Wyznaczanie symulacyjne granicy minimalnej w portfelu Markowitza

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wyznaczanie symulacyjne granicy minimalnej w portfelu Markowitza"

Transkrypt

1 Wyznaczanie symulacyjne granicy minimalnej w portfelu Markowitza Łukasz Kanar UNIWERSYTET WARSZAWSKI WYDZIAŁ NAUK EKONOMICZNYCH WARSZAWA 2008

2 1. Portfel Markowitza Dany jest pewien portfel n 1 spółek giełdowych. KaŜda akcja przynosi pewną stopę zwrotu. Ta stopa jest zmienną losową. Znane są jej podstawowe charakterystyki, tj. wartość oczekiwana oraz wariancja. Interesuje mnie wartość oczekiwana oraz wariancja całego portfela, chcę w jakiś sposób wyznaczyć zbiór moŝliwych wartości oczekiwanych portfela w zaleŝności od jego wariancji. W pracy tej interesować mnie będzie znalezienie granicy minimalnej oraz maksymalnej 2. Granica minimalna to,,lewa strona zbioru dopuszczalnego, czyli takie portfele, które przy danej wartości oczekiwanej mają najmniejszą wariancję. Granica maksymalna to,,prawa strona, czyli portfele, które przy danej wartości oczekiwanej mają najmniejszą wariancję. W praktyce waŝniejsza jest oczywiście granica minimalna, co związane jest z awersją ludzi do ryzyka. Dodatkowo wyznaczę jeszcze portfele efektywne, czyli te które przy ustalonej wariancji mają maksymalną stopę zwrotu, a przy ustalonej stopie zwrotu minimalną wariancję. Model ma następującą postać: n - liczba dostępnych akcji (n=13) µ wektor stóp zwrotu (n x 1) Σ - macierz wariancji-kowariancji stóp zwrotu (n x n) x 1,..., x n udziały poszczególnych akcji w portfelu (Σ n i=1 x i = 1) Przyjmuję dodatkowe załoŝenia: 1) Nie ma krótkiej sprzedaŝy, tzn. x i > 0 dla kaŝdego i = 1,..., n 2) Aktywa są doskonale podzielne, tzn. x i jest liczbą rzeczywistą 3) Brak dodatkowych kosztów (podatki, koszty transakcji, itp.) Stopa zwrotu całego portfela to (x 1... x n )µ Wariancja całego portfela to (x 1... x n ) Σ (x 1... x n ) T Do znalezienia granicy minimalnej (maksymalnej) uŝyję metody symulacyjnej. Zbiór efektywny wyznaczę na podstawie granicy minimalnej. 2. Działanie programu KROK 1: Wczytanie danych Dane pochodzą ze strony bossa.pl. Są to dane w formacie OMEGA. Obejmują 13 spółek gieldowych, tj. Agora, Amica Wronki, Bank BPH, BRE Bank, Dębica, Indykpol, KGHM Polska Miedź, Bank Millenium, Netia, Optimus, Orbis, Prokom Software, TPSA. Wybierając taki portfel kierowałem się długością danych oraz wielkością spółek. Dane są danymi dziennymi. Do programu wczytałem je przy pomocy makra wczytaj_dane_bossa. 1 n=13 2 przede wszystkim minimalnej, wiąŝe się to z lepszą jakością tego zbioru (więcej o tym później przy analizie wyników) oraz z większym znaczeniem praktycznym 2

3 KROK 2: Obróbka danych i estymacja parametrów modelu Wybrałem maksymalny okres, dla którego miałem większość danych dla wszystkich spółek, tj. od do Z pewnych przyczyn zalecane jest branie danych z co drugiej sesji. W ten sposób zostały mi 966 obserwacje 3. Parametry modelu wyestymowałem przy uŝyciu procedury corr. PoniŜej przedstawiam wyniki estymacji: Statystyki proste Odch. Zmienna N Średnia standard. Suma Minimum Maksimum dagora damica dbankbph dbre ddebica dindykpol dkghm dmillennium dnetia doptimus dorbis dprokom dtpsa Macierz kowariancji, DF = 904 dagora damica dbankbph dbre ddebica dagora damica dbankbph dbre ddebica dindykpol dkghm dmillennium dnetia doptimus dindykpol dkghm dmillennium dnetia doptimus dagora damica dbankbph dbre ddebica dindykpol dkghm dmillennium dnetia doptimus dorbis dprokom dtpsa dagora damica dbankbph dbre ddebica dindykpol dkghm dmillennium dnetia doptimus Uwaga 1: Niektóre oszacowane na podstawie danych historycznych stopy zwrotu są ujemne. NaleŜałoby się zastanowić czy w ogóle moŝna je brać pod uwagę? Podobnie moŝna się zastanowić czy nie istnieje jakaś stopa wolna od ryzyka, od której zysk portfela powinien być 3 poniewaŝ dane nie były pełne, liczba ta zmalała do 905 3

