STATYSTYKA MATEMATYCZNA

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "STATYSTYKA MATEMATYCZNA"

Transkrypt

1 STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. Populacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test 8. Test F 9. Testy nieparametryczne 10.Podsumowanie dotychczasowego materiału, wspólna analiza przykładów, dyskusja 11.Korelacja 1.Regresja liniowa i nieliniowa 13.Określenie jakości dopasowania równania regresji liniowej i nieliniowej 14.Analiza wariancji 15.Podsumowanie dotychczasowego materiału, wspólna analiza przykładów, dyskusja

2 WSTĘP Testy testy dla tablic kontyngencji 1. Zakres stosowalności. Klasyfikacja jednoczynnikowa 3. Klasyfikacja dwuczynnikowa 4. Test McNemara 5. Test ilorazu szans Copyright 015, Joanna Szyda

3 ZAKRES STOSOWALNOŚCI TESTÓW Testowanie zależności pomiędzy kategoriami 1. Dane w formie częstości ilość obserwacji w danej kategorii (%, średnia, prawdopodobieństwo, ). Dane podzielone na kategorie nominalne, porządkowe, (ciągłe ) 3. Nie należy stosować testów gdy: Oczekiwana częstotliwość dla pewnych kategorii jest mała ( < 5 ) Copyright 014, Joanna Szyda

4 TEST KLASYFIKACJA JEDNOCZYNNIKOWA One-way classification

5 TEST KLASYFIKACJA JEDNOCZYNNIKOWA KOLOR Biały CZĘSTOŚĆ Żółty Żółty 8 Żółty Czerwony Czerwony 5 Żółty Biały Żółty 4 Żółty Żółty SUMA Czerwony 17 Biały Czerwony Żółty Czerwony Czerwony Biały Żółty Biały 1. Klasyfikacja danych wg pojedynczego kryterium. Kolor kwiatów krokusa PRÓBA DANYCH Copyright 010, Joanna Szyda

6 TEST KLASYFIKACJA JEDNOCZYNNIKOWA 1. Określenie hipotez H 0 i H 1 H 0 : częstości wystąpienia kolorów są jednakowe H 1 : częstości wystąpienia kolorów są różne H 0 : n B = n Ż = n C H 1 : n B n Ż n C. Ustalenie poziomu istotności MAX = Wybór i obliczenie wartości testu statystycznego i i bi bi żó żó cz cz n n n n n n n n N K obs exp obs exp obs exp obs exp i bi żó cz i1 nexp nexp nexp nexp Copyright 010, Joanna Szyda

7 TEST KLASYFIKACJA JEDNOCZYNNIKOWA n i i obs exp i1 i nexp N K n liczebność klasy zaobserwowana w próbie danych liczebność klasy oczekiwana dla H 0 n i exp N K i 1 N n i obs K H 0 n obs = n exp = 0 H 1 n obs n exp > 0 Excel: przykład Copyright 010, Joanna Szyda

8 TEST KLASYFIKACJA JEDNOCZYNNIKOWA 3. Wybór i obliczenie wartości testu statystycznego N K bi bi żó żó cz cz n n n n n n n n obs n i1 exp exp 5.7 obs n exp bi exp 5.7 obs n exp żó exp 1.53 obs n exp cz exp 4. Określenie rozkładu testu: ~ K 1 5. Obliczenie wartości t : t 0.47 Excel: przykład 6. Decyzja: t > max H 0 H 1 częstości wystąpienia kolorów są jednakowe Copyright 010, Joanna Szyda

9 TEST KLASYFIKACJA DWUCZYNNIKOWA Two-way classification

10 TEST KLASYFIKACJA DWUCZYNNIKOWA 1. Klasyfikacja danych wg dwu kryteriów PRÓBA DANYCH. Liczebność słoni w Parku Narodowym Mikumi, Tanzania Pora samotny samiec grupa samców kategoria grupa rodzinna grupa rodzinna + samiec sucha deszczowa Copyright 010, Joanna Szyda

