3. Optymalizacja portfela inwestycyjnego Model Markowitza Model jednowskaźnikowy Sharpe a Model wyceny aktywów kapitałowych CAPM

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "3. Optymalizacja portfela inwestycyjnego Model Markowitza Model jednowskaźnikowy Sharpe a Model wyceny aktywów kapitałowych CAPM"

Transkrypt

1 3. Optymalizacja portfela inwestycyjnego Model Markowitza Model jednowskaźnikowy Sharpe a Model wyceny aktywów kapitałowych CAPM

2 Oczekiwana stopa zwrotu portfela dwóch akcji: E(r p ) = w 1 E(R 1 ) + w 2 E(R 2 ) gdzie: E(R 1 ), E(R 2 ) oczekiwane stopy zwrotu z akcji pierwszej i drugiej spółki, E(R p ) oczekiwana stopa zwrotu z portfela, w 1, w 2 udziały akcji pierwszej i drugiej spółki w portfelu, w 1 + w 2 = 1. Wariancja portfela akcji dwóch spółek: V p = w 1 2 σ w 2 2 σ w 1 w 2 σ 1 σ 2 ρ 12 gdzie: σ 1, σ 2 odchylenia standardowe akcji pierwszej i drugiej spółki, ρ 12 współczynnik korelacji dwóch akcji 0,5 σ p = V p

3 Zadanie 1. Oczekiwana stopa zwrotu i wariancja portfela Policz oczekiwaną stopę zwrotu i odchylenie standardowe portfela o następującym składzie. Współczynnik korelacji wynosi 0,2. Aktywo E(R) Sigma Udział A 0,15 0,1 0,4 B 0,3 0,18 0,6 E(r p ) = w 1 E(R 1 ) + w 2 E(R 2 ) V p = w 1 2 σ w 2 2 σ w 1 w 2 σ 1 σ 2 ρ 12

4 Zadanie 2. Oczekiwana stopa zwrotu i wariancja portfela Policz oczekiwaną stopę zwrotu i odchylenie standardowe portfela składającego się z aktywa X i Y, dysponując następującymi danymi. Współczynnik korelacji wynosi 0,5. Aktywo X Aktywo Y E(r) 4% 6% Sigma 11% 13% Cena aktywa 8 zł 10 zł Ilość aktywa

5 Zadanie 3. Oczekiwana stopa zwrotu i wariancja portfela z portfela z aktywem wolnym od ryzyka Policz oczekiwaną stopę zwrotu i odchylenie standardowe portfela składającego się z akcji A i aktywa wolnego od ryzyka. Aktywo A ma oczekiwaną stopę zwrotu 10% i odchylenie standardowe 5%. Stopa wolna od ryzyka jest równa 4%. Załóżmy, że udział aktywa wolnego od ryzyka w portfelu wynosi: a. 30% b. 60% c. 100%

6 Model jednowskaźnikowy Sharpe a E(R i ) = α + β R M + ε gdzie: E(R i ) stopa zwrotu akcji spółki i R M - stopa zwrotu portfela rynkowego α wyraz wolny, β współczynnik beta, ε składnik losowy σ i 2 = β i 2 σ M 2 + σe i 2 σ i 2 wariancja stopy zwrotu akcji spółki i σ M 2 wariancja stopy zwrotu portfela rynkowego (ryzyko systematyczne) σe i 2 - tzw. wariancja składnika losowego (ryzyko specyficzne) 6

7 Zadanie 4. Jednowskaźnikowy model Sharpe a Oszacuj oczekiwaną stopę zwrotu oraz ryzyko dla akcji wiedząc, że stopy zwrotu z poszczególnych aktywów są opisane następującym modelem jednowskaźnikowym. Załóżmy, że E(Rm) ~ N(0,02; 0,5) E(R1) = 0,01 +0,8*E(Rm) + ε, ε1~ N(0; 0,3) E(R2) = 0,04 +0,5*E(Rm) + ε, ε2~ N(0; 0,2) E(R3) = -0,03-0,3*E(Rm) + ε, ε3~ N(0; 0,4) E(R i ) = α + β R M + ε σ i 2 = β i 2 σ M 2 + σe i 2

8 Zadanie 5. Jednowskaźnikowy model Sharpe a Na podstawie poniższych danych nt. akcji A i indeksu rynkowego XX: i/ oszacuj parametr beta i alfa dla akcji A, ii/ odpowiedz jaką część ryzyka całkowitego stanowi ryzyko specyficzne? E(R) akcji A wynosi 10% E(R) indeksu rynkowego wynosi 7% Odchylenie standardowe dla akcji A wynosi 15% Odchylenie standardowe dla indeksu XX wynosi 11% Współczynnik korelacji akcji z indeksem rynkowym wynosi 0,8. cov( A, B) 1. Obliczamy kowariancję: cov(a,b) = 0,8*0,15*0,11= 2. Obliczamy parametr beta: A, B A B 3. Obliczamy parametr alfa: E(R i ) = α + β R M α = E(R i ) β R M 4. Szacujemy ryzyko specyficzne:

9 5 cd. Jednowskaźnikowy model Sharpe a Na podstawie poniższych danych nt. akcji A i indeksu rynkowego XX: i/ oszacuj parametr beta i alfa dla akcji A, ii/ odpowiedz jaką część ryzyka całkowitego stanowi ryzyko specyficzne? E(R) akcji A wynosi 10% E(R) indeksu rynkowego wynosi 7% Odchylenie standardowe dla akcji A wynosi 15% Odchylenie standardowe dla indeksu XX wynosi 11% Współczynnik korelacji akcji z indeksem rynkowym wynosi 0,8. Ii/ Szacujemy ryzyko specyficzne: σe i 2 = σ i 2 - β i 2 σ M 2 => Zatem ryzyko specyficzne w całości ryzyka stanowi: σe i 2 /σ i 2 = σ i 2 = β i 2 σ M 2 + σe i 2 σ i 2 wariancja stopy zwrotu akcji spółki i (ryzyko całkowite) σ M 2 wariancja stopy zwrotu portfela rynkowego (ryzyko systematyczne) σe i 2 - tzw. wariancja składnika losowego (ryzyko specyficzne)

10 6. Model wyceny aktywów kapitałowych CAPM Stopa zwrotu wolna od ryzyka wynosi 2%, a stopa zwrotu rynkowa 6%, współczynnik beta akcji X wynosi 1,1. A. Ile wynosi oczekiwana stopa zwrotu akcji X? B. B. Jak zmieni się oczekiwana stopa zwrotu jeśli stopa rynkowa wzrośnie do poziomu 8%? C. Jak zmieni się oczekiwana stopa zwrotu jeśli beta spadnie do poziomu 0,7? D. Ile wynosi premia za ryzyko rynkowe? E R = R f + E R M R f β A. E(R) = B. E(R) = C. E(R) = D. Premia = 10