4 większy? Postanowiłem jednak nie ustalać Ŝadnej takiej granicy i dopuścić wszystkie portfele uznając Ŝe dodanie do kaŝdej średniej stałej nie zmieni kształtu zbioru a pozwoli na uniknięcie tego typu problemu. KROK 3: Znajdowanie granicy 1) Tworzę macierze wyniki, wyniki2 i wyniki22. Ich budowa jest następująca: Kolumny 1-13 będą wskazywać udział poszczególnych akcji w portfelu Kolumna 14 to oczekiwana stopa zwrotu w portfelu Kolumna 15 to zaokrąglona wartość kolumny 14. Macierze wyniki2 oraz wyniki22 miały tam wszelkie dostępne poziomy zmiennej wartość oczekiwana po zaokrągleniu Kolumna 16 to wariancja portfela. Początkowo wartość ta dla macierzy wyniki2 jest bardzo duŝa, a dla wyniki22 bardzo mała. Kolumna 17 to numer, który przyda się do identyfikacji po złączeniu macierzy Kolumna 18 miała charakter jedynie orientacyjny. Pokazywała ile razy dana wartość zmiennej została osiągnięta 4. Macierz wyniki ma tyle wierszy ile ma być losowań (domyślnie 5 000). Macierze wyniki2 oraz wyniki 22 mają tyle wierszy ile moŝliwych jest dopuszczalnych poziomów zmiennej wartość oczekiwana. Uwaga 2: Oglądając program polecam zmienianie jedynie liczby losowań. Myślę, Ŝe wartością graniczną jest , później niewiele się zyskuje mimo dłuŝszej pracy programu. Myślę, Ŝe minimalna liczba to Uwaga 3: Raczej nie powinno się zmieniać poziomu zaokrąglenia. Zaokrąglenie jest dobrane odpowiednio do tego problemu, a jego zmiana moŝe spowodować zbyt duŝą niedokładność spowodowaną w przypadku zwiększenia jej poziomu lub zbyt małą liczbę losowaną na dany poziom w przypadku jej zmniejszenia. 2) Losowanie Losuję pewien portfel. Obliczam dla niego wartość oczekiwaną, oszacowaną wartość oczekiwaną oraz wariancję. Następnie sprawdzam, czy taki portfel jest lepszy od dotychczasowego portfela uznanego za najlepszego dla danego poziomu oszacowanej wartości oczekiwanej. Jeśli tak to podmieniam ten najlepszy portfel nowym. Procedurę powtarzamy odpowiednią liczbę razy. Uwaga 4: Sposób losowania portfela jest niezwykle waŝny. Przykładowo początkowo wybierałem następujący sposób losowania: Dla kaŝdej akcji losuję liczbę z przedziału jednostajnego [0,1] Dzielę tą liczbę przez sumę liczb. W ten sposób udziały sumują się do 1 i są z przedziału [0,1] Sposób ten jest zły, gdyŝ wylosowane portfele są bardzo,,skupione. CięŜko o to by w jakimś portfelu jakaś akcja miała udział np. 90%, gdyŝ: 4 w przypadku macierzy wyniki wartości te nie mają Ŝadnego znaczenia, a kolumna jest tylko po to by późniejsze łączenie macierz przebiegało sprawniej. 4

5 Pr(X 1 > 0.9 Σ n i=1 X i ) = Pr(X 1 > 9 Σ n i=2 X i ) ~ podmieniając Σ 13 i=2 X i rozkładem normalnym N(12*0.5,12*1/12) otrzymuję ~ Pr(U(0,1) > 9*N(6,1 2 )) = Pr(U(0,1) > N(54, 9 2 )) < < Pr(1 > N(54, 9 2 )) a to jest praktycznie 5 0, co wynika np. z reguły trzech sigm. W rezultacie jedynie niewielki przedział stopy zwrotu był uwzględniany (nawet przy duŝej ilości losowanych portfeli). Dlatego przyjąłem nieco inny sposób losowania: Wykonaj losową permutację zbioru (1,...13) z równymi prawdopodobieństwami. W ten sposób Ŝadna akcja nie będzie,,uprzywilejowana. 12 razy: Weź daną akcję i wylosuj dla niej liczbę z przedziału [0,h], gdzie h to pozostałe udziały po uwzględnieniu udziałów wszystkich juŝ wcześniej ustalonych akcji Dla 13 akcji ustal wartość taką, by łączne udziały sumowały się do 1. W ten sposób dostałem zdecydowanie bardziej porozrzucane portfele po całym zbiorze dopuszczalnym, co pomogło w lepszym znajdowaniu granicy minimalnej i maksymalnej. 3) Pozbywanie się niektórych wartości Okazało się, Ŝe nie zawsze dla kaŝdego poziomu oszacowanej wartości oczekiwanej mam odpowiedni poziom granicy minimalnej lub maksymalnej. Muszę się więc pozbyć niektórych poziomów dopuszczalnych wartości oczekiwanej. Na to ile się ich pozbędę ma wpływ: dobór zaokrąglenia sposób losowania ilość losowań MoŜna powiedzieć, Ŝe ilość usuwanych poziomów świadczy o jakości programu. Dlatego teŝ moŝna uznać, Ŝe program z drugim sposobem losowania był lepszy od tego z pierwszym sposobem losowania 4) Podział granicy minimalnej Z granicy minimalnej musiałem wybrać zbiór efektywny. Zrobiłem to w następujący sposób: wybrałem minimalną wariancję na granicy minimalnej i uznałem Ŝe jest to punkt, powyŝej którego na granicy minimalnej znajduje się zbiór efektywny. Zachowanie takie jest uzasadnione, gdyŝ granica efektywna jest zbiorem wypukłym. Uwaga 5: Ten punkt ma swoją interpretację. MoŜe on zostać uznany jako punkt optymalny. 5 liczba rzędu