11 TEST KLASYFIKACJA DWUCZYNNIKOWA 1. Określenie hipotez H 0 i H 1 H 0 : pora roku nie wpływa na zmiany liczebności słoni w poszczególnych kategoriach (oba kryteria są niezależne) H 1 : pora roku wpływa na zmiany liczebności słoni w poszczególnych kategoriach (oba kryteria są zależne) H 0 : n Di = n Si dla i=1 4 H 1 : n Di n Si. Ustalenie poziomu istotności MAX = Wybór i obliczenie wartości testu statystycznego N K M i1 ij ij D _1 D _1 S _ 4 S _ 4 n n n n n n N obs exp ij j1 nexp obs n exp D _1 exp obs n exp S _ 4 exp Copyright 010, Joanna Szyda

12 TEST KLASYFIKACJA DWUCZYNNIKOWA n N N ij ij obs exp i1 j1 ij nexp K M n liczebność klasy oczekiwana dla H 0 n ij exp N K i1 n N i. obs N M j1 n N. j obs N N K NM i. n obs i1 j1 N n. j obs samot ny samie c grupa samc ów grupa rodzin na grupa rodzin na + samie c suma sucha deszc zowa suma sucha deszczo deszczo wa samotn y samiec grupa samców 135*50 1* ? grupa rodzinn a grupa rodzinn a + samiec sucha wa Copyright 010, Joanna Szyda

13 TEST KLASYFIKACJA DWUCZYNNIKOWA 3. Wybór i obliczenie wartości testu statystycznego N K N M i1 j1 exp n ij obs n n ij exp Określenie rozkładu testu: K 1 M 1 ~ 3 5. Obliczenie wartości t : t Excel: przykład Copyright 010, Joanna Szyda

14 TEST KLASYFIKACJA DWUCZYNNIKOWA 6. Decyzja: t < max H 0 H 1 liczebność poszczególnych grup słoni różni się w zależności od pory roku Copyright 010, Joanna Szyda

15 TEST MCNEMARA McNemar's test

16 TEST McNEMARA PRÓBA DANYCH 1. Wzrost bakterii Mycobacterium tuberculosis na pożywkach (A / B). Próbki pobrane od 50 chorych 3. Dane sparowane (ten sam pacjent) B A wzrost brak wz. wzrost 17 1 brak wz Copyright 011, Joanna Szyda

17 TEST McNEMARA 1. Określenie hipotez H 0 i H 1 H 0 : rodzaj pożywki nie wpływa na wzrost bakterii (oba kryteria są niezależne) H 1 : rodzaj pożywki wpływa na wzrost bakterii (oba kryteria są zależne) H 0 : n 1 = n 1 H 1 : n 1 n 1. Ustalenie poziomu istotności MAX = Wybór i obliczenie wartości testu statystycznego n n 1 1 n n 1 1 Copyright 010, Joanna Szyda

18 TEST McNEMARA 3. Wybór i obliczenie wartości testu statystycznego Określenie rozkładu testu:.88 ~ 1 50 obserwacji 1 st. swobody! obserwacje sparowane 5. Obliczenie wartości t : t Decyzja: t > max H 0 H 1 rodzaj pożywki nie wpływa na wzrost bakterii Copyright 010, Joanna Szyda

19 TEST ILORAZU SZANS Odds ratio test

20 TEST ILORAZU SZANS PRÓBA DANYCH 1. Związek występowania raka przełyku ze spożywaniem alkoholu. Zbadano 975 osób Wystąpienie raka przełyku Spożycie alkoholu w ilości powyżej 80 g/dzień Rak przełyku tak nie Spożycie alkoholu >80 g/4h g/4h Copyright 014, Joanna Szyda

21 TEST ILORAZU SZANS 1. Określenie hipotez H 0 i H 1 H 0 : prawdopodobieństwo wystąpienie raka przełyku nie zależy od ilości spożywanego alkoholu H 1 : prawdopodobieństwo wystąpienie raka przełyku zależy od ilości spożywanego alkoholu H 0 : P(r) alk = P(r) n_alk H 1 : P(r) alk P(r) n_alk. Ustalenie poziomu istotności MAX = 0.05 Copyright 015, Joanna Szyda

22 TEST ILORAZU SZANS 3. Wybór i obliczenie wartości testu statystycznego Rak przełyku Tak nie Szansa P(r) Spożycie alkoholu >80 g/4h / g/4h /666 Copyright 015, Joanna Szyda