11 7. Model wyceny aktywów kapitałowych CAPM Wiedząc, że E(Rf)=6%, E(Rm)=10%, oszacuj które ze wskazanych akcji są przewartościowane lub niedowartościowane: Spółki E(R) Współczynnik Beta Omega1 0,12 1,2 Omega2 0,14 0,8 Omega3 0,17 1,5 Należy sprawdzić warunek równowagi rynkowej w CAPM: α = E(R i ) R f + β i E(R M ) R f E R = R f + E R M R f β = 0,06 +(0,1-0,06)* β = 0,06+0,04* β Omega1: E(R1) = 0,06+0,04*1,2 =0,108 - akcje są niedowartościowane α >0 Omega2: E(R2) = Omega3: E(R3) = 11

dr hab. Renata Karkowska 1

dr hab. Renata Karkowska 1 dr hab. Renata Karkowska 1 Miary zmienności: obrazują zmiany cen, stóp zwrotu instrumentów finansowych, opierają się na rozproszeniu ich rozkładu, tym samym uśredniają ryzyko: wariancja stopy zwrotu, odchylenie

Bardziej szczegółowo

Zarządzanie portfelem inwestycyjnym

Zarządzanie portfelem inwestycyjnym Zarządzanie portfelem inwestycyjnym Dr hab. Renata Karkowska Wykład 3, 4 Renata Karkowska, Wydział Zarządzania 1 Wykład 3 - cel 3. Konstrukcja i zarządzanie portfelem inwestycyjnym 1. Cele i ograniczenia

Bardziej szczegółowo

Zadanie 1. Zadanie 2. Zadanie 3

Zadanie 1. Zadanie 2. Zadanie 3 Zadanie 1 Inwestor rozważa nabycie obligacji wieczystej (konsoli), od której będzie otrzymywał na koniec każdego półrocza kupon w wysokości 80 zł. Wymagana przez inwestora stopa zwrotu w terminie do wykupu

Bardziej szczegółowo

ANALIZA I ZARZADZANIE PORTFELEM. Specjalista ds. Analiz Giełdowych Łukasz Porębski

ANALIZA I ZARZADZANIE PORTFELEM. Specjalista ds. Analiz Giełdowych Łukasz Porębski ANALIZA I ZARZADZANIE PORTFELEM Specjalista ds. Analiz Giełdowych Łukasz Porębski PLAN PREZENTACJI 1) Efektywnośd rynków finansowych 2) Teoria portfela Markowitza (Nobel w 1990 r.) 3) Dywersyfikacja 4)

Bardziej szczegółowo

1. Klasyfikacja stóp zwrotu 2. Zmienność stóp zwrotu 3. Mierniki ryzyka 4. Mierniki wrażliwości wyceny na ryzyko rynkowe

1. Klasyfikacja stóp zwrotu 2. Zmienność stóp zwrotu 3. Mierniki ryzyka 4. Mierniki wrażliwości wyceny na ryzyko rynkowe I Ryzyko i rentowność instrumentów finansowych 1. Klasyfikacja stóp zwrotu 2. Zmienność stóp zwrotu 3. Mierniki ryzyka 4. Mierniki wrażliwości wyceny na ryzyko rynkowe 1 Stopa zwrotu z inwestycji w ujęciu

Bardziej szczegółowo

Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko.

Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko. Inwestycje finansowe Wycena obligacji. Stopa zwrotu z akcji. yzyko. Inwestycje finansowe Instrumenty rynku pieniężnego (np. bony skarbowe). Instrumenty rynku walutowego. Obligacje. Akcje. Instrumenty pochodne.

Bardziej szczegółowo

INWESTYCJE Instrumenty finansowe, ryzyko SPIS TREŚCI

INWESTYCJE Instrumenty finansowe, ryzyko SPIS TREŚCI INWESTYCJE Instrumenty finansowe, ryzyko Jajuga Krzysztof, Jajuga Teresa SPIS TREŚCI Przedmowa Wprowadzenie - badania w zakresie inwestycji i finansów Literatura Rozdział 1. Rynki i instrumenty finansowe

Bardziej szczegółowo

Portfel inwestycyjny. Aktywa. Bilans WPROWADZENIE. Tomasz Chmielewski 1. Kapitał. Zobowiązania. Portfel inwestycyjny 2. Portfel inwestycyjny 3

Portfel inwestycyjny. Aktywa. Bilans WPROWADZENIE. Tomasz Chmielewski 1. Kapitał. Zobowiązania. Portfel inwestycyjny 2. Portfel inwestycyjny 3 Portfel inwestycyjny Portfel inwestycyjny 1 WPROWDZENIE Portfel inwestycyjny Bilans Kapitał ktywa Zobowiązania Portfel inwestycyjny 3 Tomasz Chmielewski 1 Portfel inwestycyjny 4 Podstawowe funkcje rynków

Bardziej szczegółowo

1/ W oparciu o znajomość MSSF, które zostały zatwierdzone przez UE (dalej: MSR/MSSF): (Punktacja dot. pkt 1, razem: od 0 do 20 pkt)

1/ W oparciu o znajomość MSSF, które zostały zatwierdzone przez UE (dalej: MSR/MSSF): (Punktacja dot. pkt 1, razem: od 0 do 20 pkt) II Etap Maj 2013 Zadanie 1 II Etap Maj 2013 1/ W oparciu o znajomość MSSF, które zostały zatwierdzone przez UE (dalej: MSR/MSSF): (Punktacja dot. pkt 1, razem: od 0 do 20 pkt) 1.1/podaj definicję składnika

Bardziej szczegółowo

II ETAP EGZAMINU EGZAMIN PISEMNY

II ETAP EGZAMINU EGZAMIN PISEMNY II ETAP EGZAMINU NA DORADCĘ INWESTYCYJNEGO EGZAMIN PISEMNY 20 maja 2012 r. Warszawa Treść i koncepcja pytań zawartych w teście są przedmiotem praw autorskich i nie mogą być publikowane lub w inny sposób

Bardziej szczegółowo

Modele wyceny ryzykownych aktywów CAPM

Modele wyceny ryzykownych aktywów CAPM Modele wyceny ryzykownych aktywów CAPM opracował: Grzegorz Szafrański (UŁ) 1 Literatura: Przygotowano na podstawie: K. Cuthbertson, D. Nitzsche, Quantitative Financial Economics, J. Wiley & Sons, 004.

