 0 + a n cos nω 0

Bardziej szczegółowo

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4. Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ

Bardziej szczegółowo

Estymacja gęstości prawdopodobieństwa metodą selekcji modelu

Estymacja gęstości prawdopodobieństwa metodą selekcji modelu Estymacja gęstości prawdopodobieństwa metodą selekcji modelu M. Wojtyś Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska Wisła, 7 grudnia 2009 Wstęp Próba losowa z rozkładu prawdopodobieństwa

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe ALGEBRA LINIOWA 2 Wydział Mechaniczny / AIR, MTR Semestr letni 2009/2010 Prowadzący: dr Teresa Jurlewicz Przestrzenie liniowe Uwaga. W nawiasach kwadratowych podane są numery zadań znajdujących się w podręczniku

Bardziej szczegółowo

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa

SIMR 2016/2017, Analiza 2, wykład 1, Przestrzeń wektorowa SIMR 06/07, Analiza, wykład, 07-0- Przestrzeń wektorowa Przestrzeń wektorowa (liniowa) - przestrzeń (zbiór) w której określone są działania (funkcje) dodawania elementów i mnożenia elementów przez liczbę

Bardziej szczegółowo

Znajdowanie skojarzeń na maszynie równoległej

Znajdowanie skojarzeń na maszynie równoległej 11 grudnia 2008 Spis treści 1 Skojarzenia w różnych klasach grafów Drzewa Grafy gęste Grafy regularne dwudzielne Claw-free graphs 2 Drzewa Skojarzenia w drzewach Fakt Wybierajac krawędź do skojarzenia

Bardziej szczegółowo

Metody Obliczeniowe w Nauce i Technice

Metody Obliczeniowe w Nauce i Technice 12. Iteracyjne rozwiązywanie Ax=B Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl Contributors Anna Marciniec Radosław

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Fizyka statystyczna, elementy termodynamiki nierównowagowej Cele, zakres zagadnień

Fizyka statystyczna, elementy termodynamiki nierównowagowej Cele, zakres zagadnień Fizyka statystyczna, elementy termodynamiki nierównowagowej Cele, zakres zagadnień Narzędzia przypomnienie podstawowych definicji i twierdzeń z rachunku prawdopodobienstwa; podstawowe rozkłady statystyczne

Bardziej szczegółowo

Wstęp do komputerów kwantowych

Wstęp do komputerów kwantowych Obwody kwantowe Uniwersytet Łódzki, Wydział Fizyki i Informatyki Stosowanej 2008/2009 Obwody kwantowe Bramki kwantowe 1 Algorytmy kwantowe 2 3 4 Algorytmy kwantowe W chwili obecnej znamy dwie obszerne

Bardziej szczegółowo

Granica funkcji. 8 listopada Wykład 4

Granica funkcji. 8 listopada Wykład 4 Granica funkcji 8 listopada 2011 Definicja Niech D R będzie dowolnym zbiorem. Punkt x 0 R nazywamy punktem skupienia zbioru D jeżeli δ>0 x D\{x0 } : x x 0 < δ. Zbiór punktów skupienia zbioru D oznaczamy

Bardziej szczegółowo

Matematyka dla DSFRiU zbiór zadań

Matematyka dla DSFRiU zbiór zadań I Matematyka dla DSFRiU zbiór zadań do użytku wewnętrznego Sumowanie skończone W zadaniach -4 obliczyć podaną sumę. dr Leszek Rudak Uniwersytet Warszawski Wydział Zarządzania. 5 i. i= 4 i. i= 5 ( ) i i=

Bardziej szczegółowo

8 Całka stochastyczna względem semimartyngałów

8 Całka stochastyczna względem semimartyngałów M. Beśka, Całka Stochastyczna, wykład 8 148 8 Całka stochastyczna względem semimartyngałów 8.1 Całka stochastyczna w M 2 Oznaczmy przez Ξ zbiór procesów postaci X t (ω) = ξ (ω)i {} (t) + n ξ i (ω)i (ti,

Bardziej szczegółowo

gęstością prawdopodobieństwa

gęstością prawdopodobieństwa Funkcja falowa Zgodnie z hipotezą de Broglie'a, cząstki takie jak elektron czy proton, mają własności falowe. Własności falowe cząstki (lub innego obiektu) w mechanice kwantowej opisuje tzw. funkcja falowa(,t)

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej

Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2013-01-09

Bardziej szczegółowo

Teoria ergodyczności: co to jest? Średniowanie po czasie vs. średniowanie po rozkładach Twierdzenie Poincare o powrocie Twierdzenie ergodyczne

Teoria ergodyczności: co to jest? Średniowanie po czasie vs. średniowanie po rozkładach Twierdzenie Poincare o powrocie Twierdzenie ergodyczne WYKŁAD 23 1 Teoria ergodyczności: co to jest? Średniowanie po czasie vs. średniowanie po rozkładach Twierdzenie Poincare o powrocie Twierdzenie ergodyczne (Birkhoff, Ter Haar) Hipoteza semi-ergodyczna

Bardziej szczegółowo

SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization

SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization Wrocław University of Technology SPOTKANIE 6: Klasteryzacja: K-Means, Expectation Maximization Jakub M. Tomczak Studenckie Koło Naukowe Estymator jakub.tomczak@pwr.wroc.pl 4.1.213 Klasteryzacja Zmienne

Bardziej szczegółowo

Metody Obliczeniowe w Nauce i Technice

Metody Obliczeniowe w Nauce i Technice 10. Numeryczna algebra liniowa wprowadzenie. Marian Bubak Department of Computer Science AGH University of Science and Technology Krakow, Poland bubak@agh.edu.pl dice.cyfronet.pl Contributors Magdalena

Bardziej szczegółowo

Dyfuzyjna metoda MC. 5 listopada Dyfuzyjna metoda MC

Dyfuzyjna metoda MC. 5 listopada Dyfuzyjna metoda MC 5 listopada 2018 metoda czasu urojonego kwantowa dyfuzyjna metoda Monte Carlo równanie Schroedingera i Ψ t = HΨ (*) równanie własne operatora energii HΨ n = E n Ψ n ewolucja w czasie stanu własnego Ψ n

Bardziej szczegółowo