23 TEST ILORAZU SZANS 4. Określenie rozkładu testu: 5. Obliczenie wartości t : 6. Decyzja: t < max H 0 H 1 prawdopodobieństwo wystąpienie raka przełyku zależy od ilości spożywanego alkoholu Excel: przykład Copyright 015, Joanna Szyda

24 Copyright 011 Joanna Szyda

25 QUIZ KTÓREJ WERSJI TESTU UŻYĆ? Gavin et al. (1994) J. Ped. Psy. 4: Badanie obejmuje osoby hospitalizowane z powodu astmy Badano 60 hospitalizowanych osób - etap 1 Po roku na ponowne badania zgłosiło się 30 (z 60) osób etap Porównywano liczebności 30 osób, które zgłosiły się na ponowne badania z 30 osobami, które się nie zgłosiły, w zależności od płci, wieku, rasy, itd. Copyright 010, Joanna Szyda

26 QUIZ KTÓREJ WERSJI TESTU UŻYĆ?

27 QUIZ KTÓREJ WERSJI TESTU UŻYĆ? 1. Klasyfikacja pojedyncza. Klasyfikacja podwójna 3. Test McNemara

28 QUIZ KTÓREJ WERSJI TESTU UŻYĆ? Spencer et al. (1998) Am. J. Psychiatry 155: Czy lek tomoxetina wpływa na ADHD Badano 1 osób w wieku lat Etap 1: Dzień 0: rejestracja symptomów ADHD podawanie placebo przez 3 tygodnie Dzień 1 rejestracja symptomów ADHD >30% zmniejszenie nasilenia ADHD = poprawa Etap : podawanie tomoxetiny przez 3 tygodnie Dzień 1 rejestracja symptomów ADHD >30% zmniejszenie nasilenia ADHD = poprawa Copyright 010, Joanna Szyda

29 QUIZ KTÓREJ WERSJI TESTU UŻYĆ?

30 QUIZ KTÓREJ WERSJI TESTU UŻYĆ? 1. Klasyfikacja pojedyncza. Klasyfikacja podwójna 3. Test McNemara

31 QUIZ KTÓREJ WERSJI TESTU UŻYĆ? Junca et al. (014) Plos One DOI: /journal.pone Analiza wpływu wybranych czynników środowiskowych na zachowanie pszczół Eksperyment obejmował 40 osobników Cecha: SER = sting extension response (wysunięcie żądła) po stymulacji cieplnej Copyright 015, Joanna Szyda

32 QUIZ KTÓREJ WERSJI TESTU UŻYĆ? test

33 QUIZ KTÓREJ WERSJI TESTU UŻYĆ? 1. Klasyfikacja pojedyncza. Klasyfikacja podwójna 3. Test McNemara

34 QUIZ KTÓREJ WERSJI TESTU UŻYĆ? Uemura et al. (001) NEJM 345: Powiązanie chorób układu pokarmowego z zakażeniem Helicobacter pylori Badano 155 pacjentów Copyright 010, Joanna Szyda

35 QUIZ KTÓREJ WERSJI TESTU UŻYĆ?

36 QUIZ KTÓREJ WERSJI TESTU UŻYĆ? 1. Klasyfikacja pojedyncza. Klasyfikacja podwójna 3. Test McNemara

Statystyka matematyczna Test χ 2. Wrocław, 18.03.2016r

Statystyka matematyczna Test χ 2. Wrocław, 18.03.2016r Statystyka matematyczna Test χ 2 Wrocław, 18.03.2016r Zakres stosowalności Testowanie zgodności Testowanie niezależności Test McNemara Test ilorazu szans Copyright 2014, Joanna Szyda ZAKRES STOSOWALNOŚCI

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZA 1. Wyład wstępny. Teoria prawdopodobieństwa i elementy ombinatoryi. Zmienne losowe i ich rozłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez statystycznych

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. Populacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez statystycznych

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 5 TEST T

STATYSTYKA MATEMATYCZNA WYKŁAD 5 TEST T STATYSTYKA MATEMATYCZNA WYKŁAD 5 TEST T WSTĘP Test t 1. Zakres stosowalności 2. Dla pojedynczej próby 3. Dla 2 niezależnych prób 4. Dla 2 sparowanych prób ZAKRES STOSOWALNOŚCI TESTU T 1. Test parametryczny