6 3. Wyniki Scalam tabele wyniki, wyniki2 oraz wyniki22 i robię rysunki. Odpowiednie punkty z granicy minimalnej (maksymalnej) łączę liniami prostymi. Biorąc losowań otrzymuję rysunek 1. Warto zauwaŝyć, Ŝe granica minimalna jest wyznaczona w znacznie lepszy sposób niŝ granica maksymalna 6. Związane jest z nieregularnością granicy maksymalnej. O ile granica minimalna jest zbiorem wypukłym, o tyle granica maksymalna moŝe się składać nawet z ,,dzióbków a zatem jej wyznaczenie jest znacznie trudniejsze. Rysunek 1: Zbiór efektywny dla n=5 000 Rysunek 2 pokazuje sposób wyznaczania granic minimalnej i maksymalnej. Widzimy, Ŝe dla konkretnych poziomów stóp zwrotu wybieramy 2 skrajne portfele. Jeden będzie naleŝał do granicy minimalnej, a drugi do granicy maksymalnej. Na koniec tworzę rysunek dla losowań. Granica minimalna jest juŝ bardzo dobrze wyznaczona. Widać, Ŝe jest to zbiór wypukły. Dalsze zwiększanie liczby losowań nie przynosi juŝ jakościowo lepszych rezultatów. 6 patrz teŝ rysunek n - n 1 dla n=13 6

7 Rysunek 2: Wykres po zaokrągleniu stóp zwrotu Rysunek 3: Zbiór efektywny dla n=

dla t ściślejsze ograniczenie na prawdopodobieństwo otrzymujemy przyjmując k = 1, zaś dla t > t ściślejsze ograniczenie otrzymujemy przyjmując k = 2.

dla t ściślejsze ograniczenie na prawdopodobieństwo otrzymujemy przyjmując k = 1, zaś dla t > t ściślejsze ograniczenie otrzymujemy przyjmując k = 2. Zadanie. Dla dowolnej zmiennej losowej X o wartości oczekiwanej μ, wariancji momencie centralnym μ k rzędu k zachodzą nierówności (typu Czebyszewa): ( X μ k Pr > μ + t σ ) 0. k k t σ *

Bardziej szczegółowo

Matematyka finansowa i ubezpieczeniowa - 8 Wycena papierów wartościowych

Matematyka finansowa i ubezpieczeniowa - 8 Wycena papierów wartościowych Matematyka finansowa i ubezpieczeniowa - 8 Wycena papierów wartościowych W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,

Bardziej szczegółowo

Greckie współczynniki kalkulowane są po zamknięciu sesji na podstawie następujących danych:

Greckie współczynniki kalkulowane są po zamknięciu sesji na podstawie następujących danych: Metodologia wyznaczania greckich współczynników. (1) Dane wejściowe. Greckie współczynniki kalkulowane są po zamknięciu sesji na podstawie następujących danych: S wartość zamknięcia indeksu WIG20 (pkt),

Bardziej szczegółowo

Metodologia wyznaczania greckich współczynników dla opcji na WIG20

Metodologia wyznaczania greckich współczynników dla opcji na WIG20 Metodologia wyznaczania greckich współczynników dla opcji na WIG20 (1) Dane wejściowe. Greckie współczynniki kalkulowane są po zamknięciu sesji na podstawie następujących danych: S wartość indeksu WIG20

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

Rekurencje. Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie:

Rekurencje. Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie: Rekurencje Jeśli algorytm zawiera wywołanie samego siebie, jego czas działania moŝe być określony rekurencją. Przykład: sortowanie przez scalanie: T(n) = Θ(1) (dla n = 1) T(n) = 2 T(n/2) + Θ(n) (dla n

Bardziej szczegółowo

Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko.

Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko. Inwestycje finansowe Wycena obligacji. Stopa zwrotu z akcji. yzyko. Inwestycje finansowe Instrumenty rynku pieniężnego (np. bony skarbowe). Instrumenty rynku walutowego. Obligacje. Akcje. Instrumenty pochodne.

Bardziej szczegółowo

Optymalizacja ciągła

Optymalizacja ciągła Optymalizacja ciągła 5. Metoda stochastycznego spadku wzdłuż gradientu Wojciech Kotłowski Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/ 04.04.2019 1 / 20 Wprowadzenie Minimalizacja różniczkowalnej

Bardziej szczegółowo

Analiza metod prognozowania kursów akcji

Analiza metod prognozowania kursów akcji Analiza metod prognozowania kursów akcji Izabela Łabuś Wydział InŜynierii Mechanicznej i Informatyki Kierunek informatyka, Rok V Specjalność informatyka ekonomiczna Politechnika Częstochowska izulka184@o2.pl

Bardziej szczegółowo

PROGRAMOWANIE NIELINIOWE

PROGRAMOWANIE NIELINIOWE PROGRAMOWANIE NIELINIOWE Maciej Patan Uniwersytet Zielonogórski WSTEP Zadanie programowania nieliniowego (ZPN) min f(x) g i (x) 0, h i (x) = 0, i = 1,..., m g i = 1,..., m h f(x) funkcja celu g i (x) i

Bardziej szczegółowo

Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1

Weryfikacja hipotez statystycznych. KG (CC) Statystyka 26 V / 1 Weryfikacja hipotez statystycznych KG (CC) Statystyka 26 V 2009 1 / 1 Sformułowanie problemu Weryfikacja hipotez statystycznych jest drugą (po estymacji) metodą uogólniania wyników uzyskanych w próbie

Bardziej szczegółowo

WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIENIA Problem przydziału

WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIENIA Problem przydziału WYKORZYSTANIE NARZĘDZIA Solver DO ROZWIĄZYWANIA ZAGADNIENIA Problem przydziału Problem przydziału Przykład Firma KARMA zamierza w okresie letnim przeprowadzić konserwację swoich urządzeń; mieszalników,

Bardziej szczegółowo

Matlab, zajęcia 3. Jeszcze jeden przykład metoda eliminacji Gaussa dla macierzy 3 na 3

Matlab, zajęcia 3. Jeszcze jeden przykład metoda eliminacji Gaussa dla macierzy 3 na 3 Matlab, zajęcia 3. Pętle c.d. Przypomnijmy sobie jak działa pętla for Możemy podać normalnie w Matlabie t=cputime; for i=1:20 v(i)=i; e=cputime-t UWAGA: Taka operacja jest bardzo czasochłonna i nieoptymalna

