Obszary strukturalne i funkcyjne mózgu
|
|
- Wacława Jóźwiak
- 7 lat temu
- Przeglądów:
Transkrypt
1 Spis treści
2 Spis treści 1 Spis treści 2 Jak charakteryzować grafy? 3 4
3 Wielkości charakterystyczne Jak charakteryzować grafy? Średni stopień wierzchołków Rozkład stopni wierzchołków Graf jest bezskalowy jeżeli < k >= 1 deg(v) V v V P(deg(x) = k) P(deg(x) = k) k γ
4 Wielkości charakterystyczne Jak charakteryzować grafy? Asortatywność zależność (korelacja?) pomiędzy stopniami połączonych wierzchołków. Współczynnik klasteryzacji C i = 2E i k i (k i 1) k i ilość sąsiadów E i ilość krawędzi pomiędzy sąsiadami
5 Wielkości charakterystyczne Jak charakteryzować grafy? Średnia długość ścieżki w grafie L Efektywność 1 L Gęstość połączeń Koszt połączeń
6 Wielkości charakterystyczne Jak charakteryzować grafy? Istnienie hubów (wierzchołki o wysokich stopniach) Centralizacja ilość najkrótszych ścieżek przechodzących przez dany węzeł Odporność na awarie: usunięcia wierzchołków lub / i krawędzie Modularność
7 strukturalne efektywne funkcjonalne
8 Sieci strukturalne wyznaczone przez anatomiczną budowę tworzone są przez komórki neuronowe i połączenia synaptyczne tworzą architekturę na której powstają sieci funkcyjne
9 Sieci strukturalne Jak badać? mikroskopy elektronowe odczyty elektrodowe białka fluorescencyjne (fluorescent proteins) Diffusion Tensor Imagining (DTI)
10 Pierwsze wyniki krótkie połączenia synaptyczne są bardziej powszechne w korze mózgowej sieci wykazują tendencję do silnych skupisk krórka średnia długość ścieżek zdolność do reorganizacji w długim czasie
11 obrazują faktyczą zależność pomiędzy elementami biorącymi udział w czynnościach poznawczych ale jeszcze nie doszliśmy to poziomu, w którym można je modelować
12 obrazują zależność pomiędzy obszarami mózgowymi współpracującymi (lub nie) podczas wykonywania prosych czynności zawierają się w ograniczeniach narzuconych przez topologię sieci strukturalnych
13 Jak badać? fmri odczyty elektrodowe (MEA) elektroencefalografia (EEG) magnetoencefalografia (MEG) symulacje komputerowe
14 Odkrycia, hipotezy krótkie ścieżki przekładające się na dużą efektywność wysokie sklasteryzowanie przekładające się na odporność na uszkodzenia niskie zagęszczenie połączeń, sieci rzadkie rozkład potęgowy, czasami przechodzący na potęgowy z obcięciem wykładniczym (por. grafy A-B z mechanizmem starzenia się wierzchołków lub kosztem połączeń) możliwa reorganizacha sieci funkcyjnej w bardzo krótkiej skali czasowej (rzędu 0.1s)
15 Odkrycia, hipotezy węzły z podobnymi wzorcami połączeń mają również podobną funkcjonalność rozbieżności między sieciami funkcjonalnymi a strukturalnymi w krótkim czasie działania zgodność topologii obu sieci w dłuższym czasie silne sugestie, że obie sieci są znacznie bardziej zależne niż aktualnie się uważa
16 Jak symulować? Wybrać biologicznie motywowany model mózgowy
17 Jak symulować? Uruchomić symulację lub skorzystać z danych z aparatury medycznej
18 Jak symulować? Zapamiętać macierz połączeń synaptycznych (symulacja) Obliczyć macież korelacji aktywności albo informacji wzajemnej neuronów (fmri)
19 Jak symulować? Obliczyć interesujące wielkości
20 R. Albert, A. L. Barabasi, Statistical mechanics of complex networks, Reviews of modern physics, Vol 74, January 2002 E. Bullmore, O. Sporns, Complex brain networks: graph theoretical analysis of structural and functional systems, Nature Reviews, Neuroscience, vol 10, March 2009 V. Eguıluz, D. Chialvo, G. Cecchi, M. Baliki, V. Apkarian Scale-Free Brain Functional Networks, Physical Review Letters, PRL , JAN 2005,
21 Praca współfinansowana ze środków Europejskiego Funduszu Społecznego i Budżetu Państwa w ramach Zintegrowanego Programu Operacyjnego Rozwoju Regionalnego, Działania 2.6 Regionalne Strategie Innowacyjne i transfer wiedzy projektu własnego Województwa Kujawsko-Pomorskiego Stypendia dla doktorantów 2008/2009 ZPORR