Bardziej szczegółowo

II Etap egzaminu na Doradcę Inwestycyjnego Maj 2014. Zadanie 2

II Etap egzaminu na Doradcę Inwestycyjnego Maj 2014. Zadanie 2 II Etap egzaminu na Doradcę Inwestycyjnego Maj 2014 Zadanie 2 1/ Analizowane są dwie spółki Alfa i Gamma. Spółka Alfa finansuje swoją działalność nie korzystając z długu, natomiast spółka Gamma finansuje

Bardziej szczegółowo

Symulacja wyników finansowych i wartości spółki za pomocą modelu zysku rezydualnego. Karol Marek Klimczak

Symulacja wyników finansowych i wartości spółki za pomocą modelu zysku rezydualnego. Karol Marek Klimczak Symulacja wyników finansowych i wartości spółki za pomocą modelu zysku rezydualnego Karol Marek Klimczak kmklim@kozminski.edu.pl Finanse przedsiębiorstw 2 3 Ekonomia Y = A K α L β Funkcja produkcji Cobba-Douglasa

Bardziej szczegółowo

Model wyceny aktywów kapitałowych

Model wyceny aktywów kapitałowych Model wyceny aktywów kapitałowych Ćwiczenia ZPI 1 Model wyceny aktywów kapitałowych Najczęściej stosowana metoda zakłada wykorzystanie danych historycznych do wskazania korelacji między stopa zwrotu z

Bardziej szczegółowo

Powtórzenie. Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Powtórzenie. Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Powtórzenie Ćwiczenia ZPI 1 Zadanie 1. Średnia wartość stopy zwrotu dla wszystkich spółek finansowych wynosi 12%, a odchylenie standardowe 5,1%. Rozkład tego zjawiska zbliżony jest do rozkładu normalnego.

Bardziej szczegółowo

Wycena przedsiębiorstw w MS Excel

Wycena przedsiębiorstw w MS Excel Wycena przedsiębiorstw w MS Excel Piotr Kawala Co właściwie wyceniamy? Wyceniając firmę szacujemy zazwyczaj rynkową wartość kapitału własnego (wartość netto), W przypadku wyceny spółki akcyjnej szacujemy

Bardziej szczegółowo

Rozwiązania zadań (próbka) Doradca Inwestycyjny 2 etap

Rozwiązania zadań (próbka) Doradca Inwestycyjny 2 etap MAKLERS.PL Rozwiązania zadań (próbka) Doradca Inwestycyjny 2 etap z dnia 12 stycznia 2014 Mariusz Śliwiński, CIIA, DI, MPW, MGT Adam Szymko, CIIA, DI Niniejsze opracowanie zawiera rozwiązania zadań pozaprawnych

Bardziej szczegółowo

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Ćwiczenia ZPI 1 Model wyceny aktywów kapitałowych Najczęściej stosowana metoda zakłada wykorzystanie danych historycznych do wskazania korelacji między stopa zwrotu z danej inwestycji a portfelem rynkowym.

Bardziej szczegółowo

Analiza inwestycji i zarządzanie portfelem SPIS TREŚCI

Analiza inwestycji i zarządzanie portfelem SPIS TREŚCI Analiza inwestycji i zarządzanie portfelem Frank K. Reilly, Keith C. Brown SPIS TREŚCI TOM I Przedmowa do wydania polskiego Przedmowa do wydania amerykańskiego O autorach Ramy książki CZĘŚĆ I. INWESTYCJE

Bardziej szczegółowo

Model wyceny aktywów kapitałowych

Model wyceny aktywów kapitałowych Model wyceny aktywów kapitałowych Ćwiczenia ZPI 1 Model wyceny aktywów kapitałowych Najczęściej stosowana metoda zakłada wykorzystanie danych historycznych do wskazania korelacji między stopa zwrotu z

Bardziej szczegółowo

Modelowanie Rynków Finansowych

Modelowanie Rynków Finansowych Modelowanie Rynków Finansowych Zajęcia 2 Katarzyna Lada Paweł Sakowski Paweł Strawiński 23 lutego, 2009 Ryzyko inwestycyjne CAPM Ryzyko systematyczne vs. specyficzne Założenia modelu Model Specyfikacja

Bardziej szczegółowo

Rynek akcji. Jeden z filarów rynku kapitałowego (ok 24% wartości i ok 90% PKB globalnie) Źródło: (dn.

Rynek akcji. Jeden z filarów rynku kapitałowego (ok 24% wartości i ok 90% PKB globalnie) Źródło:  (dn. Wykład 3 Rynek akcji nisza inwestorów indywidualnych Rynek akcji Jeden z filarów rynku kapitałowego (ok 24% wartości i ok 90% PK globalnie) Źródło: http://www.marketwatch.com (dn. 2015-02-12) SGH RYNKI

Bardziej szczegółowo

Wykład 1 Sprawy organizacyjne

Wykład 1 Sprawy organizacyjne Wykład 1 Sprawy organizacyjne 1 Zasady zaliczenia Prezentacja/projekt w grupach 5 osobowych. Każda osoba przygotowuje: samodzielnie analizę w excel, prezentację teoretyczną w grupie. Obecność na zajęciach

Bardziej szczegółowo

1/ W oparciu o znajomość MSSF, które zostały zatwierdzone przez UE (dalej: MSR/MSSF): (Punktacja dot. pkt 1, razem: od 0 do 20 pkt)

1/ W oparciu o znajomość MSSF, które zostały zatwierdzone przez UE (dalej: MSR/MSSF): (Punktacja dot. pkt 1, razem: od 0 do 20 pkt) Egzamin na Doradcę Inwestycyjnego II etap 11.2015 Zadanie 1 1/ W oparciu o znajomość MSSF, które zostały zatwierdzone przez UE (dalej: MSR/MSSF): (Punktacja dot. pkt 1, razem: od 0 do 20 pkt) 1.1/ podaj

Bardziej szczegółowo

EMPIRYCZNA WERYFIKACJA MODELU SHARPE A ORAZ TREYNORA NA GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE W LATACH

EMPIRYCZNA WERYFIKACJA MODELU SHARPE A ORAZ TREYNORA NA GIEŁDZIE PAPIERÓW WARTOŚCIOWYCH W WARSZAWIE W LATACH Zeszyty Naukowe WSInf Vol 5, Nr 1, 2006 Izabela Pruchnicka-Grabias Wydział Ekonomiczny Wyższa Szkoła Ekonomiczna w Warszawie ul. Tarczyńska 19/21, 00-159 Warszawa EMPIRYCZNA WERYFIKACJA MODELU SHARPE A

Bardziej szczegółowo

dr hab. Renata Karkowska 1

dr hab. Renata Karkowska 1 dr hab. Renata Karkowska 1 Czym jest ryzyko? Rodzaje ryzyka? Co oznacza zarządzanie? Dlaczego zarządzamy ryzykiem? 2 Przedmiot ryzyka Otoczenie bliższe/dalsze (czynniki ryzyka egzogeniczne vs endogeniczne)

Bardziej szczegółowo

Ryzyko i efektywność. Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Ryzyko i efektywność. Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Ryzyko i efektywność Ćwiczenia ZPI 1 Stopa zwrotu 2 Zadanie 1. Rozkład normalny Prawdopodobieństwa wystąpienia oraz spodziewane stopy zwrotu w przypadku danej spółki giełdowej są zaprezentowane w tabeli.