Bardziej szczegółowo

Teoria portfelowa H. Markowitza

Teoria portfelowa H. Markowitza Aleksandra Szymura szymura.aleksandra@yahoo.com Teoria portfelowa H. Markowitza Za datę powstania teorii portfelowej uznaje się rok 95. Wtedy to H. Markowitz opublikował artykuł zawierający szczegółowe

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych..00 r. Zadanie. Proces szkód w pewnym ubezpieczeniu jest złożonym procesem Poissona z oczekiwaną liczbą szkód w ciągu roku równą λ i rozkładem wartości szkody o dystrybuancie

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)

Bardziej szczegółowo

Rozdział 8. Regresja. Definiowanie modelu

Rozdział 8. Regresja. Definiowanie modelu Rozdział 8 Regresja Definiowanie modelu Analizę korelacji można traktować jako wstęp do analizy regresji. Jeżeli wykresy rozrzutu oraz wartości współczynników korelacji wskazują na istniejąca współzmienność

Bardziej szczegółowo

Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych.

Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka zajmuje się prawidłowościami zaistniałych zdarzeń. Teoria prawdopodobieństwa dotyczy przewidywania, jak często mogą zajść

Bardziej szczegółowo

Typowe błędy w analizie rynku nieruchomości przy uŝyciu metod statystycznych

Typowe błędy w analizie rynku nieruchomości przy uŝyciu metod statystycznych Typowe błędy w analizie rynku nieruchomości przy uŝyciu metod statystycznych Sebastian Kokot XXI Krajowa Konferencja Rzeczoznawców Majątkowych, Międzyzdroje 2012 Rzetelnie wykonana analiza rynku nieruchomości

Bardziej szczegółowo

Rachunek prawdopodobieństwa projekt Ilustracja metody Monte Carlo obliczania całek oznaczonych

Rachunek prawdopodobieństwa projekt Ilustracja metody Monte Carlo obliczania całek oznaczonych Rachunek prawdopodobieństwa projekt Ilustracja metody Monte Carlo obliczania całek oznaczonych Autorzy: Marta Rotkiel, Anna Konik, Bartłomiej Parowicz, Robert Rudak, Piotr Otręba Spis treści: Wstęp Cel

Bardziej szczegółowo

Spacery losowe generowanie realizacji procesu losowego

Spacery losowe generowanie realizacji procesu losowego Spacery losowe generowanie realizacji procesu losowego Michał Krzemiński Streszczenie Omówimy metodę generowania trajektorii spacerów losowych (błądzenia losowego), tj. szczególnych procesów Markowa z

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 1.10.2012 r.

Matematyka ubezpieczeń majątkowych 1.10.2012 r. Zadanie. W pewnej populacji każde ryzyko charakteryzuje się trzema parametrami q, b oraz v, o następującym znaczeniu: parametr q to prawdopodobieństwo, że do szkody dojdzie (może zajść co najwyżej jedna

Bardziej szczegółowo

Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych

Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych inż. Marek Duczkowski Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych słowa kluczowe: algorytm gradientowy, optymalizacja, określanie wodnicy W artykule

Bardziej szczegółowo

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85

Bardziej szczegółowo

Wyszukiwanie. Wyszukiwanie binarne

Wyszukiwanie. Wyszukiwanie binarne Wyszukiwanie Wejście: posortowana, n-elementowa tablica liczbowa T oraz liczba p. Wyjście: liczba naturalna, określająca pozycję elementu p w tablicy T, bądź 1, jeŝeli element w tablicy nie występuje.

Bardziej szczegółowo

3. Optymalizacja portfela inwestycyjnego Model Markowitza Model jednowskaźnikowy Sharpe a Model wyceny aktywów kapitałowych CAPM

3. Optymalizacja portfela inwestycyjnego Model Markowitza Model jednowskaźnikowy Sharpe a Model wyceny aktywów kapitałowych CAPM 3. Optymalizacja portfela inwestycyjnego Model Markowitza Model jednowskaźnikowy Sharpe a Model wyceny aktywów kapitałowych CAPM Oczekiwana stopa zwrotu portfela dwóch akcji: E(r p ) = w 1 E(R 1 ) + w

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N = HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki

Bardziej szczegółowo

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III. Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej

Bardziej szczegółowo

Analiza skuteczności wybranych nieparametrycznych metod obliczania VaR

Analiza skuteczności wybranych nieparametrycznych metod obliczania VaR Grzegorz Mentel, Tomasz Pisula Analiza skuteczności wybranych nieparametrycznych metod obliczania VaR Wstęp Bardzo często jako narzędzia oceny ryzyka inwestowania w akcje wykorzystuje się metody oparte

Bardziej szczegółowo

ALGORYTMY OPTYMALIZACJI wyklad 1.nb 1. Wykład 1

ALGORYTMY OPTYMALIZACJI wyklad 1.nb 1. Wykład 1 ALGORYTMY OPTYMALIZACJI wyklad.nb Wykład. Sformułowanie problemu optymalizacyjnego Z ksiąŝki Practical Optimization Methods: With Mathematica Applications by: M.A.Bhatti, M.Asghar Bhatti ü Przykład. (Zagadnienie

Bardziej szczegółowo

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania

Prognozowanie i Symulacje. Wykład I. Matematyczne metody prognozowania Prognozowanie i Symulacje. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Szeregi czasowe 1 Szeregi czasowe 2 3 Szeregi czasowe Definicja 1 Szereg czasowy jest to proces stochastyczny z czasem dyskretnym