Bardziej szczegółowo

Wykład 8 Dane kategoryczne

Wykład 8 Dane kategoryczne Wykład 8 Dane kategoryczne Wrocław, 19.04.2017r Zmienne kategoryczne 1 Przykłady zmiennych kategorycznych 2 Zmienne nominalne, zmienne ordynalne (porządkowe) 3 Zmienne dychotomiczne kodowanie zmiennych

Bardziej szczegółowo

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja)

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja) PODSTAWY STATYSTYKI. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na

Bardziej szczegółowo

METODY STATYSTYCZNE W BIOLOGII

METODY STATYSTYCZNE W BIOLOGII METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STTYSTYK MTMTYCZN 1. Wykład wstępny 2. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. opulacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test 2 8.

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. opulacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

Przedmowa Wykaz symboli Litery alfabetu greckiego wykorzystywane w podręczniku Symbole wykorzystywane w zagadnieniach teorii

Przedmowa Wykaz symboli Litery alfabetu greckiego wykorzystywane w podręczniku Symbole wykorzystywane w zagadnieniach teorii SPIS TREŚCI Przedmowa... 11 Wykaz symboli... 15 Litery alfabetu greckiego wykorzystywane w podręczniku... 15 Symbole wykorzystywane w zagadnieniach teorii mnogości (rachunku zbiorów)... 16 Symbole stosowane

Bardziej szczegółowo

Z poprzedniego wykładu

Z poprzedniego wykładu PODSTAWY STATYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

Importowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22

Importowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22 Spis treści Przedmowa do wydania pierwszego.... 11 Przedmowa do wydania drugiego.... 15 Wykaz symboli.... 17 Litery alfabetu greckiego wykorzystywane w podręczniku.... 17 Symbole wykorzystywane w zagadnieniach

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 3. Populacje i próby danych

STATYSTYKA MATEMATYCZNA WYKŁAD 3. Populacje i próby danych STATYSTYKA MATEMATYCZNA WYKŁAD 3 Populacje i próby danych POPULACJA I PRÓBA DANYCH POPULACJA population Obserwacje dla wszystkich osobników danego gatunku / rasy PRÓBA DANYCH sample Obserwacje dotyczące

Bardziej szczegółowo

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej

Bardziej szczegółowo

Badania eksperymentalne

Badania eksperymentalne Badania eksperymentalne Pomiar na skali porządkowej mgr Agnieszka Zięba Zakład Badań Marketingowych Instytut Statystyki i Demografii Szkoła Główna Handlowa Najpopularniejsze sposoby oceny wyników eksperymentu

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie

Bardziej szczegółowo

Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak

Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak Autor prezentuje spójny obraz najczęściej stosowanych metod statystycznych, dodatkowo omawiając takie

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.

Bardziej szczegółowo

KARTA KURSU. (do zastosowania w roku akademickim 2015/16) Kod Punktacja ECTS* 3. Dr hab. Tadeusz Sozański

KARTA KURSU. (do zastosowania w roku akademickim 2015/16) Kod Punktacja ECTS* 3. Dr hab. Tadeusz Sozański KARTA KURSU (do zastosowania w roku akademickim 2015/16) Nazwa Statystyka 2 Nazwa w j. ang. Statistics 2 Kod Punktacja ECTS* 3 Koordynator Dr hab. Tadeusz Sozański (koordynator, konwersatorium) Zespół

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0 Testowanie hipotez Każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy nazywamy hipotezą statystyczną. Hipoteza określająca jedynie wartości nieznanych parametrów liczbowych badanej cechy

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA. Wykład wstępy. Teoria prawdopodobieństwa i elemety kombiatoryki 3. Zmiee losowe 4. Populacje i próby daych 5. Testowaie hipotez i estymacja parametrów 6. Test t 7. Test 8. Test

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 8 Regresja wielokrotna Regresja wielokrotna jest metodą statystyczną, w której oceniamy wpływ wielu zmiennych niezależnych (X 1, X 2, X 3,...) na zmienną zależną (Y).