Symulacje geometrycznych sieci neuronowych w środowisku rozproszonym
Symulacje geometrycznych sieci neuronowych w środowisku rozproszonym Jarosław Piersa, Tomasz Schreiber {piersaj, tomeks}(at)mat.umk.pl 2010-07-21 1 2 Dany podzbiór V R 3. N neuronów należących do V N Poiss(c
Grafy Alberta-Barabasiego
Spis treści 2010-01-18 Spis treści 1 Spis treści 2 Wielkości charakterystyczne 3 Cechy 4 5 6 7 Wielkości charakterystyczne Wielkości charakterystyczne Rozkład stopnie wierzchołków P(deg(x) = k) Graf jest
Statystyki teoriografowe grafów funkcjonalnych w sieciach neuronowych
Statystyki teoriografowe grafów funkcjonalnych w sieciach neuronowych Wydział Matematyki i Informatyki, UMK 2011-12-21 1 Wstęp Motywacja 2 Model 3 4 Dalsze plany Referencje Motywacja 1 Wstęp Motywacja
Prawa potęgowe w grafach przepływu informacji dla geometrycznych sieci neuronowych
w grafach przepływu informacji dla geometrycznych sieci neuronowych www.mat.uni.torun.pl/~piersaj 2009-06-10 1 2 3 symulacji Graf przepływu ładunku Wspóczynnik klasteryzacji X (p) p α Rozkłady prawdopodobieństwa
draft Prawa bezskalowe w grafach przepływu informacji dla geometrycznych sieci neuronowych, symulacje w środowisku współbieżnym
Prawa bezskalowe w grafach przepływu informacji dla geometrycznych sieci neuronowych, symulacje w środowisku współbieżnym Jarosław Piersa, Tomasz Schreiber Uniwersytet Mikołaja Kopernika, Wydział Matematyki
Modelowanie sieci złożonych
Modelowanie sieci złożonych B. Wacław Instytut Fizyki UJ Czym są sieci złożone? wiele układów ma strukturę sieci: Internet, WWW, sieć cytowań, sieci komunikacyjne, społeczne itd. sieć = graf: węzły połączone
Detekcja motywów w złożonych strukturach sieciowych perspektywy zastosowań Krzysztof Juszczyszyn
Detekcja motywów w złożonych strukturach sieciowych perspektywy zastosowań Krzysztof Juszczyszyn Instytut Informatyki Technicznej PWr MOTYWY SIECIOWE -NETWORK MOTIFS 1. Co to jest? 2. Jak mierzyć? 3. Gdzie
Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie
Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Używane struktury danych: V - zbiór wierzchołków grafu, V = {1,2,3...,n} E - zbiór krawędzi grafu, E = {(i,j),...}, gdzie i, j Î V i istnieje
Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań do analizy rzeczywistych sieci złożonych
Gdańsk, Warsztaty pt. Układy Złożone (8 10 maja 2014) Agata Fronczak Zakład Fizyki Układów Złożonych Wydział Fizyki Politechniki Warszawskiej Wykładnicze grafy przypadkowe: teoria i przykłady zastosowań
Kamila Muraszkowska Znaczenie wąskich gardeł w sieciach białkowych. źródło: (3)
Kamila Muraszkowska Znaczenie wąskich gardeł w sieciach białkowych źródło: (3) Interakcje białko-białko Ze względu na zadanie: strukturalne lub funkcjonalne. Ze względu na właściwości fizyczne: stałe lub
Przejście fazowe w sieciach złożonych w modelu Axelroda
Przejście fazowe w sieciach złożonych w modelu Axelroda Korzeń W., Maćkowski M., Rozwadowski P., Szczeblewska P., Sznajder W. 1 Opiekun: Tomasz Raducha 1 Uniwersytet Warszawski, Wydział Fizyki 3 Streszczenie
Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki
Porównanie algorytmów wyszukiwania najkrótszych ścieżek między wierzchołkami grafu. Instytut Informatyki 22 listopada 2015 Algorytm DFS w głąb Algorytm przejścia/przeszukiwania w głąb (ang. Depth First
Warsztaty metod fizyki teoretycznej
Warsztaty metod fizyki teoretycznej Zestaw 6 Układy złożone- sieci w otaczającym nas świecie Marcin Zagórski, Jan Kaczmarczyk 17.04.2012 1 Wprowadzenie W otaczającym nas świecie odnajdujemy wiele struktur,
W sieci małego świata od DNA po facebooka. Dr hab. Katarzyna Sznajd-Weron, prof. PWr.