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo

Zestaw 12- Macierz odwrotna, układy równań liniowych

Zestaw 12- Macierz odwrotna, układy równań liniowych Zestaw - Macierz odwrotna, układy równań liniowych Przykładowe zadania z rozwiązaniami ZałóŜmy, Ŝe macierz jest macierzą kwadratową stopnia n. Mówimy, Ŝe macierz tego samego wymiaru jest macierzą odwrotną

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1

Bardziej szczegółowo

Cena do wartości księgowej (C/WK, P/BV)

Cena do wartości księgowej (C/WK, P/BV) Cena do wartości księgowej (C/WK, P/BV) Wskaźnik cenadowartości księgowej (ang. price to book value ratio) jest bardzo popularnym w analizie fundamentalnej. Informuje on jaką cenę trzeba zapład za 1 złotówkę

Bardziej szczegółowo

MATERIAŁ INFORMACYJNY. Strukturyzowane Certyfikaty Depozytowe powiązane z indeksem giełdowym ze 100% ochroną zainwestowanego kapitału w Dniu Wykupu

MATERIAŁ INFORMACYJNY. Strukturyzowane Certyfikaty Depozytowe powiązane z indeksem giełdowym ze 100% ochroną zainwestowanego kapitału w Dniu Wykupu MATERIAŁ INFORMACYJNY Strukturyzowane Certyfikaty Depozytowe powiązane z indeksem giełdowym ze 1% ochroną zainwestowanego kapitału w Dniu Wykupu Emitent Bank BPH SA Numer serii Certyfikatów Depozytowych

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Temat Testowanie hipotez statystycznych Kody znaków: Ŝółte wyróŝnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Idea i pojęcia teorii testowania hipotez

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki 2. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5.

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

dr hab. Renata Karkowska 1

dr hab. Renata Karkowska 1 dr hab. Renata Karkowska 1 Miary zmienności: obrazują zmiany cen, stóp zwrotu instrumentów finansowych, opierają się na rozproszeniu ich rozkładu, tym samym uśredniają ryzyko: wariancja stopy zwrotu, odchylenie

Bardziej szczegółowo

Test spółek o niskim poziomie zadłużenia

Test spółek o niskim poziomie zadłużenia Test spółek o niskim poziomie zadłużenia W poprzedniej części naszych testów rozpoczęliśmy od przedstawienia w jaki sposób zachowują się spółki posiadające niski poziom zobowiązań. W tym artykule kontynuować

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014 Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu

Bardziej szczegółowo

TESTY NIEPARAMETRYCZNE. 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa.

TESTY NIEPARAMETRYCZNE. 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa. TESTY NIEPARAMETRYCZNE 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa. Standardowe testy równości średnich wymagają aby badane zmienne losowe

Bardziej szczegółowo

STATYSTYKA MAŁYCH OBSZARÓW II.ESTYMATOR HORVITZA-THOMPSONA, ESTYMATOR KALIBROWANY

STATYSTYKA MAŁYCH OBSZARÓW II.ESTYMATOR HORVITZA-THOMPSONA, ESTYMATOR KALIBROWANY STATYSTYKA MAŁYCH OBSZARÓW II.ESTYMATOR HORVITZA-THOMPSONA, ESTYMATOR KALIBROWANY 2.1 Estymator Horvitza-Thompsona 2.1.1 Estymator Horvitza-Thompsona wartości średniej i globalnej w populacji p-nieobciążony

Bardziej szczegółowo

18. Obliczyć. 9. Obliczyć iloczyn macierzy i. 10. Transponować macierz. 11. Transponować macierz. A następnie podać wymiar powstałej macierzy.

18. Obliczyć. 9. Obliczyć iloczyn macierzy i. 10. Transponować macierz. 11. Transponować macierz. A następnie podać wymiar powstałej macierzy. 1 Czy iloczyn macierzy, które nie są kwadratowe może być macierzą kwadratową? Podaj przykład 2 Czy każde dwie macierze jednostkowe są równe? Podaj przykład 3 Czy mnożenie macierzy przez macierz jednostkową

Bardziej szczegółowo

Porównanie metod szacowania Value at Risk

Porównanie metod szacowania Value at Risk Porównanie metod szacowania Value at Risk Metoda wariancji i kowariancji i metoda symulacji historycznej Dominika Zarychta Nr indeksu: 161385 Spis treści 1. Wstęp....3 2. Co to jest Value at Risk?...3

Bardziej szczegółowo

Test wskaźnika C/Z (P/E)

Test wskaźnika C/Z (P/E) % Test wskaźnika C/Z (P/E) W poprzednim materiale przedstawiliśmy Państwu teoretyczny zarys informacji dotyczący wskaźnika Cena/Zysk. W tym artykule zwrócimy uwagę na praktyczne zastosowania tego wskaźnika,

Bardziej szczegółowo

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p.

Kwantyle. Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p. , że. Możemy go obliczyć z dystrybuanty: P(X x p. Kwantyle Kwantyl rzędu p rozkładu prawdopodobieństwa to taka liczba x p, że P(X x p ) p P(X x p ) 1 p Możemy go obliczyć z dystrybuanty: Jeżeli F(x p ) = p, to x p jest kwantylem rzędu p Jeżeli F(x p )

Bardziej szczegółowo

EV/EBITDA. Dług netto = Zobowiązania oprocentowane (Środki pieniężne + Ekwiwalenty)

EV/EBITDA. Dług netto = Zobowiązania oprocentowane (Środki pieniężne + Ekwiwalenty) EV/EBITDA EV/EBITDA jest wskaźnikiem porównawczym stosowanym przez wielu analityków, w celu znalezienia odpowiedniej spółki pod kątem potencjalnej inwestycji długoterminowej. Jest on trudniejszy do obliczenia