Bardziej szczegółowo

ZASTOSOWANIE TEORII PORTFELA I MODELU WYCENY AKTYWÓW KAPITAŁOWYCH DO OCENY RYZYKA W GOSPODARSTWACH ROLNYCH

ZASTOSOWANIE TEORII PORTFELA I MODELU WYCENY AKTYWÓW KAPITAŁOWYCH DO OCENY RYZYKA W GOSPODARSTWACH ROLNYCH PIOTR SULEWSKI Szkoła Główna Gospodarstwa Wiejskiego Warszawa ZASTOSOWANIE TEORII PORTFELA I MODELU WYCENY AKTYWÓW KAPITAŁOWYCH DO OCENY RYZYKA W GOSPODARSTWACH ROLNYCH Wstęp Ze względu na biologiczny

Bardziej szczegółowo

Matematyka finansowa, rozkład normalny, Model wyceny aktywów kapitałowych, Forward, Futures

Matematyka finansowa, rozkład normalny, Model wyceny aktywów kapitałowych, Forward, Futures Matematyka finansowa, rozkład normalny, Model wyceny aktywów kapitałowych, Forward, Futures 1 Inwestor ma trzyletnią obligację o wartości nominalnej 2000 zł, oprocentowaną 8% rocznie, przy czym odsetki

Bardziej szczegółowo

Ekonomiczno-techniczne aspekty wykorzystania gazu w energetyce

Ekonomiczno-techniczne aspekty wykorzystania gazu w energetyce Ekonomiczno-techniczne aspekty wykorzystania gazu w energetyce Janusz Kotowicz W8 Wydział Inżynierii i Ochrony Środowiska Politechnika Częstochowska Wpływ stopy dyskonta na przepływ gotówki. Janusz Kotowicz

Bardziej szczegółowo

Zarządzanie ryzykiem. Opracował: Dr inŝ. Tomasz Zieliński

Zarządzanie ryzykiem. Opracował: Dr inŝ. Tomasz Zieliński Zarządzanie ryzykiem Opracował: Dr inŝ. Tomasz Zieliński I. OGÓLNE INFORMACJE O PRZEDMIOCIE Cel przedmiotu: Celem przedmiotu jest zaprezentowanie studentom podstawowych pojęć z zakresu ryzyka w działalności

Bardziej szczegółowo

OPIS PRZEDMIOTU ZAMÓWIENIA. Usługa przygotowania i przeprowadzenia certyfikowanego kursu na Maklera Papierów Wartościowych

OPIS PRZEDMIOTU ZAMÓWIENIA. Usługa przygotowania i przeprowadzenia certyfikowanego kursu na Maklera Papierów Wartościowych załącznik nr 4 do postępowania nr K-DZP.362.1.015.2017 OPIS PRZEDMIOTU ZAMÓWIENIA Usługa przygotowania i przeprowadzenia certyfikowanego kursu na Maklera Papierów Wartościowych 1. Przedmiotem zamówienia

Bardziej szczegółowo

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. XLV Egzamin dla Aktuariuszy z 17 marca 2008 r. Część I. Matematyka finansowa

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. XLV Egzamin dla Aktuariuszy z 17 marca 2008 r. Część I. Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XLV Egzamin dla Aktuariuszy z 17 marca 2008 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. RozwaŜmy

Bardziej szczegółowo

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym

Ćwiczenia ZPI. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym Ćwiczenia ZPI 1 Współczynniki greckie Odpowiadają na pytanie o ile zmieni się wartość opcji w wyniku: Współczynnik Delta (Δ) - zmiany wartości instrumentu bazowego Współczynnik Theta (Θ) - upływu czasu

Bardziej szczegółowo

Zarządzanie ryzykiem. Dorota Kuchta

Zarządzanie ryzykiem. Dorota Kuchta Zarządzanie ryzykiem Dorota Kuchta 1 Literatura Krzysztof Jajuga (red.), Zarządzanie ryzykiem, PWN, 2007 Joanna Sokołowska, Psychologia decyzji ryzykownych, Academica, 2005 Iwona Staniec, Janusz Zawiła

Bardziej szczegółowo

Zarządzanie wartością przedsiębiorstwa

Zarządzanie wartością przedsiębiorstwa Zarządzanie wartością przedsiębiorstwa 3.3 Metody dochodowe Do wyceny przedsiębiorstwa stosuje się, obok metod majątkowych - metody dochodowe, często określane mianem metod zdyskontowanego dochodu ekonomicznego.

Bardziej szczegółowo

Optymalne portfele inwestycyjne

Optymalne portfele inwestycyjne Dariusz Zawisza Instytut Matematyki UJ 10 maj 2012 Problem Rozwiązanie problemu Aktywa wolne od ryzyka Estymacja parametrów Pomiar ryzyka Oznaczenia (Ω, F, P) - przestrzeń probablistyczna, r i := S1 i

Bardziej szczegółowo

Budżetowanie kapitałowe Cz.II

Budżetowanie kapitałowe Cz.II Budżetowanie kapitałowe Cz.II Czynnik: dyskontujący Metoda liczenia kapitalizujący (4.1.1) kapitału gdzie: WACC średni ważony koszt kapitału, z liczba źródeł kapitału, w i udział i tego źródła w całości

Bardziej szczegółowo

Excel i VBA w analizach i modelowaniu finansowym Pomiar ryzyka. Pomiar ryzyka

Excel i VBA w analizach i modelowaniu finansowym Pomiar ryzyka. Pomiar ryzyka Pomiar ryzyka Miary obiektywne stosowane w kwantyfikacji ryzyka rynkowego towarzyszącego zaangażowaniu środków w inwestycjach finansowych obejmują: Miary zmienności, Miary zagrożenia, Miary wrażliwości.

Bardziej szczegółowo

II ETAP EGZAMINU EGZAMIN PISEMNY

II ETAP EGZAMINU EGZAMIN PISEMNY II ETAP EGZAMINU NA DORADCĘ INWESTYCYJNEGO EGZAMIN PISEMNY 7 grudnia 2014 r. Warszawa Treść i koncepcja pytań zawartych w teście są przedmiotem praw autorskich i nie mogą być publikowane lub w inny sposób

Bardziej szczegółowo

Metoda DCF. Dla lepszego zobrazowania procesu przeprowadzania wyceny DCF, przedstawiona zostanie przykładowa wycena spółki.