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Korelacja krzywoliniowa i współzależność cech niemierzalnych

Korelacja krzywoliniowa i współzależność cech niemierzalnych Korelacja krzywoliniowa i współzależność cech niemierzalnych Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki Szczecińskiej

Bardziej szczegółowo

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4. Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ

Bardziej szczegółowo

Matematyka - Statystyka matematyczna Mathematical statistics 2, 2, 0, 0, 0

Matematyka - Statystyka matematyczna Mathematical statistics 2, 2, 0, 0, 0 Nazwa przedmiotu: Kierunek: Matematyka - Statystyka matematyczna Mathematical statistics Inżynieria materiałowa Materials Engineering Rodzaj przedmiotu: Poziom studiów: forma studiów: obowiązkowy studia

Bardziej szczegółowo

Testy zgodności. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 11

Testy zgodności. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 11 Testy zgodności Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki Szczecińskiej 27. Nieparametryczne testy zgodności Weryfikacja

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 1

STATYSTYKA MATEMATYCZNA WYKŁAD 1 STATYSTYKA MATEMATYCZNA WYKŁAD 1 Wykład wstępny Teoria prawdopodobieństwa Magda Mielczarek wykłady, ćwiczenia Copyright 2017, J. Szyda & M. Mielczarek STATYSTYKA MATEMATYCZNA? ASHG 2011 Writing Workshop;

Bardziej szczegółowo

STATYSTYKA

STATYSTYKA Wykład 1 20.02.2008r. 1. ROZKŁADY PRAWDOPODOBIEŃSTWA 1.1 Rozkład dwumianowy Rozkład dwumianowy, 0 1 Uwaga: 1, rozkład zero jedynkowy. 1 ; 1,2,, Fakt: Niech,, będą niezależnymi zmiennymi losowymi o jednakowym

Bardziej szczegółowo

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE STATYSTYKA WNIOSKOWANIE STATYSTYCZNE ESTYMACJA oszacowanie z pewną dokładnością wartości opisującej rozkład badanej cechy statystycznej. WERYFIKACJA HIPOTEZ sprawdzanie słuszności przypuszczeń dotyczących

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

Statystyka i Analiza Danych

Statystyka i Analiza Danych Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania analizy wariancji w opracowywaniu wyników badań empirycznych Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki -

Bardziej szczegółowo

KARTA KURSU. Kod Punktacja ECTS* 1

KARTA KURSU. Kod Punktacja ECTS* 1 KARTA KURSU Nazwa Nazwa w j. ang. Wprowadzenie do statystyki Introduction to statistics Kod Punktacja ECTS* 1 Koordynator Prof. dr hab. Jerzy Wołek Zespół dydaktyczny Prof. dr hab. Jerzy Wołek doktoranci

Bardziej szczegółowo

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)

Bardziej szczegółowo

TESTOWANIE HIPOTEZ STATYSTYCZNYCH

TESTOWANIE HIPOTEZ STATYSTYCZNYCH TETOWANIE HIPOTEZ TATYTYCZNYCH HIPOTEZA TATYTYCZNA przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Prawdziwość tego przypuszczenia jest oceniana na

Bardziej szczegółowo

Kolokwium ze statystyki matematycznej

Kolokwium ze statystyki matematycznej Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę

Bardziej szczegółowo

P: Czy studiujący i niestudiujący preferują inne sklepy internetowe?

P: Czy studiujący i niestudiujący preferują inne sklepy internetowe? 2 Test niezależności chi-kwadrat stosuje się (między innymi) w celu sprawdzenia czy pomiędzy zmiennymi istnieje związek/zależność. Stosujemy go w sytuacji, kiedy zmienna zależna mierzona jest na skali

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Po co nam statystyka matematyczna? Żeby na podstawie próby wnioskować o całej populacji

Po co nam statystyka matematyczna? Żeby na podstawie próby wnioskować o całej populacji ODSTWY STTYSTYKI 1. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. opulacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne 6.

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 3) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Dwuczynnikowa analiza wariancji (2-way

Bardziej szczegółowo

TECHNIKA DRZWI ZATRZAŚNIĘTE PRZED NOSEM

TECHNIKA DRZWI ZATRZAŚNIĘTE PRZED NOSEM Badanie pilotażowe TECHNIKA DRZWI ZATRZAŚNIĘTE PRZED NOSEM Czy łatwa prośba etyczna zostanie spełniona istotnie częściej jeśli poprzedzi się ją nieetyczną prośbą trudną? H0 nie, H1 tak. Schemat eksperymentu

Bardziej szczegółowo

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska Anna Stankiewicz Izabela Słomska Wstęp- statystyka w politologii Rzadkie stosowanie narzędzi statystycznych Pisma Karla Poppera