W sieci małego świata od DNA po facebooka Dr hab. Katarzyna Sznajd-Weron, prof. PWr. Plan Co to jest sieć? Przykłady sieci złożonych Cechy rzeczywistych sieci Modele sieci Sieci złożone i układy złożone
Neurokognitywistyka. Mózg jako obiekt zainteresowania w
Neurokognitywistyka. Mózg jako obiekt zainteresowania w psychologii poznawczej Małgorzata Gut Katedra Psychologii Poznawczej WyŜsza Szkoła Finansów i Zarządzania w Warszawie http://cogn.vizja.pl Wykład
Algorytmy wyznaczania centralności w sieci Szymon Szylko
Algorytmy wyznaczania centralności w sieci Szymon Szylko Zakład systemów Informacyjnych Wrocław 10.01.2008 Agenda prezentacji Cechy sieci Algorytmy grafowe Badanie centralności Algorytmy wyznaczania centralności
Poszukiwanie strukturalnych i funkcjonalnych połączeń w ludzkim mózgu
Poszukiwanie strukturalnych i funkcjonalnych połączeń w ludzkim mózgu Ewa PIĄTKOWSKA-JANKO*, Warszawa Jest to tekst związany z odczytem wygłoszonym na LVI Szkole Matematyki Poglądowej, Matematyzacja, Wola
MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY
ERIAŁY DO WYKŁADU GRAFY Graf nieskierowany Grafem nieskierowanym nazywamy parę G = (V, E), gdzie V jest pewnym zbiorem skończonym (zwanym zbiorem wierzchołków grafu G), natomiast E jest zbiorem nieuporządkowanych
Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa
Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego
Sieci złożone. Modelarnia 2014/2015 Katarzyna Sznajd-Weron
Sieci złożone Modelarnia 2014/2015 Katarzyna Sznajd-Weron Sieć = network Węzły Węzły jednego typu lub wielu Połączenia Połączenia kierunkowe lub nie Czy fizycy zawsze muszą mieć inne zdanie? Fizycy sieć
Przykłady grafów. Graf prosty, to graf bez pętli i bez krawędzi wielokrotnych.
Grafy Graf Graf (ang. graph) to zbiór wierzchołków (ang. vertices), które mogą być połączone krawędziami (ang. edges) w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków. Graf
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova
Wstęp do sieci neuronowych, wykład 11 Łańcuchy Markova M. Czoków, J. Piersa 2010-12-21 1 Definicja Własności Losowanie z rozkładu dyskretnego 2 3 Łańcuch Markova Definicja Własności Losowanie z rozkładu
Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów
Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69
Teoria grafów dla małolatów. Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska
Teoria grafów dla małolatów Andrzej Przemysław Urbański Instytut Informatyki Politechnika Poznańska Wstęp Matematyka to wiele różnych dyscyplin Bowiem świat jest bardzo skomplikowany wymaga rozważenia
Opracowanie prof. J. Domsta 1
Opracowanie prof. J. Domsta 1 Algorytm FLEURY'ego: Twierdzenie 6.5 G-graf eulerowski. Wtedy cykl Eulera otrzymujemy nastepująco: a) Start w dowolnym wierzchołku b) Krawędzie w dowolnej kolejności po przebyciu
Praca dyplomowa inżynierska
Wydział Matematyki kierunek studiów: matematyka stosowana specjalność Praca dyplomowa inżynierska Dynamika opinii w sieciach bezskalowych Dominik Miażdżyk słowa kluczowe: dynamika opinii model q-wyborcy
DWA ZDANIA O TEORII GRAFÓW. przepływ informacji tylko w kierunku
DWA ZDANIA O TEORII GRAFÓW Krawędź skierowana Grafy a routing Każdą sieć przedstawić składającego przedstawiają E, inaczej węzłami). komunikacyjną można w postaci grafu G się z węzłów V (które węzły sieci)
Spontaniczna struktura bezskalowa w grafach przepływu impulsów dla rekurencyjnych sieci neuronowych
Spontaniczna struktura bezskalowa w grafach przepływu impulsów dla rekurencyjnych sieci neuronowych Filip Piękniewski Wydział Matematyki i Informatyki Uniwersytetu Mikołaja Kopernika w Toruniu Praca doktorska
Ruch drogowy, korki uliczne - czy fizyk może coś na to poradzić?