Metoda DCF. Dla lepszego zobrazowania procesu przeprowadzania wyceny DCF, przedstawiona zostanie przykładowa wycena spółki. Metoda DCF Metoda DCF (ang. discounted cash flow), czyli zdyskontowanych przepływów pieniężnych to jedna z najpopularniejszych metod wyceny przedsiębiorstw stosowanych przez analityków. Celem tej metody

Bardziej szczegółowo

Wskaźniki efektywności Sharpe a, Treynora, Jensena, Information Ratio, Sortino

Wskaźniki efektywności Sharpe a, Treynora, Jensena, Information Ratio, Sortino Ćwiczenia 5 Pojęcie benchmarku, tracking error Wskaźniki efektywności Sharpe a, Treynora, Jensena, Information Ratio, Sortino Renata Karkowska, Wydział Zarządzania UW 1 Współczynnik Sharpe a Renata Karkowska,

Bardziej szczegółowo

Ocena efektywności i ryzyka lokowania środków finansowych w fundusze inwestycyjne otwarte na przykładzie krajowych funduszy akcji WSTĘP

Ocena efektywności i ryzyka lokowania środków finansowych w fundusze inwestycyjne otwarte na przykładzie krajowych funduszy akcji WSTĘP Marcel Czeczko Ocena efektywności i ryzyka lokowania środków finansowych w fundusze inwestycyjne otwarte na przykładzie krajowych funduszy akcji WSTĘP Niniejsza praca stanowi próbę oceny zasadności lokowania

Bardziej szczegółowo

JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY

JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY JEDNORÓWNANIOWY LINIOWY MODEL EKONOMETRYCZNY Będziemy zapisywać wektory w postaci (,, ) albo traktując go jak macierz jednokolumnową (dzięki temu nie będzie kontrowersji przy transponowaniu wektora ) Model

Bardziej szczegółowo

Ćwiczenia Zarządzanie Ryzykiem. dr hab. Renata Karkowska, ćwiczenia Zarządzanie ryzykiem 1

Ćwiczenia Zarządzanie Ryzykiem. dr hab. Renata Karkowska, ćwiczenia Zarządzanie ryzykiem 1 Ćwiczenia Zarządzanie Ryzykiem 1 VaR to strata wartości instrumentu (portfela) taka, że prawdopodobieństwo osiągnięcia jej lub przekroczenia w określonym przedziale czasowym jest równe zadanemu poziomowi

Bardziej szczegółowo

Podstawowe definicje dotyczące zarządzania portfelowego

Podstawowe definicje dotyczące zarządzania portfelowego Podstawowe definicje dotyczące zarządzania portfelowego Prof. SGH, dr hab. Andrzej Sobczak Kurs: Zarządzanie portfelem IT z wykorzystaniem modeli Zakres tematyczny kursu Podstawowe definicje dotyczące

Bardziej szczegółowo

TEST EGZAMINACYJNY. dla doradców inwestycyjnych. Zestaw numer października reszka.edu.pl

TEST EGZAMINACYJNY. dla doradców inwestycyjnych. Zestaw numer października reszka.edu.pl TEST EGZAMINACYJNY dla doradców inwestycyjnych Zestaw numer 1 29 października 2017 reszka.edu.pl 1. Obligacja z 3-letnim terminem wykupu, 6% kuponem z odsetkami wypłacanymi raz na koniec każdego roku,

Bardziej szczegółowo

Instrumenty rynku akcji

Instrumenty rynku akcji Instrumenty rynku akcji Rynek akcji w relacji do PK Źródło: ank Światowy: Kapitalizacja w relacji do PK nna Chmielewska, SGH, 2016 1 Inwestorzy indywidualni na GPW Ok 13% obrotu na rynku podstawowym (w

Bardziej szczegółowo

Wycena 2. Metody dochodowe w wycenie

Wycena 2. Metody dochodowe w wycenie Wycena 2 Metody dochodowe w wycenie Istota metod dochodowych (wg Standardu) Podejście dochodowe (ang. Income Approach) obejmuje grupę metod, które: wyznaczają wartość przedsiębiorstwa w oparciu o strumienie

Bardziej szczegółowo

Inne kryteria tworzenia portfela. Inne kryteria tworzenia portfela. Poziom bezpieczeństwa. Analiza i Zarządzanie Portfelem cz. 3. Dr Katarzyna Kuziak

Inne kryteria tworzenia portfela. Inne kryteria tworzenia portfela. Poziom bezpieczeństwa. Analiza i Zarządzanie Portfelem cz. 3. Dr Katarzyna Kuziak Inne kryteria tworzenia portfela Analiza i Zarządzanie Portfelem cz. 3 Dr Katarzyna Kuziak. Minimalizacja ryzyka przy zadanym dochodzie Portfel efektywny w rozumieniu Markowitza odchylenie standardowe

Bardziej szczegółowo

Próba pomiaru efektywności funduszy inwestycyjnych w Polsce w latach 1999 2005

Próba pomiaru efektywności funduszy inwestycyjnych w Polsce w latach 1999 2005 Zeszyty Naukowe Metody analizy danych Uniwersytet Ekonomiczny w Krakowie 873 Kraków 2011 Katedra Statystyki Próba pomiaru efektywności funduszy inwestycyjnych w Polsce w latach 1999 2005 1. Wprowadzenie

Bardziej szczegółowo

dr, adiunkt w Instytucie Bankowości SGH, Zarządzający Portfelem Akcji w Aviva PTE Aviva BZ WBK S.A., doradca inwestycyjny.

dr, adiunkt w Instytucie Bankowości SGH, Zarządzający Portfelem Akcji w Aviva PTE Aviva BZ WBK S.A., doradca inwestycyjny. Książka poświęcona została zasadom inwestowania w instrumenty finansowe, ze szczególnym naciskiem na wykorzystanie w tym celu teorii portfelowej. Książka powstała pod redakcją pracowników Instytutu Bankowości

Bardziej szczegółowo

Zarządzanie portfelem inwestycyjnym wykład 2

Zarządzanie portfelem inwestycyjnym wykład 2 Zarządzanie portfelem inwestycyjnym wykład 2 Czy jest ryzyko? Jakie są rodzaje ryzyka? Value at Risk Preferencje i ograniczenia inwestorów. Zarządzanie portfelem 1 Ryzyko inwestycji klasyfikacja Ryzyko

Bardziej szczegółowo

Bankowość Zajęcia nr 5 i 6

Bankowość Zajęcia nr 5 i 6 Motto zajęć: "za złoty dukat co w słońcu błyszczy" Bankowość Zajęcia nr 5 i 6 Ryzyko bankowe Ryzyko płynności Rola bilansu i cash flow; Metoda luki: Aktywa określonego rodzaju (AOR), Pasywa określonego

Bardziej szczegółowo

KURS DORADCY FINANSOWEGO

KURS DORADCY FINANSOWEGO KURS DORADCY FINANSOWEGO Przykładowy program szkolenia I. Wprowadzenie do planowania finansowego 1. Rola doradcy finansowego Definicja i cechy doradcy finansowego Oczekiwania klienta Obszary umiejętności

Bardziej szczegółowo

Prace magisterskie 1. Założenia pracy 2. Budowa portfela

Prace magisterskie 1. Założenia pracy 2. Budowa portfela 1. Założenia pracy 1 Założeniem niniejszej pracy jest stworzenie portfela inwestycyjnego przy pomocy modelu W.Sharpe a spełniającego następujące warunki: - wybór akcji 8 spółek + 2 papiery dłużne, - inwestycja

Bardziej szczegółowo

Matematyka finansowa 20.06.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r.