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematyczna Anna Janicka wykład I, 22.02.2016 STATYSTYKA OPISOWA, cz. I Kwestie techniczne Kontakt: ajanicka@wne.uw.edu.pl Dyżur: strona z materiałami z przedmiotu: wne.uw.edu.pl/azylicz akson.sgh.waw.pl/~aborata

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

Wykład 11: Dane jakościowe. Rozkład χ 2. Test zgodności chi-kwadrat

Wykład 11: Dane jakościowe. Rozkład χ 2. Test zgodności chi-kwadrat Wykład 11: Dane jakościowe Obserwacje klasyfikujemy do klas Zliczamy liczbę obserwacji w każdej klasie Jeżeli są tylko dwie klasy, to jedną z nich możemy nazwać sukcesem, a drugą porażką. Generalnie, liczba

Bardziej szczegółowo

Statystyka opisowa. Wykład I. Elementy statystyki opisowej

Statystyka opisowa. Wykład I. Elementy statystyki opisowej Statystyka opisowa. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Elementy statystyku opisowej 1 Elementy statystyku opisowej 2 3 Elementy statystyku opisowej Definicja Statystyka jest to nauka o

Bardziej szczegółowo

STATYSTYKA wykład 5-6

STATYSTYKA wykład 5-6 TATYTYKA wykład 5-6 Twierdzenia graniczne Rozkłady statystyk z próby Wanda Olech Twierdzenia graniczne Jeżeli rozpatrujemy ciąg zmiennych losowych {X ; X ;...; X n }, to zdarza się, że ich rozkłady przy

Bardziej szczegółowo

przedmiot podstawowy obowiązkowy polski drugi

przedmiot podstawowy obowiązkowy polski drugi KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 07/08 IN--008 STATYSTYKA W INŻYNIERII ŚRODOWISKA Statistics in environmental engineering

Bardziej szczegółowo

Analiza wariancji. dr Janusz Górczyński

Analiza wariancji. dr Janusz Górczyński Analiza wariancji dr Janusz Górczyński Wprowadzenie Powiedzmy, że badamy pewną populację π, w której cecha Y ma rozkład N o średniej m i odchyleniu standardowym σ. Powiedzmy dalej, że istnieje pewien czynnik

Bardziej szczegółowo

Ćwiczenia 7. Badanie istotności róŝnic część II.

Ćwiczenia 7. Badanie istotności róŝnic część II. Ćwiczenia 7. Badanie istotności róŝnic część II. Zadania obowiązkowe UWAGA! Elementy zadań oznaczone kolorem czerwonym naleŝy przygotować lub wypełnić. Zadanie 7.1. (STATISTICA/R) W pliku Serce2.sta (porównaj

Bardziej szczegółowo

Statystyka w zarządzaniu : pełny wykład / Amir D. Aczel. wyd. 1, dodr. 5. Warszawa; Spis treści

Statystyka w zarządzaniu : pełny wykład / Amir D. Aczel. wyd. 1, dodr. 5. Warszawa; Spis treści Statystyka w zarządzaniu : pełny wykład / Amir D. Aczel. wyd. 1, dodr. 5. Warszawa; 2011 Spis treści Od autora 11 1. Wprowadzenie i statystyka opisowa 15 1.1. Wprowadzenie 15 1.2. Percentyle i kwartyle

Bardziej szczegółowo

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć)

Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) Szczegółowy program kursu Statystyka z programem Excel (30 godzin lekcyjnych zajęć) 1. Populacja generalna a losowa próba, parametr rozkładu cechy a jego ocena z losowej próby, miary opisu statystycznego

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

Analiza danych ilościowych i jakościowych

Analiza danych ilościowych i jakościowych Wydział Matematyki, Informatyki i Mechaniki Uniwersytetu Warszawskiego 8 kwietnia 2010 Plan prezentacji 1 Zbiory danych do analiz 2 3 4 5 6 Implementacja w R Badanie depresji Depression trial data Porównanie

Bardziej szczegółowo

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotności, p-wartość i moc testu Wrocław, 01.03.2017r Przykład 2.1 Właściciel firmy produkującej telefony komórkowe twierdzi, że wśród jego produktów