Ruch drogowy, korki uliczne - czy fizyk może coś na to poradzić? KNF Migacz, Instytut Fizyki Teoretycznej, Uniwersytet Wrocławski 16-18 listopada 2007 Spis treści Spis treści 1 Spis treści 1 2 Spis treści
Sieci bezskalowe. Filip Piękniewski
Wydział Matematyki i Informatyki UMK Prezentacja na Seminarium Doktoranckie dostępna na http://www.mat.uni.torun.pl/ philip/sem-2008-2.pdf 24 listopada 2008 1 Model Erdős a-rényi Przejścia fazowe w modelu
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Twierdzenie 2.1 Niech G będzie grafem prostym
Algorytmiczna teoria grafów
Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)
Podsieci rozległe: Sieć wzbudzeń podstawowych. Andrzej Rutkowski
Podsieci rozległe: Sieć wzbudzeń podstawowych Andrzej Rutkowski Default mode Mózg ciągle aktywny (wiadomo od czasu wynalezienia EEG) W trakcie spoczynku pochłania stosunkowo dużo energii Wiele regionów
Sprawozdanie do zadania numer 2
Sprawozdanie do zadania numer 2 Michał Pawlik 29836 Temat: Badanie efektywności algorytmów grafowych w zależności od rozmiaru instancji oraz sposobu reprezentacji grafu w pamięci komputera 1 WSTĘP W ramach
Matematyka Stosowana na Politechnice Wrocławskiej. Komitet Matematyki PAN, luty 2017 r.
Matematyka Stosowana na Politechnice Wrocławskiej Komitet Matematyki PAN, luty 2017 r. Historia kierunku Matematyka Stosowana utworzona w 2012 r. na WPPT (zespół z Centrum im. Hugona Steinhausa) studia
Suma dwóch grafów. Zespolenie dwóch grafów
Suma dwóch grafów G 1 = ((G 1 ), E(G 1 )) G 2 = ((G 2 ), E(G 2 )) (G 1 ) i (G 2 ) rozłączne Suma G 1 G 2 graf ze zbiorem wierzchołków (G 1 ) (G 2 ) i rodziną krawędzi E(G 1 ) E(G 2 ) G 1 G 2 G 1 G 2 Zespolenie
Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH
Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH Przeszukiwanie przestrzeni rozwiązań, szukanie na ślepo, wszerz, w głąb. Spis treści: 1. Wprowadzenie 3. str. 1.1 Krótki Wstęp
WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA
DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający
Programowanie obiektowe
Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2015 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2015 1 / 21 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań
Grafy stochastyczne i sieci złożone
Witold Bołt Grafy stochastyczne i sieci złożone 9 stycznia 007 Wstęp i ostrzeżenie Opracowanie to powstało w oparciu o notatki do wykładu Układy Złożone prowadzonego przez prof. dr hab. Danutę Makowiec
G. Wybrane elementy teorii grafów
Dorota Miszczyńska, Marek Miszczyński KBO UŁ Wybrane elementy teorii grafów 1 G. Wybrane elementy teorii grafów Grafy są stosowane współcześnie w różnych działach nauki i techniki. Za pomocą grafów znakomicie
Przykład planowania sieci publicznego transportu zbiorowego
TRANSPORT PUBLICZNY Przykład planowania sieci publicznego transportu zbiorowego Źródło: Bieńczak M., 2015 Politechnika Poznańska, Wydział Maszyn Roboczych i Transportu 1 METODYKA ZAŁOśENIA Dostarczanie
Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej
Wstęp do sieci neuronowych, wykład 12 Wykorzystanie sieci rekurencyjnych w optymalizacji grafowej Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2013-01-09
Digraf. 13 maja 2017
Digraf 13 maja 2017 Graf skierowany, digraf, digraf prosty Definicja 1 Digraf prosty G to (V, E), gdzie V jest zbiorem wierzchołków, E jest rodziną zorientowanych krawędzi, między różnymi wierzchołkami,
KURS MATEMATYKA DYSKRETNA
KURS MATEMATYKA DYSKRETNA LEKCJA 28 Grafy hamiltonowskie ZADANIE DOMOWE www.akademia.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Drogę nazywamy
STRUKTURA CIAŁA STAŁEGO