Matematyka finansowa 20.06.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Zarządzanie portfelem inwestycyjnym

Zarządzanie portfelem inwestycyjnym Zarządzanie portfelem inwestycyjnym Dr hab. Renata Karkowska Wykład 1 Renata Karkowska, Wydział Zarządzania 1 Plan wykładu 1. Ryzyko i rentowność instrumentów finansowych 2. Pojęcie ryzyka i oczekiwanej

Bardziej szczegółowo

Klasyfikacja ryzyk. Model wyceny aktywów kapitałowych. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Klasyfikacja ryzyk. Model wyceny aktywów kapitałowych. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Klasyfikacja ryzyk Model wyceny aktywów kapitałowych 1 Model wyceny aktywów kapitałowych Najczęściej stosowana metoda zakłada wykorzystanie danych historycznych do wskazania korelacji między stopa zwrotu

Bardziej szczegółowo

WYKŁAD 1 Inwestycje, środowisko inwestycyjne, proces inwestycyjny

WYKŁAD 1 Inwestycje, środowisko inwestycyjne, proces inwestycyjny WYKŁD 1 Inwestycje, środowisko inwestycyjne, proces inwestycyjny I. Pojęcie i rodzaje inwestycji Istnieje wiele definicji pojęcia inwestycja. Najbardziej ogólna jest następująca definicja: Definicja: inwestycja

Bardziej szczegółowo

Rozwiązanie zadań egzaminacyjnych. marzec 2010

Rozwiązanie zadań egzaminacyjnych. marzec 2010 Rozwiązanie zadań egzaminacyjnych I etap egzaminu na Doradcę Inwestycyjnego marzec 2010 Opracował: Marcin Reszka Doradca Inwestycyjny nr 335 Wszystkie prawa zastrzeżone. Nie zezwala się na kopiowanie,

Bardziej szczegółowo

Kopia dla: demo. Wszystkie prawa zastrzeżone. Nie zezwala się na kopiowania, wykorzystywanie, przekazywanie innym osobom bez pisemnej zgody autora.

Kopia dla: demo. Wszystkie prawa zastrzeżone. Nie zezwala się na kopiowania, wykorzystywanie, przekazywanie innym osobom bez pisemnej zgody autora. II Etap Maj 2013 Rozwiązanie zadań Opracował Marcin Reszka Doradca Inwestycyjny nr 335 Kopia dla: demo Wszystkie prawa zastrzeżone. Nie zezwala się na kopiowania, wykorzystywanie, przekazywanie innym osobom

Bardziej szczegółowo

Teoria portfelowa H. Markowitza

Teoria portfelowa H. Markowitza Aleksandra Szymura szymura.aleksandra@yahoo.com Teoria portfelowa H. Markowitza Za datę powstania teorii portfelowej uznaje się rok 95. Wtedy to H. Markowitz opublikował artykuł zawierający szczegółowe

Bardziej szczegółowo

OGŁOSZENIE O ZMIANIE PROSPEKTU INFORMACYJNEGO IPOPEMA SPECJALISTYCZNEGO FUNDUSZU INWESTYCYJNEGO OTWARTEGO Z DNIA 11 WRZEŚNIA 2012 R.

OGŁOSZENIE O ZMIANIE PROSPEKTU INFORMACYJNEGO IPOPEMA SPECJALISTYCZNEGO FUNDUSZU INWESTYCYJNEGO OTWARTEGO Z DNIA 11 WRZEŚNIA 2012 R. OGŁOSZENIE O ZMIANIE PROSPEKTU INFORMACYJNEGO IPOPEMA SPECJALISTYCZNEGO FUNDUSZU INWESTYCYJNEGO OTWARTEGO Z DNIA 11 WRZEŚNIA 2012 R. Niniejszym, Ipopema Towarzystwo Funduszy Inwestycyjnych S.A., ogłasza

Bardziej szczegółowo

Finanse behawioralne. Finanse 110630-1165

Finanse behawioralne. Finanse 110630-1165 behawioralne Plan wykładu klasyczne a behawioralne Kiedy są przydatne narzędzia finansów behawioralnych? Przykłady modeli finansów behawioralnych klasyczne a behawioralne klasyczne opierają się dwóch założeniach:

Bardziej szczegółowo

Model wyceny aktywów kapitałowych. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1

Model wyceny aktywów kapitałowych. Katarzyna Niewińska, ćwiczenia do wykładu Zarządzanie portfelem inwestycyjnym 1 Model wyceny aktywów kapitałowych 1 Model wyceny aktywów kapitałowych Najczęściej stosowana metoda zakłada wykorzystanie danych historycznych do wskazania korelacji między stopa zwrotu z danej inwestycji

Bardziej szczegółowo

VII Konferencja Naukowo- Techniczna ZET 2013

VII Konferencja Naukowo- Techniczna ZET 2013 VII Konferencja Naukowo- Techniczna ZET 2013 Determinanty struktury kapitału spółek elektroenergetycznych Jak optymalizować strukturę kapitału? Dr hab. Wiesław Janik Dr inż. Artur Paździor Politechnika

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r. Komisja Egzaminacyjna dla Aktuariuszy LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 0 minut 1 1. Rozważamy

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XV: Zagadnienia redukcji wymiaru danych 2 lutego 2015 r. Standaryzacja danych Standaryzacja danych Własności macierzy korelacji Definicja Niech X będzie zmienną losową o skończonym drugim momencie.