Bardziej szczegółowo

Uogólniony model liniowy

Uogólniony model liniowy Uogólniony model liniowy Ogólny model liniowy y = Xb + e Każda obserwacja ma rozkład normalny Każda obserwacja ma tą samą wariancję Dane nienormalne Rozkład binomialny np. liczba chorych krów w stadzie

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobieństwo i statystyka 9.06.999 r. Zadanie. Rzucamy pięcioma kośćmi do gry. Następnie rzucamy ponownie tymi kośćmi, na których nie wypadły szóstki. W trzeciej rundzie rzucamy tymi kośćmi, na których

Bardziej szczegółowo

ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI

ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI ĆWICZENIE 11 ANALIZA KORELACJI I REGRESJI Korelacja 1. Współczynnik korelacji 2. Współczynnik korelacji liniowej definicja 3. Estymacja współczynnika korelacji 4. Testy istotności współczynnika korelacji

Bardziej szczegółowo

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15 VI WYKŁAD STATYSTYKA 9/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 6 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności, zasady

Bardziej szczegółowo

Teoria Estymacji. Do Powyżej

Teoria Estymacji. Do Powyżej Teoria Estymacji Zad.1. W pewnym przedsiębiorstwie wylosowano niezależnie próbę 25 pracowników. Staż pracy (w latach) tych pracowników w 1996 roku był następujący: 37; 34; 0*; 5; 17; 17; 0*; 2; 24; 33;

Bardziej szczegółowo

TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.

TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne. Zajmiemy

Bardziej szczegółowo

Rozkłady dwuwymiarowe. Tablice dwudzielcze. Przykład (wstępny):

Rozkłady dwuwymiarowe. Tablice dwudzielcze. Przykład (wstępny): Rozkłady dwuwymiarowe Rozkłady brzegowe Rozkłady warunkowe Niezależność Kowariancja Współczynnik korelacji (Przykłady na tablicy) Tablice dwudzielcze Najprostsze tablice 2x2 : dwa rzędy i dwie kolumny

Bardziej szczegółowo

Statystyka. #6 Analiza wariancji. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2015/ / 14

Statystyka. #6 Analiza wariancji. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2015/ / 14 Statystyka #6 Analiza wariancji Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2015/2016 1 / 14 Analiza wariancji 2 / 14 Analiza wariancji Analiza wariancji jest techniką badania wyników,

Bardziej szczegółowo

Przykład 2. Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku

Przykład 2. Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku Przykład 2 Na podstawie książki J. Kowal: Metody statystyczne w badaniach sondażowych rynku Sondaż sieciowy analiza wyników badania sondażowego dotyczącego motywacji w drodze do sukcesu Cel badania: uzyskanie

Bardziej szczegółowo

zbieranie porządkowanie i prezentacja (tabele, wykresy) analiza interpretacja (wnioskowanie statystyczne)

zbieranie porządkowanie i prezentacja (tabele, wykresy) analiza interpretacja (wnioskowanie statystyczne) STATYSTYKA zbieranie porządkowanie i prezentacja (tabele, wykresy) analiza interpretacja (wnioskowanie statystyczne) DANYCH STATYSTYKA MATEMATYCZNA analiza i interpretacja danych przy wykorzystaniu metod

Bardziej szczegółowo

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych 1 Laboratorium III: Testy statystyczne Spis treści Laboratorium III: Testy statystyczne... 1 Wiadomości ogólne... 2 1. Krótkie przypomnienie wiadomości na temat testów statystycznych... 2 1.1. Weryfikacja

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 4 Temat: Analiza korelacji i regresji dwóch zmiennych

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Statystyka komputerowa Computer statistics Zarządzanie i Inżynieria Produkcji Management and Engineering of Production Rodzaj przedmiotu: Fakultatywny - oferta Poziom studiów:

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne 1 Wybrane testy nieparametryczne 1. Test chi-kwadrat zgodności z rozkładem oczekiwanym 2. Test chi-kwadrat niezależności dwóch zmiennych kategoryzujących 3. Test U Manna-Whitney

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez dla średnich w rozkładzie normalnym. Wrocław, r

Statystyka matematyczna Testowanie hipotez dla średnich w rozkładzie normalnym. Wrocław, r Statystyka matematyczna Testowanie hipotez dla średnich w rozkładzie normalnym Wrocław, 18.03.2016r Testowanie hipotez dla średniej w rozkładzie normalnym dla jednej próby Model 1 Testowanie hipotez dla

Bardziej szczegółowo

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ

Współczynnik korelacji. Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Współczynnik korelacji Współczynnik korelacji jest miernikiem zależności między dwiema cechami Oznaczenie: ϱ Własności współczynnika korelacji 1. Współczynnik korelacji jest liczbą niemianowaną 2. ϱ 1,

Bardziej szczegółowo

Pobieranie prób i rozkład z próby

Pobieranie prób i rozkład z próby Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.