STRUKTURA CIAŁA STAŁEGO Podział ciał stałych Ciała - bezpostaciowe (amorficzne) Szkła, żywice, tłuszcze, niektóre proszki. Nie wykazują żadnych regularnych płaszczyzn ograniczających, nie można w nich
Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2013/2014
Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Mechaniczny obowiązuje studentów rozpoczynających studia w roku akademickim 013/014 Kierunek studiów: Inżynieria Biomedyczna Forma
Algorytmy Równoległe i Rozproszone Część V - Model PRAM II
Algorytmy Równoległe i Rozproszone Część V - Model PRAM II Łukasz Kuszner pokój 209, WETI http://www.sphere.pl/ kuszner/ kuszner@sphere.pl Oficjalna strona wykładu http://www.sphere.pl/ kuszner/arir/ 2005/06
Sieci obliczeniowe poprawny dobór i modelowanie
Sieci obliczeniowe poprawny dobór i modelowanie 1. Wstęp. Jednym z pierwszych, a zarazem najważniejszym krokiem podczas tworzenia symulacji CFD jest poprawne określenie rozdzielczości, wymiarów oraz ilości
Liczba godzin Punkty ECTS Sposób zaliczenia
Wydział: Psychologia Nazwa kierunku kształcenia: Psychologia Rodzaj przedmiotu: podstawowy Opiekun: dr Blandyna Żurawska vel Grajewska Poziom studiów (I lub II stopnia): Jednolite magisterskie Tryb studiów:
Matematyka dyskretna. Andrzej Łachwa, UJ, /15
Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl 14/15 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami
Elementy kognitywistyki III: Modele i architektury poznawcze
Elementy kognitywistyki III: Modele i architektury poznawcze Wykład III: Psychologiczne modele umysłu Gwoli przypomnienia: Kroki w modelowaniu kognitywnym: teoretyczne ramy pojęciowe (modele pojęciowe)
Elementy teorii grafów Elementy teorii grafów
Spis tresci 1 Spis tresci 1 Często w zagadnieniach praktycznych rozważa się pewien zbiór obiektów wraz z zależnościami jakie łączą te obiekty. Dla przykładu można badać pewną grupę ludzi oraz strukturę
Badanie internetu. NeWWWton Fizyka w sieci. Piotr Pohorecki, Anna Poręba Gemius SA
Badanie internetu NeWWWton Fizyka w sieci Piotr Pohorecki, Anna Poręba Gemius SA Krótko o nas: niezależna firma badawcza - lider badań internetu, usługi badawcze, analityczne i doradcze w zakresie internetu,
Sieci: grafy i macierze. Sieci afiliacji. Analiza sieci społecznych. Najważniejsze pytania. Komunikatory internetowe
Sieci społeczne Charakterystyka, uwarunkowania i konsekwencje struktur relacji społecznych na przykładzie komunikacji internetowej E Sieci: grafy i macierze A B A B A - C D E dr Dominik Batorski B - Instytut
Grafy i sieci wybrane zagadnienia wykład 3: modele służące porównywaniu sieci
Grafy i sieci wybrane zagadnienia wykład 3: modele służące porównywaniu sieci prof. dr hab. inż. Marta Kasprzak Instytut Informatyki, Politechnika Poznańska Plan wykładu 1. Sieci jako modele interakcji
Drzewa spinające MST dla grafów ważonych Maksymalne drzewo spinające Drzewo Steinera. Wykład 6. Drzewa cz. II
Wykład 6. Drzewa cz. II 1 / 65 drzewa spinające Drzewa spinające Zliczanie drzew spinających Drzewo T nazywamy drzewem rozpinającym (spinającym) (lub dendrytem) spójnego grafu G, jeżeli jest podgrafem
Graf. Definicja marca / 1
Graf 25 marca 2018 Graf Definicja 1 Graf ogólny to para G = (V, E), gdzie V jest zbiorem wierzchołków (węzłów, punktów grafu), E jest rodziną krawędzi, które mogą być wielokrotne, dokładniej jednoelementowych
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 03/0 Przeszukiwanie w głąb i wszerz I Przeszukiwanie metodą
Analiza sieci przedsiębiorstw z wykorzystaniem metody SNA
Analiza sieci przedsiębiorstw z wykorzystaniem metody SNA Arkadiusz Kawa, Uniwersytet Ekonomiczny w Poznaniu Słowa kluczowe: sieć przedsiębiorstw, analiza sieci społecznych, SNA, system złożony Streszczenie.