Bardziej szczegółowo

Wybór i ocena spółki. Warszawa, 3 marca 2013 r. Copyright Krzysztof Borowski

Wybór i ocena spółki. Warszawa, 3 marca 2013 r. Copyright Krzysztof Borowski Wybór i ocena spółki Warszawa, 3 marca 2013 r. Copyright Krzysztof Borowski Wartość wewnętrzna vs cena giełdowa Wartość Momenty kiedy WW jest bliska cenie giełdowej WW Cena giełdowa Kupno Sprzedaż Kupno

Bardziej szczegółowo

Ocena kondycji finansowej organizacji

Ocena kondycji finansowej organizacji Ocena kondycji finansowej organizacji 1 2 3 4 5 6 7 8 Analiza płynności Analiza rentowności Analiza zadłużenia Analiza sprawności działania Analiza majątku i źródeł finansowania Ocena efektywności projektów

Bardziej szczegółowo

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona Sprawdzanie założeń przyjętych o modelu (etap IIIC przyjętego schematu modelowania regresyjnego) 1. Szum 2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

Bardziej szczegółowo

PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH

PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH Mariusz Próchniak Katedra Ekonomii II, SGH PLANOWANIE I OCENA PRZEDSIĘWZIĘĆ INWESTYCYJNYCH Ekonomia menedżerska 1 2 Wartość przyszła (FV future value) r roczna stopa procentowa B kwota pieniędzy, którą

Bardziej szczegółowo

QUERCUS Multistrategy FIZ Emisja nowych certyfikatów: 7-29 IV 2016 r. Cena emisyjna: 1027,26 zł Minimalna liczba certyfikatów: 10 sztuk

QUERCUS Multistrategy FIZ Emisja nowych certyfikatów: 7-29 IV 2016 r. Cena emisyjna: 1027,26 zł Minimalna liczba certyfikatów: 10 sztuk QUERCUS Multistrategy FIZ Emisja nowych certyfikatów: 7-29 IV 2016 r. Cena emisyjna: 1027,26 zł Minimalna liczba certyfikatów: 10 sztuk dr hab. Sebastian Buczek, Prezes Zarządu Quercus TFI S.A. Warszawa,

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1

Bardziej szczegółowo

Unikalne podejście, którego każdy może się nauczyć. Bądź naszym gościem w świecie finansów.

Unikalne podejście, którego każdy może się nauczyć. Bądź naszym gościem w świecie finansów. Firmatoludzie Jak przetrwać na rynku niedźwiedzia oraz przy dużej zmienności rynku Nikt nie urodził się wiedząc jak inwestować na rynku kapitałowym. To jest tylko sprawa edukacji. Ale jak to osiągnąć?

Bardziej szczegółowo

RYNKI INSTRUMENTY I INSTYTUCJE FINANSOWE RED. JAN CZEKAJ

RYNKI INSTRUMENTY I INSTYTUCJE FINANSOWE RED. JAN CZEKAJ RYNKI INSTRUMENTY I INSTYTUCJE FINANSOWE RED. JAN CZEKAJ Wstęp Część I. Ogólna charakterystyka rynków finansowych 1. Istota i funkcje rynków finansowych 1.1. Pojęcie oraz podstawowe rodzaje rynków 1.1.1.

Bardziej szczegółowo

Spis treści Rozdział 1. Rynek finansowy Rozdział 2. Papiery wartościowe o stałym dochodzie Rozdział 3. Struktura terminowa stóp procentowych

Spis treści Rozdział 1. Rynek finansowy Rozdział 2. Papiery wartościowe o stałym dochodzie Rozdział 3. Struktura terminowa stóp procentowych Spis treści Rozdział 1. Rynek finansowy.............................. 1 1.1. Struktura rynku finansowego........................... 1 1.2. Uczestnicy rynku.................................. 3 1.3. Rynek

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład XII: Zagadnienia redukcji wymiaru danych 12 maja 2014 Definicja Niech X będzie zmienną losową o skończonym drugim momencie. Standaryzacją zmiennej X nazywamy zmienną losową Z = X EX Var (X ). Definicja

Bardziej szczegółowo

Model portfela papierów wartościowych

Model portfela papierów wartościowych Autor dr Bartłomiej Jabłoński Akademia Ekonomiczna im. Karola Adamieckiego w Katowicach BADANIE SPONSOROWANE 101 Model portfela papierów wartościowych Zarządzanie portfelem papierów wartościowych to prawdziwe

Bardziej szczegółowo

Warszawa, dnia 30 grudnia 2015 r. Poz. 2321 ROZPORZĄDZENIE MINISTRA FINANSÓW 1) z dnia 23 grudnia 2015 r.

Warszawa, dnia 30 grudnia 2015 r. Poz. 2321 ROZPORZĄDZENIE MINISTRA FINANSÓW 1) z dnia 23 grudnia 2015 r. DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ Warszawa, dnia 30 grudnia 2015 r. Poz. 2321 ROZPORZĄDZENIE MINISTRA FINANSÓW 1) z dnia 23 grudnia 2015 r. w sprawie szczegółowego sposobu obliczania podstawowego

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Zależność przyczynowo-skutkowa, symptomatyczna, pozorna (iluzoryczna), funkcyjna stochastyczna

Bardziej szczegółowo

Pierwszy indeks polskiego rynku sztuki

Pierwszy indeks polskiego rynku sztuki Pierwszy indeks polskiego rynku sztuki Kaja Retkiewicz-Wijtiwiak XI Warszawskie Targi Sztuki 12 października 2013 Współczesny rynek sztuki w Polsce Młody rynek: Pierwsze aukcje miały miejsce w 1988 r.

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y

Bardziej szczegółowo

Kalibracja. W obu przypadkach jeśli mamy dane, to możemy znaleźć równowagę: Konwesatorium z Ekonometrii, IV rok, WNE UW 1

Kalibracja. W obu przypadkach jeśli mamy dane, to możemy znaleźć równowagę: Konwesatorium z Ekonometrii, IV rok, WNE UW 1 Kalibracja Kalibracja - nazwa pochodzi z nauk ścisłych - kalibrowanie instrumentu oznacza wyznaczanie jego skali (np. kalibrowanie termometru polega na wyznaczeniu 0C i 100C tak by oznaczały punkt zamarzania

Bardziej szczegółowo

Uniwersytet Ekonomiczny we Wrocławiu. Rozwiązanie zadań z przedmiotu: Zarządzanie wartością i ryzykiem przedsiębiorstwa

Uniwersytet Ekonomiczny we Wrocławiu. Rozwiązanie zadań z przedmiotu: Zarządzanie wartością i ryzykiem przedsiębiorstwa Uniwersytet Ekonomiczny we Wrocławiu Wydział Zarządzania, Informatyki i Finansów Licencjackie studia dzienne Rozwiązanie zadań z przedmiotu: Zarządzanie wartością i ryzykiem przedsiębiorstwa Marta Pietrzyk

Bardziej szczegółowo

Wykaz zmian wprowadzonych do prospektu informacyjnego KBC PARASOL Fundusz Inwestycyjny Otwarty w dniu 28 maja 2014 r.