Bardziej szczegółowo

Instrukcja do instalacji/aktualizacji systemu KS-FKW

Instrukcja do instalacji/aktualizacji systemu KS-FKW Instrukcja do instalacji/aktualizacji systemu KS-FKW System KS-FKW składa się z - bazy danych, schemat KS - część dla danych wspólnych dla programów KAMSOFT - bazy danych, schemat FK (lub FKxxxx w zaleŝności

Bardziej szczegółowo

Specjalistyczny Fundusz Inwestycyjny Otwarty Telekomunikacji Polskiej Bilans na dzień (tysiące złotych)

Specjalistyczny Fundusz Inwestycyjny Otwarty Telekomunikacji Polskiej Bilans na dzień (tysiące złotych) Aktywa Lokaty Inwestycje w papiery wartościowe Środki pieniężne Bilans na dzień 30.06.2003 30.06.2003 31.12.2002 30.06.2002 149 749 92 821 42 756 Lokaty pieniężne krótkoterminowe 15 5 141 2 888 Należności

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Matematyka ubezpieczeń majątkowych 3..007 r. Zadanie. Każde z ryzyk pochodzących z pewnej populacji charakteryzuje się tym że przy danej wartości λ parametru ryzyka Λ rozkład wartości szkód z tego ryzyka

Bardziej szczegółowo

1. Znajdowanie miejsca zerowego funkcji metodą bisekcji.

1. Znajdowanie miejsca zerowego funkcji metodą bisekcji. 1. Znajdowanie miejsca zerowego funkcji metodą bisekcji. Matematyczna funkcja f ma być określona w programie w oddzielnej funkcji języka C (tak, aby moŝna było łatwo ją zmieniać). Przykładowa funkcja to:

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)

Bardziej szczegółowo

WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH

WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Było: Estymacja parametrów rozkładu teoretycznego punktowa przedziałowa Przykład. Cecha X masa owocu pewnej odmiany. ZałoŜenie: cecha X ma w populacji rozkład

Bardziej szczegółowo

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów:

W kolejnym kroku należy ustalić liczbę przedziałów k. W tym celu należy wykorzystać jeden ze wzorów: Na dzisiejszym wykładzie omówimy najważniejsze charakterystyki liczbowe występujące w statystyce opisowej. Poszczególne wzory będziemy podawać w miarę potrzeby w trzech postaciach: dla szeregu szczegółowego,

Bardziej szczegółowo

1. Klasyfikacja stóp zwrotu 2. Zmienność stóp zwrotu 3. Mierniki ryzyka 4. Mierniki wrażliwości wyceny na ryzyko rynkowe

1. Klasyfikacja stóp zwrotu 2. Zmienność stóp zwrotu 3. Mierniki ryzyka 4. Mierniki wrażliwości wyceny na ryzyko rynkowe I Ryzyko i rentowność instrumentów finansowych 1. Klasyfikacja stóp zwrotu 2. Zmienność stóp zwrotu 3. Mierniki ryzyka 4. Mierniki wrażliwości wyceny na ryzyko rynkowe 1 Stopa zwrotu z inwestycji w ujęciu

Bardziej szczegółowo

Janusz Wywiał Katedra Statystyki Akademia Ekonomiczna w Katowicach

Janusz Wywiał Katedra Statystyki Akademia Ekonomiczna w Katowicach Janusz Wywiał Katedra Statystyki Akademia Ekonomiczna w Katowicac Analiza dokładności ocen wartości średnic cec małyc firm W niniejszej pracy przedstawiono na odpowiednim materiale statystycznym praktyczny

Bardziej szczegółowo

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A) Wykład 3 Niezależność zdarzeń, schemat Bernoulliego Kiedy dwa zdarzenia są niezależne? Gdy wiedza o tym, czy B zaszło, czy nie, NIE MA WPŁYWU na oszacowanie prawdopodobieństwa zdarzenia A: P (A B) = P

Bardziej szczegółowo

METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych

METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład - Parametry i wybrane rozkłady zmiennych losowych Parametry zmiennej losowej EX wartość oczekiwana D X wariancja DX odchylenie standardowe inne, np. kwantyle,

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. L Egzamin dla Aktuariuszy z 5 października 2009 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. L Egzamin dla Aktuariuszy z 5 października 2009 r. Komisja Egzaminacyjna dla Aktuariuszy L Egzamin dla Aktuariuszy z 5 października 2009 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 0 minut 1 1.

Bardziej szczegółowo

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić).

... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić). Egzamin ze Statystyki Matematycznej, WNE UW, wrzesień 016, zestaw B Odpowiedzi i szkice rozwiązań 1. Zbadano koszt 7 noclegów dla 4-osobowej rodziny (kwatery) nad morzem w sezonie letnim 014 i 015. Wylosowano

Bardziej szczegółowo

Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/

Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/ Matematyka z el. statystyki, # 6 /Geodezja i kartografia II/ Uniwersytet Przyrodniczy w Lublinie Katedra Zastosowań Matematyki i Informatyki ul. Głęboka 28, bud. CIW, p. 221 e-mail: zdzislaw.otachel@up.lublin.pl

Bardziej szczegółowo

z przedziału 0,1 liczb dodatnich. Rozważmy dwie zmienne losowe:... ma złożony rozkład dwumianowy o parametrach 1,q i, gdzie X, wszystkie składniki X

z przedziału 0,1 liczb dodatnich. Rozważmy dwie zmienne losowe:... ma złożony rozkład dwumianowy o parametrach 1,q i, gdzie X, wszystkie składniki X Zadanie. Mamy dany ciąg liczb q, q,..., q n z przedziału 0,, oraz ciąg m, m,..., m n liczb dodatnich. Rozważmy dwie zmienne losowe: o X X X... X n, gdzie X i ma złożony rozkład dwumianowy o parametrach,q