Matematyczne Podstawy Informatyki
Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój
Matematyka dyskretna
Matematyka dyskretna Wykład 13: Teoria Grafów Gniewomir Sarbicki Literatura R.J. Wilson Wprowadzenie do teorii grafów Definicja: Grafem (skończonym, nieskierowanym) G nazywamy parę zbiorów (V (G), E(G)),
Wykorzystanie algorytmów mrówkowych w dynamicznym problem
Wykorzystanie algorytmów mrówkowych w dynamicznym problemie marszrutyzacji Promotor: dr inż. Aneta Poniszewska-Marańda Współpromotor: mgr inż. Łukasz Chomątek 18 stycznia 2013 Przedmiot i cele pracy dyplomowej
Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda
Wstęp do sieci neuronowych, wykład 10. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2011-12-13 1 Modele sieci rekurencyjnej Energia sieci 2 3 Modele sieci
BUDOWA KRYSTALICZNA CIAŁ STAŁYCH. Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale
BUDOWA KRYSTALICZNA CIAŁ STAŁYCH Stopień uporządkowania struktury wewnętrznej ciał stałych decyduje o ich podziale na: kryształy ciała o okresowym regularnym uporządkowaniu atomów, cząsteczek w całej swojej
Matematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2016 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami
Matematyka Dyskretna - zadania
zad. 1. Chcemy zdefiniować rekurencyjnie zbiór Z wszystkich trójkątów równoramiennych ABC, gdzie współrzędne wierzchołków będą liczbami całkowitymi, wierzchołek A zawsze będzie leżeć w początku układu
Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz?
DROGI i CYKLE EULERA w grafach Czy istnieje zamknięta droga spaceru przechodząca przez wszystkie mosty w Królewcu dokładnie jeden raz? Czy można narysować podaną figurę nie odrywając ołówka od papieru
Cytometryczna analiza polisomatyczności organów roślin z rodziny Fabaceae
Cytometryczna analiza polisomatyczności organów roślin z rodziny Fabaceae Monika Rewers, Elwira Śliwińska Katedra Genetyki i Biotechnologii Roślin, Uniwersytet Technologiczno-Przyrodniczy w Bydgoszczy
Elektrofizjologiczne podstawy lokalizacji ogniska padaczkowego. Piotr Walerjan
Elektrofizjologiczne podstawy lokalizacji ogniska padaczkowego Piotr Walerjan Elektrofizjologia w padaczce Dlaczego stosujemy metody elektrofizjologiczne w diagnostyce padaczki? Ognisko padaczkowe Lokalizacja
KURS MATEMATYKA DYSKRETNA
KURS MATEMATYKA DYSKRETNA LEKCJA 28 Grafy hamiltonowskie Odpowiedzi do zadania domowego www.akademia.etrapez.pl Strona 1 Część 1: TEST 1) b 2) a 3) b 4) d 5) c 6) d 7) b 8) b 9) d 10) a Zad. 1 ODPOWIEDZI
UWAGI O WŁAŚCIWOŚCIACH LICZBY ZNIEWOLENIA DLA GRAFÓW
PRACE WYDZIAŁU NAWIGACYJNEGO nr 19 AKADEMII MORSKIEJ W GDYNI 2006 SAMBOR GUZE Akademia Morska w Gdyni Katedra Matematyki UWAGI O WŁAŚCIWOŚCIACH LICZBY ZNIEWOLENIA DLA GRAFÓW W pracy zdefiniowano liczbę
Droga i cykl Eulera Przykłady zastosowania drogi i cyku Eulera Droga i cykl Hamiltona. Wykład 4. Droga i cykl Eulera i Hamiltona
Wykład 4. Droga i cykl Eulera i Hamiltona 1 / 92 Grafy Eulera Droga i cykl Eulera Niech G będzie grafem spójnym. Definicja Jeżeli w grafie G istnieje zamknięta droga prosta zawierająca wszystkie krawędzie
Teoria grafów podstawy. Materiały pomocnicze do wykładu. wykładowca: dr Magdalena Kacprzak
Teoria grafów podstawy Materiały pomocnicze do wykładu wykładowca: dr Magdalena Kacprzak Grafy zorientowane i niezorientowane Przykład 1 Dwa pociągi i jeden most problem wzajemnego wykluczania się Dwa
Wstęp do Sztucznej Inteligencji
Wstęp do Sztucznej Inteligencji Rozwiązywanie problemów-i Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Rozwiązywanie problemów Podstawowe fazy: Sformułowanie celu -
Izabela Zimoch Zenon Szlęk Biuro Badań i Rozwoju Technologicznego. Katowice, dnia 13.08.2013 r.
System informatyczny wspomagający optymalizację i administrowanie produkcją i dystrybucją wody przeznaczonej do spożycia przez ludzi subregionu centralnego i zachodniego województwa śląskiego Izabela Zimoch
Wstęp do sieci neuronowych, wykład 10 Sieci rekurencyjne. Autoasocjator Hopfielda
Wstęp do sieci neuronowych, wykład 10. Maja Czoków, Jarosław Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika 2012-12-19 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu
Wstęp do teorii sztucznej inteligencji Wykład III. Modele sieci neuronowych.
Wstęp do teorii sztucznej inteligencji Wykład III Modele sieci neuronowych. 1 Perceptron model najprostzszy przypomnienie Schemat neuronu opracowany przez McCullocha i Pittsa w 1943 roku. Przykład funkcji
Matematyka dyskretna. Andrzej Łachwa, UJ, /14
Matematyka dyskretna Andrzej Łachwa, UJ, 2012 andrzej.lachwa@uj.edu.pl 13/14 Grafy podstawowe definicje Graf to para G=(V, E), gdzie V to niepusty i skończony zbiór, którego elementy nazywamy wierzchołkami
Wstęp do sieci neuronowych, wykład 9 Sieci rekurencyjne. Autoasocjator Hopfielda
Wstęp do sieci neuronowych, wykład 9. M. Czoków, J. Piersa 2010-12-07 1 Sieci skierowane 2 Modele sieci rekurencyjnej Energia sieci 3 Sieci skierowane Sieci skierowane Sieci skierowane graf połączeń synaptycznych
PROGRAM STUDIÓW II STOPNIA na kierunku ENERGETYKA I CHEMIA JĄDROWA. prowadzonych na Wydziałach Chemii i Fizyki Uniwersytetu Warszawskiego
PROGRAM STUDIÓW II STOPNIA na kierunku ENERGETYKA I CHEMIA JĄDROWA prowadzonych na Wydziałach Chemii i Fizyki Uniwersytetu Warszawskiego W trakcie studiów II stopnia student kierunku Energetyka i Chemia
E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne
E: Rekonstrukcja ewolucji. Algorytmy filogenetyczne Przypominajka: 152 drzewo filogenetyczne to drzewo, którego liśćmi są istniejące gatunki, a węzły wewnętrzne mają stopień większy niż jeden i reprezentują
Drzewa. Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew
Drzewa Las - graf, który nie zawiera cykli Drzewo - las spójny Jeżeli graf G jest lasem, który ma n wierzchołków i k składowych, to G ma n k krawędzi. Własności drzew Niech T graf o n wierzchołkach będący
ANALIZA STRUKTURALNA SIECI TRANSPORTOWEJ KOLEI WIELKOPOLSKICH
STUDIA MIEJSKIE tom 30 (2018) Paweł SOBCZAK* ANALIZA STRUKTURALNA SIECI TRANSPORTOWEJ KOLEI WIELKOPOLSKICH STRUCTURAL ANALYSIS OF KOLEJE WIELKOPOLSKIE TRANSPORT NETWORK NR DOI: 10.25167/sm2018.030.04 s.