Wykaz zmian wprowadzonych do prospektu informacyjnego KBC PARASOL Fundusz Inwestycyjny Otwarty w dniu 28 maja 2014 r. Wykaz zmian wprowadzonych do prospektu informacyjnego KBC PARASOL Fundusz Inwestycyjny Otwarty w dniu 28 maja 2014 r. 1. NA STRONIE TYTUŁOWEJ DODAJE SIĘ INFORMACJE O DACIE OSTATNIEJ AKTUALIZACJI. NOWA

Bardziej szczegółowo

RACHUNEK EFEKTYWNOŚCI INWESTYCJI METODY ZŁOŻONE DYNAMICZNE

RACHUNEK EFEKTYWNOŚCI INWESTYCJI METODY ZŁOŻONE DYNAMICZNE RACHUNEK EFEKTYWNOŚCI INWESTYCJI METODY ZŁOŻONE DYNAMICZNE Projekt Nakłady inwestycyjne, pożyczka + WACC Prognoza przychodów i kosztów Prognoza rachunku wyników Prognoza przepływów finansowych Wskaźniki

Bardziej szczegółowo

BADANIE ZGODNOŚCI ROZKŁADU STÓP ZWROTU NA GPW W WARSZAWIE Z ROZKŁADAMI GAUSSA I CAUCHY EGO

BADANIE ZGODNOŚCI ROZKŁADU STÓP ZWROTU NA GPW W WARSZAWIE Z ROZKŁADAMI GAUSSA I CAUCHY EGO AKADEMIA EKONOMICZNA W POZNANIU Krzysztof Cichy BADANIE ZGODNOŚCI ROZKŁADU STÓP ZWROTU NA GPW W WARSZAWIE Z ROZKŁADAMI GAUSSA I CAUCHY EGO PRACA MAGISTERSKA Wydział Zarządzania Kierunek: Zarządzanie i

Bardziej szczegółowo

O PEWNYM SPOSOBIE WYZNACZANIA WSPÓŁCZYNNIKA BETA NA POLSKIM RYNKU KAPITAŁOWYM

O PEWNYM SPOSOBIE WYZNACZANIA WSPÓŁCZYNNIKA BETA NA POLSKIM RYNKU KAPITAŁOWYM STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Waldemar Tarczyński O PEWNYM SPOSOBIE WYZNACZANIA WSPÓŁCZYNNIKA BETA NA POLSKIM RYNKU KAPITAŁOWYM Model Sharpa należy do jednego z najpopularniejszych

Bardziej szczegółowo

Podsumowanie raportu z wyceny wartości Hubstyle Sp. z o.o.

Podsumowanie raportu z wyceny wartości Hubstyle Sp. z o.o. Podsumowanie raportu z wyceny wartości Hubstyle Sp. z o.o. Niniejszy dokument stanowi podsumowanie raportu z wyceny wartości Spółki Hubstyle Sp. z o.o. na 9 kwietnia 2014 roku. Podsumowanie przedstawia

Bardziej szczegółowo

Ogłoszenie o zmianach statutu KBC Parasol Funduszu Inwestycyjnego Otwartego z dnia 27 września 2012 r.

Ogłoszenie o zmianach statutu KBC Parasol Funduszu Inwestycyjnego Otwartego z dnia 27 września 2012 r. Ogłoszenie o zmianach statutu KBC Parasol Funduszu Inwestycyjnego Otwartego z dnia 27 września 2012 r. KBC Towarzystwo Funduszy Inwestycyjnych S.A. działające jako organ KBC Parasol Funduszu Inwestycyjnego

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Rozważmy

Bardziej szczegółowo

Wycena opcji. Dr inż. Bożena Mielczarek

Wycena opcji. Dr inż. Bożena Mielczarek Wycena opcji Dr inż. Bożena Mielczarek Stock Price Wahania ceny akcji Cena jednostki podlega niewielkim wahaniom dziennym (miesięcznym) wykazując jednak stały trend wznoszący. Cena może się doraźnie obniżać,

Bardziej szczegółowo

Wykład 8 Rynek akcji nisza inwestorów indywidualnych Rynek akcji Jeden z filarów rynku kapitałowego (ok 24% wartości i ok 90% PK globalnie) Źródło: http://www.marketwatch.com (dn. 2015-02-12) SGH, Rynki

Bardziej szczegółowo

EFEKTYWNOŚĆ INWESTYCJI POLSKICH FUNDUSZY INWESTYCYJNYCH Z TYTUŁU DOBORU PAPIERÓW WARTOŚCIOWYCH I UMIEJĘTNOŚCI WYKORZYSTANIA TRENDÓW RYNKOWYCH

EFEKTYWNOŚĆ INWESTYCJI POLSKICH FUNDUSZY INWESTYCYJNYCH Z TYTUŁU DOBORU PAPIERÓW WARTOŚCIOWYCH I UMIEJĘTNOŚCI WYKORZYSTANIA TRENDÓW RYNKOWYCH PRACE NAUKOWE UNIWERSYTETU EKONOMICZNEGO WE WROCŁAWIU RESEARCH PAPERS OF WROCŁAW UNIVERSITY OF ECONOMICS nr 278 2013 Taksonomia 20. Klasyfikacja i analiza danych teoria i zastosowania ISSN 1899-3192 Radosław

Bardziej szczegółowo

ćwiczenia 30 zaliczenie z oceną

ćwiczenia 30 zaliczenie z oceną Wydział: Zarządzanie i Finanse Nazwa kierunku kształcenia: Finanse i Rachunkowość Rodzaj przedmiotu: podstawowy Opiekun: dr Rafał Kusy Poziom studiów (I lub II stopnia): II stopnia Tryb studiów: Stacjonarne

Bardziej szczegółowo

CZĘŚĆ I. Wprowadzenie do zarządzania finansami

CZĘŚĆ I. Wprowadzenie do zarządzania finansami Spis treści Wstęp O Autorach CZĘŚĆ I. Wprowadzenie do zarządzania finansami ROZDZIAŁ 1. Pierwsze spojrzenie na zarządzanie finansami Znaleźć właściwą równowagę 1.1. Czym są finanse? 1.2. Praca w finansach

Bardziej szczegółowo

Symulacyjne metody analizy ryzyka inwestycyjnego wybrane aspekty. Grzegorz Szwałek Katedra Matematyki Stosowanej Uniwersytet Ekonomiczny w Poznaniu

Symulacyjne metody analizy ryzyka inwestycyjnego wybrane aspekty. Grzegorz Szwałek Katedra Matematyki Stosowanej Uniwersytet Ekonomiczny w Poznaniu Symulacyjne metody analizy ryzyka inwestycyjnego wybrane aspekty Grzegorz Szwałek Katedra Matematyki Stosowanej Uniwersytet Ekonomiczny w Poznaniu Plan prezentacji 1. Opis metody wyceny opcji rzeczywistej

Bardziej szczegółowo

I N F O R M A C J A. w zakresie adekwatności kapitałowej na dzień (Filar III) BANK SPÓŁDZIELCZY w Łosicach

I N F O R M A C J A. w zakresie adekwatności kapitałowej na dzień (Filar III) BANK SPÓŁDZIELCZY w Łosicach Załącznik Nr 1 do Uchwały Zarządu nr 45/2010 z dnia 21.05.2010 r. BANK SPÓŁDZIELCZY w Łosicach I N F O R M A C J A w zakresie adekwatności kapitałowej na dzień 31.12.2009 (Filar III) Łosice, maj 2010 I.

Bardziej szczegółowo