Bardziej szczegółowo

ANALIZA HIERARCHICZNA PROBLEMU W SZACOWANIU RYZYKA PROJEKTU INFORMATYCZNEGO METODĄ PUNKTOWĄ. Joanna Bryndza

ANALIZA HIERARCHICZNA PROBLEMU W SZACOWANIU RYZYKA PROJEKTU INFORMATYCZNEGO METODĄ PUNKTOWĄ. Joanna Bryndza ANALIZA HIERARCHICZNA PROBLEMU W SZACOWANIU RYZYKA PROJEKTU INFORMATYCZNEGO METODĄ PUNKTOWĄ Joanna Bryndza Wprowadzenie Jednym z kluczowych problemów w szacowaniu poziomu ryzyka przedsięwzięcia informatycznego

Bardziej szczegółowo

dr hab. Renata Karkowska 1

dr hab. Renata Karkowska 1 dr hab. Renata Karkowska 1 Czym jest ryzyko? Rodzaje ryzyka? Co oznacza zarządzanie? Dlaczego zarządzamy ryzykiem? 2 Przedmiot ryzyka Otoczenie bliższe/dalsze (czynniki ryzyka egzogeniczne vs endogeniczne)

Bardziej szczegółowo

Polsko-Niemiecka Współpraca MłodzieŜy Podręcznik uŝytkownika Oprogramowania do opracowywania wniosków PNWM

Polsko-Niemiecka Współpraca MłodzieŜy Podręcznik uŝytkownika Oprogramowania do opracowywania wniosków PNWM Strona 1 / 10 1.1 Wniosek zbiorczy Moduł Wniosek zbiorczy pomoŝe Państwu zestawić pojedyncze wnioski, by je złoŝyć w PNWM celem otrzymania wstępnej decyzji finansowej wzgl. później do rozliczenia. Proszę

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD STATYSTYK Z PRÓBY

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD STATYSTYK Z PRÓBY WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD STATYSTYK Z PRÓBY Próba losowa prosta To taki dobór elementów z populacji, że każdy element miał takie samo prawdopodobieństwo znalezienia się w próbie Niezależne

Bardziej szczegółowo

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów

Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa. Diagnostyka i niezawodność robotów Instytut Politechniczny Państwowa Wyższa Szkoła Zawodowa Diagnostyka i niezawodność robotów Laboratorium nr 3 Generacja realizacji zmiennych losowych Prowadzący: mgr inż. Marcel Luzar Cele ćwiczenia: Generowanie

Bardziej szczegółowo

Analiza Statystyczna

Analiza Statystyczna Lekcja 5. Strona 1 z 12 Analiza Statystyczna Do analizy statystycznej wykorzystać można wbudowany w MS Excel pakiet Analysis Toolpak. Jest on instalowany w programie Excel jako pakiet dodatkowy. Oznacza

Bardziej szczegółowo

Regresja logistyczna (LOGISTIC)

Regresja logistyczna (LOGISTIC) Zmienna zależna: Wybór opcji zachodniej w polityce zagranicznej (kodowana jako tak, 0 nie) Zmienne niezależne: wiedza o Unii Europejskiej (WIEDZA), zamieszkiwanie w regionie zachodnim (ZACH) lub wschodnim

Bardziej szczegółowo

Definicja pochodnej cząstkowej

Definicja pochodnej cząstkowej 1 z 8 gdzie punkt wewnętrzny Definicja pochodnej cząstkowej JeŜeli iloraz ma granicę dla to granicę tę nazywamy pochodną cząstkową funkcji względem w punkcie. Oznaczenia: Pochodną cząstkową funkcji względem

Bardziej szczegółowo

Systemy rozgrywek sportowych OGÓLNE ZASADY ORGANIZOWANIA ROZGRYWEK SPORTOWYCH

Systemy rozgrywek sportowych OGÓLNE ZASADY ORGANIZOWANIA ROZGRYWEK SPORTOWYCH Systemy rozgrywek sportowych OGÓLNE ZASADY ORGANIZOWANIA ROZGRYWEK SPORTOWYCH Rozgrywki sportowe moŝna organizować na kilka róŝnych sposobów, w zaleŝności od liczby zgłoszonych druŝyn, czasu, liczby boisk

Bardziej szczegółowo

PROJEKT CZĘŚCIOWO FINANSOWANY PRZEZ UNIĘ EUROPEJSKĄ. Opis działania raportów w ClearQuest

PROJEKT CZĘŚCIOWO FINANSOWANY PRZEZ UNIĘ EUROPEJSKĄ. Opis działania raportów w ClearQuest PROJEKT CZĘŚCIOWO FINANSOWANY PRZEZ UNIĘ EUROPEJSKĄ Opis działania raportów w ClearQuest Historia zmian Data Wersja Opis Autor 2008.08.26 1.0 Utworzenie dokumentu. Wersja bazowa dokumentu. 2009.12.11 1.1

Bardziej szczegółowo

Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne

Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne Wykład 4 Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym 2. Rozkłady próbkowe 3. Centralne twierdzenie graniczne Przybliżenie rozkładu dwumianowego rozkładem normalnym Niech Y ma rozkład

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Pobieranie prób i rozkład z próby

Pobieranie prób i rozkład z próby Pobieranie prób i rozkład z próby Marcin Zajenkowski Marcin Zajenkowski () Pobieranie prób i rozkład z próby 1 / 15 Populacja i próba Populacja dowolnie określony zespół przedmiotów, obserwacji, osób itp.

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie

Bardziej szczegółowo

SPRAWDZIAN NR 2 ROBERT KOPERCZAK, ID studenta : k4342

SPRAWDZIAN NR 2 ROBERT KOPERCZAK, ID studenta : k4342 TECHNIKI ANALITYCZNE W BIZNESIE SPRAWDZIAN NR 2 Autor pracy ROBERT KOPERCZAK, ID studenta : k4342 Kraków, 22 Grudnia 2009 2 Spis treści 1 Zadanie 1... 3 1.1 Uszkodzi się tylko pierwsza maszyna.... 3 1.2

Bardziej szczegółowo

ZAJĘCIA 25. Wartość bezwzględna. Interpretacja geometryczna wartości bezwzględnej.

ZAJĘCIA 25. Wartość bezwzględna. Interpretacja geometryczna wartości bezwzględnej. ZAJĘCIA 25. Wartość bezwzględna. Interpretacja geometryczna wartości bezwzględnej. 1. Wartość bezwzględną liczby jest określona wzorem: x, dla _ x 0 x =, x, dla _ x < 0 Wartość bezwzględna liczby nazywana

Bardziej szczegółowo

Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( )

Statystyka. Rozkład prawdopodobieństwa Testowanie hipotez. Wykład III ( ) Statystyka Rozkład prawdopodobieństwa Testowanie hipotez Wykład III (04.01.2016) Rozkład t-studenta Rozkład T jest rozkładem pomocniczym we wnioskowaniu statystycznym; stosuje się go wyznaczenia przedziału

Bardziej szczegółowo

Niepewność metody FMEA. Wprowadzenie 2005-12-28

Niepewność metody FMEA. Wprowadzenie 2005-12-28 5-1-8 Niepewność metody FMEA Wprowadzenie Doskonalenie produkcji metodą kolejnych kroków odbywa się na drodze analizowania przyczyn niedociągnięć, znajdowania miejsc powstawania wad, oceny ich skutków,

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

Wybrane rozkłady zmiennych losowych. Statystyka

Wybrane rozkłady zmiennych losowych. Statystyka Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa

STATYSTYKA MATEMATYCZNA. rachunek prawdopodobieństwa STATYSTYKA MATEMATYCZNA rachunek prawdopodobieństwa treść Zdarzenia losowe pojęcie prawdopodobieństwa prawo wielkich liczb zmienne losowe rozkłady teoretyczne zmiennych losowych Zanim zajmiemy się wnioskowaniem

Bardziej szczegółowo

Postawy wobec ryzyka

Postawy wobec ryzyka Postawy wobec ryzyka Wskaźnik Sharpe a przykład zintegrowanej miary rentowności i ryzyka Konstrukcja wskaźnika odwołuje się do klasycznej teorii portfelowej Markowitza, której elementem jest mapa ryzyko

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka. Wykład 9

Stanisław Cichocki. Natalia Nehrebecka. Wykład 9 Stanisław Cichocki Natalia Nehrebecka Wykład 9 1 1. Dodatkowe założenie KMRL 2. Testowanie hipotez prostych Rozkład estymatora b Testowanie hipotez prostych przy użyciu statystyki t 3. Przedziały ufności

Bardziej szczegółowo

Zadanie 1. Analiza Analiza rozkładu

Zadanie 1. Analiza Analiza rozkładu Zadanie 1 data lab.zad 1; input czas; datalines; 85 3060 631 819 805 835 955 595 690 73 815 914 ; run; Analiza Analiza rozkładu Ponieważ jesteśmy zainteresowani wyznaczeniem przedziału ufności oraz weryfikacja

Bardziej szczegółowo

Kontrakty terminowe. This presentation or any of its parts cannot be used without prior written permission of Dom Inwestycyjny BRE Banku S..A.

Kontrakty terminowe. This presentation or any of its parts cannot be used without prior written permission of Dom Inwestycyjny BRE Banku S..A. Kontrakty terminowe Slide 1 Podstawowe zagadnienia podstawowe informacje o kontraktach zasady notowania, depozyty zabezpieczające, przykłady wykorzystania kontraktów, ryzyko związane z inwestycjami w kontrakty,

Bardziej szczegółowo

Egzamin ze Statystyki, Studia Licencjackie Stacjonarne czerwiec 2007 Temat A

Egzamin ze Statystyki, Studia Licencjackie Stacjonarne czerwiec 2007 Temat A (imię, nazwisko, nr albumu).. Przy rozwiązywaniu zadań, jeśli to konieczne, naleŝy przyjąć poziom istotności 0,01 i współczynnik ufności 0,95. Zadanie 1 W 005 roku przeprowadzono badanie ankietowe, którego

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k =

Zadanie 1. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k = Matematyka ubezpieczeń majątkowych 0.0.006 r. Zadanie. Liczba szkód N w ciągu roku z pewnego ryzyka ma rozkład geometryczny: k 5 Pr( N = k) =, k = 0,,,... 6 6 Wartości kolejnych szkód Y, Y,, są i.i.d.,

Bardziej szczegółowo

Zyskowność i statystyczna istotność reguł analizy technicznej

Zyskowność i statystyczna istotność reguł analizy technicznej Katarzyna Sagan nr albumu: 240006 Robert Chyliński nr albumu: 239779 Zyskowność i statystyczna istotność reguł analizy technicznej White's Reality Check Praca zaliczeniowa wykonana w ramach przedmiotu:

Bardziej szczegółowo

Wprowadzenie do analizy dyskryminacyjnej

Wprowadzenie do analizy dyskryminacyjnej Wprowadzenie do analizy dyskryminacyjnej Analiza dyskryminacyjna to zespół metod statystycznych używanych w celu znalezienia funkcji dyskryminacyjnej, która możliwie najlepiej charakteryzuje bądź rozdziela

Bardziej szczegółowo