Wstęp do kognitywistyki. Wykład 3: Logiczny neuron. Rachunek sieci neuronowych
Wstęp do kognitywistyki Wykład 3: Logiczny neuron. Rachunek sieci neuronowych Epistemologia eksperymentalna W. McCulloch: Wszystko, czego dowiadujemy się o organizmach wiedzie nas do wniosku, iż nie są
Algorytmika Problemów Trudnych
Algorytmika Problemów Trudnych Wykład 9 Tomasz Krawczyk krawczyk@tcs.uj.edu.pl Kraków, semestr letni 2016/17 plan wykładu Algorytmy aproksymacyjne: Pojęcie algorytmu aproksymacyjnego i współczynnika aproksymowalności.
Przejścia fazowe w uogólnionym modelu modelu q-wyborcy na grafie zupełnym
Przejścia fazowe w uogólnionym modelu modelu q-wyborcy na grafie zupełnym Piotr Nyczka Institute of Theoretical Physics University of Wrocław Artykuły Opinion dynamics as a movement in a bistable potential
UCHWAŁA Nr XXVI/439/09 SEJMIKU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO z dnia 27 kwietnia 2009 roku. w sprawie zmian w budżecie województwa na 2009 rok
UCHWAŁA Nr XXVI/439/09 SEJMIKU WOJEWÓDZTWA ŚWIĘTOKRZYSKIEGO z dnia 27 kwietnia 2009 roku w sprawie zmian w budżecie województwa na 2009 rok Na podstawie art.18, pkt 6 ustawy z dnia 5 czerwca 1998 r. o
Wstęp do sieci neuronowych, wykład 07 Uczenie nienadzorowane.
Wstęp do sieci neuronowych, wykład 7. M. Czoków, J. Piersa Wydział Matematyki i Informatyki, Uniwersytet Mikołaja Kopernika w Toruniu 212-11-28 Projekt pn. Wzmocnienie potencjału dydaktycznego UMK w Toruniu
Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV
Algorytmy grafowe Wykład 1 Podstawy teorii grafów Reprezentacje grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów
Egzamin, AISDI, I termin, 18 czerwca 2015 r.
Egzamin, AISDI, I termin, 18 czerwca 2015 r. 1 W czasie niezależnym do danych wejściowych działają algorytmy A. sortowanie bąbelkowego i Shella B. sortowanie szybkiego i przez prosty wybór C. przez podział
Złożoność obliczeniowa klasycznych problemów grafowych
Złożoność obliczeniowa klasycznych problemów grafowych Oznaczenia: G graf, V liczba wierzchołków, E liczba krawędzi 1. Spójność grafu Graf jest spójny jeżeli istnieje ścieżka łącząca każdą parę jego wierzchołków.
AiSD zadanie trzecie
AiSD zadanie trzecie Gliwiński Jarosław Marek Kruczyński Konrad Marek Grupa dziekańska I5 5 czerwca 2008 1 Wstęp Celem postawionym przez zadanie trzecie było tzw. sortowanie topologiczne. Jest to typ sortowania
ĆWICZENIE 1: Przeszukiwanie grafów cz. 1 strategie ślepe
Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE ĆWICZENIE 1: Przeszukiwanie grafów cz. 1 strategie ślepe opracował:
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów
Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 4 Modelowanie niezawodności prostych struktur sprzętowych Prowadzący: mgr inż. Marcel Luzar Cel
Wprowadzenie Podstawy Fundamentalne twierdzenie Kolorowanie. Grafy planarne. Przemysław Gordinowicz. Instytut Matematyki, Politechnika Łódzka
Grafy planarne Przemysław Gordinowicz Instytut Matematyki, Politechnika Łódzka Grafy i ich zastosowania Wykład 12 Plan prezentacji 1 Wprowadzenie 2 Podstawy 3 Fundamentalne twierdzenie 4 Kolorowanie grafów
Podstawowe własności grafów. Wykład 3. Własności grafów
Wykład 3. Własności grafów 1 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2). 2 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2).
Analiza procesu odzyskiwania środków z masy upadłości banków
Tomasz Obal Analiza procesu odzyskiwania środków z masy upadłości banków Charakter działalności Bankowego Funduszu Gwarancyjnego daje unikalną szansę na przeprowadzenie pogłębionej analizy procesów upadłościowych
Customer Attribution Models. czyli o wykorzystaniu machine learning w domu mediowym.
Customer Attribution Models czyli o wykorzystaniu machine learning w domu mediowym. Proces decyzyjny MAILING SEO SEM DISPLAY RETARGETING PRZEGRANI??? ZWYCIĘZCA!!! Modelowanie atrybucja > Słowo klucz: wpływ