Bardziej szczegółowo

Uczelnia Łazarskiego Wydział Medyczny Kierunek Lekarski

Uczelnia Łazarskiego Wydział Medyczny Kierunek Lekarski Uczelnia Łazarskiego Wydział Medyczny Kierunek Lekarski Nazwa przedmiotu INFORMATYKA I BIOSTATYSTYKA Kod przedmiotu WL_ 10 Poziom studiów Jednolite studia magisterskie Status przedmiotu x podstawowy uzupełniający

Bardziej szczegółowo

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas: ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań

Bardziej szczegółowo

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej

Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Elementy statystyki opisowej, podstawowe pojęcia statystyki matematycznej Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

WYKORZYSTYWANE W ANALIZIE WYNIKÓW METOD WYCENY OBSZARÓW CHRONIONYCH. Dr Dariusz Kayzer

WYKORZYSTYWANE W ANALIZIE WYNIKÓW METOD WYCENY OBSZARÓW CHRONIONYCH. Dr Dariusz Kayzer Seminarium I: Przegląd metod wyceny przyrody METODY STATYSTYCZNE WYKORZYSTYWANE W ANALIZIE WYNIKÓW METOD WYCENY OBSZARÓW CHRONIONYCH Dr Dariusz Kayzer Katedra Metod Matematycznych i Statystycznych Uniwersytet

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA, LISTA 3

STATYSTYKA MATEMATYCZNA, LISTA 3 STATYSTYKA MATEMATYCZNA, LISTA 3 1. Aby zweryfikować hipotezę o symetryczności monety; H: p = 0.5 przeciwko K: p 0.5 wykonano nią n = 100 rzutów. Wyznaczyć obszar krytyczny i zweryfikować hipotezę H gdy

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD STATYSTYK Z PRÓBY

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD STATYSTYK Z PRÓBY WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD STATYSTYK Z PRÓBY Próba losowa prosta To taki dobór elementów z populacji, że każdy element miał takie samo prawdopodobieństwo znalezienia się w próbie Niezależne

Bardziej szczegółowo

Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak

Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Redakcja i korekta Bogdan Baran Projekt graficzny okładki Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2011 ISBN

Bardziej szczegółowo

WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH

WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Było: Estymacja parametrów rozkładu teoretycznego punktowa przedziałowa Przykład. Cecha X masa owocu pewnej odmiany. ZałoŜenie: cecha X ma w populacji rozkład

Bardziej szczegółowo

Testowanie hipotez statystycznych cd.

Testowanie hipotez statystycznych cd. Temat Testowanie hipotez statystycznych cd. Kody znaków: żółte wyróżnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Przykłady testowania hipotez dotyczących:

Bardziej szczegółowo

Analiza wariancji - ANOVA

Analiza wariancji - ANOVA Analiza wariancji - ANOVA Analizę wariancji, często określaną skrótem ANOVA (Analysis of Variance), zawdzięczamy angielskiemu biologowi Ronaldowi A. Fisherowi, który opracował ją w 1925 roku dla rozwiązywania

Bardziej szczegółowo

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd.

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd. WYKŁAD 9 TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd. Było: Przykład 1. Badano krąŝek o wymiarach zbliŝonych do monety jednozłotowej ze stronami oznaczonymi: A, B. NaleŜy ustalić, czy krąŝek jest symetryczny?

Bardziej szczegółowo

Kilka uwag o testowaniu istotności współczynnika korelacji

Kilka uwag o testowaniu istotności współczynnika korelacji 341 Zeszyty Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Piotr Peternek Uniwersytet Ekonomiczny we Wrocławiu Marek Kośny Uniwersytet Ekonomiczny we Wrocławiu Kilka uwag o testowaniu istotności

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo