Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Wielkość: px
Rozpocząć pokaz od strony:

Download "Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014"

Transkrypt

1 Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014

2 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu θ Θ na poziomie ufności 1 α nazywamy przedział (θ 1, θ 2 ), gdzie 1. θ 1 = θ 1 (X 1, X 2,..., X n ) oraz θ 2 = θ 2 (X 1, X 2,..., X n ) są funkcjami próby i nie zależą od parametru θ. 2. dla każdego θ Θ P(θ 1 θ θ 2 ) = 1 α.

3 Przedział ufności 1. Końce przedziału ufności (θ 1, θ 2 ) są zmiennymi losowymi. 2. Przedziału ufności pokrywa parametr θ z prawdopodobieństwem w przybliżeniu równym 1 α. 3. Długość przedziału ufności: d θ = θ 2 θ 1 4. Najlepszy przedział ufności to ten najkrótszy.

4 Przedział ufności dla średniej w rozkładzie normalnym ze znaną wariancją

5 Przedział ufności dla średniej w rozkładzie normalnym ze znanym odchyleniem standardowym X 1, X 2,..., X n - próba z rozkładu normalnego N (µ, σ 2 ), µ - nieznane, σ - znane.

6 Przedział ufności dla średniej w rozkładzie normalnym ze znanym odchyleniem standardowym X 1, X 2,..., X n - próba z rozkładu normalnego N (µ, σ 2 ), µ - nieznane, σ - znane. Znanym faktem jest, że: X = 1 ( ) n X i N µ, σ2 n n i=1

7 Przedział ufności dla średniej w rozkładzie normalnym ze znanym odchyleniem standardowym X 1, X 2,..., X n - próba z rozkładu normalnego N (µ, σ 2 ), µ - nieznane, σ - znane. Znanym faktem jest, że: X = 1 ( ) n X i N µ, σ2 n n i=1 oraz, że: Z = X µ σ/ n N (0, 1)

8 Przedział ufności dla średniej w rozkładzie normalnym ze znanym odchyleniem standardowym Dla danego α można wyznaczyć takie stałe u 1, u 2, dla których P(u 1 Z u 2 ) = Φ(u 2 ) Φ(u 1 ) = 1 α

9 Przedział ufności dla średniej w rozkładzie normalnym ze znanym odchyleniem standardowym Dla danego α można wyznaczyć takie stałe u 1, u 2, dla których P(u 1 Z u 2 ) = Φ(u 2 ) Φ(u 1 ) = 1 α Niech u 1 = Φ 1 (α 1 ) oraz u 2 = Φ 1 (1 α 2 ), wówczas Φ(u 2 ) Φ(u 1 ) = Φ(Φ 1 (1 α 2 )) Φ(Φ 1 (α 1 )) = = 1 α 2 α 1 = 1 (α 1 + α 2 )

10 Przedział ufności dla średniej w rozkładzie normalnym ze znanym odchyleniem standardowym Niech teraz α = α 1 + α 2, α 1, α 2 > 0 oraz przyjmijmy, że u 1 = u α1 oraz u 2 = u 1 α2 - kwantyle rzędów α 1 oraz 1 α 2 z rozkładu N (0, 1). Wówczas ( P(u 1 Z u 2 ) = P u α1 X ) µ σ/ n u 1 α ( 2 ) = P X σ u 1 α2 n σ µ X u α1 n.

11 Przedział ufności dla średniej w rozkładzie normalnym ze znanym odchyleniem standardowym Niech teraz α = α 1 + α 2, α 1, α 2 > 0 oraz przyjmijmy, że u 1 = u α1 oraz u 2 = u 1 α2 - kwantyle rzędów α 1 oraz 1 α 2 z rozkładu N (0, 1). Wówczas ( P(u 1 Z u 2 ) = P u α1 X ) µ σ/ n u 1 α ( 2 ) = P X σ u 1 α2 n σ µ X u α1 n. Przedział ufności dla µ na poziomie ufności 1 α [ X u 1 α2 σ n ; X u α1 σ n ].

12 Przedział ufności dla średniej w rozkładzie normalnym ze znanym odchyleniem standardowym Jeśli α 1 = 0, to przedział ufności jest postaci: [ X u 1 α2 ] σ n ; Jeśli α 2 = 0, to przedział ufności jest postaci: [ ; X u α1 σ n ] Jeśli α 1 = α 2 = α 2, to przedział ufności jest postaci: [ X u 1 α/2 σ n ; X uα/2 σ n ]

13 Przedział ufności dla średniej w rozkładzie normalnym ze znanym odchyleniem standardowym Zauważmy, że u (1 α/2) = u (α/2), a stąd [ X u ] [ 1 α/2 σ u α/2 σ ; X n n Przedział ten ma długość σ d µ = 2u 1 α. 2 n X u ] 1 α/2 σ u 1 α/2 σ ; X + n n Jest to najkrótszy = najlepszy przedział ufności dla średniej w rozkładzie normalnym.

14 Przedziały ufności dla średniej Długość przedziału ufności zeleży od: 1. rozmiaru próby 2. poziomu ufności

15 Przedziały ufności dla średniej Długość przedziału ufności zeleży od: 1. rozmiaru próby - większa próba = krótszy przedział 2. poziomu ufności - większy poziom = dłuższy przedział

16 Przykład Przykład 9.1 Z populacji, o rozkładzie normalnym o nieznanej średniej i znanej wariancji równej 0.5, przedstawiającej średnią ocen pewnych uczniów z klasy pierwszej wylosowano próbę 6 osób, dla których ta średnia wynosiła 3.71, 4.28, 2.95, 3.38, 4.05, Wyznaczyc 99% przedział ufności dla średniej średniej ocen uczniów.

17 Przykład Przykład 9.1 Z populacji, o rozkładzie normalnym o nieznanej średniej i znanej wariancji równej 0.5, przedstawiającej średnią ocen pewnych uczniów z klasy pierwszej wylosowano próbę 6 osób, dla których ta średnia wynosiła 3.71, 4.28, 2.95, 3.38, 4.05, Wyznaczyc 99% przedział ufności dla średniej średniej ocen uczniów. Dane: n = 6 σ 2 = 0.5, a stąd σ = 0.7 X = 1 6 ( ) = α = poziom ufności, a zatem α = 0.01 u = 2.57

18 Przykład Przykład 9.1 -cd Obliczmy końce przedziałów ufności: X u 1 α/2 σ = 3.9 = = 3.15 n 6 stąd X + u 1 α/2 σ = = = 4.63, n 6 µ [3.15, 4.63]. A zatem mamy 99% pewności, że średnia średnia ocen wśród uczniów rozważanej klasy pierwszej mieści się w przedziale [3.15, 4.63].

19 Przedział ufności dla średniej w rozkładzie normalnym z nieznaną wariancją

20 Przedział ufności dla średniej w rozkładzie normalnym z nieznaną wariancją X 1, X 2,..., X n - próba z rozkładu normalnego N (µ, σ 2 ), µ - nieznane, σ - nieznane.

21 Przedział ufności dla średniej w rozkładzie normalnym z nieznaną wariancją X 1, X 2,..., X n - próba z rozkładu normalnego N (µ, σ 2 ), µ - nieznane, σ - nieznane. Wiemy, że: Z = X µ σ/ n N (0, 1)

22 Przedział ufności dla średniej w rozkładzie normalnym z nieznaną wariancją X 1, X 2,..., X n - próba z rozkładu normalnego N (µ, σ 2 ), µ - nieznane, σ - nieznane. Wiemy, że: oraz ns 2 0 σ 2 = 1 σ 2 Z = X µ σ/ n N (0, 1) n (X i X ) 2 χ 2 (n 1) i=1

23 Przedział ufności dla średniej w rozkładzie normalnym z nieznaną wariancją Fakt Jeżeli zmienne losowe Y i Z są niezależne, przy czym Y N (0, 1) oraz Z χ 2 (n), to zmienna losowa T = Y t(n) Z/n

24 Przedział ufności dla średniej w rozkładzie normalnym z nieznaną wariancją Fakt Jeżeli zmienne losowe Y i Z są niezależne, przy czym Y N (0, 1) oraz Z χ 2 (n), to zmienna losowa T = Y t(n) Z/n Korzystając z powyższego faktu: T = X µ σ/ n ns 2 0 σ 2 (n 1) = X µ S 0 n 1

25 Przedział ufności dla średniej w rozkładzie normalnym z nieznaną wariancją Fakt Jeżeli zmienne losowe Y i Z są niezależne, przy czym Y N (0, 1) oraz Z χ 2 (n), to zmienna losowa T = Y t(n) Z/n Korzystając z powyższego faktu: T = X µ σ/ n ns 2 0 σ 2 (n 1) = X µ S 0 n 1 t(n 1)

26 Przedział ufności dla średniej w rozkładzie normalnym z nieznaną wariancją Niech teraz t 1 α2 (n 1) oraz t α1 (n 1) oznaczają kwantyle z rozkładu studenta z n 1 stopniami swobody rzędu 1 α 2 i α 1 odpowiednio. P(t α1 (n 1) T t 1 α2 (n 1)) = 1 α 2 α 1 = 1 α

27 Przedział ufności dla średniej w rozkładzie normalnym z nieznaną wariancją Niech teraz t 1 α2 (n 1) oraz t α1 (n 1) oznaczają kwantyle z rozkładu studenta z n 1 stopniami swobody rzędu 1 α 2 i α 1 odpowiednio. P(t α1 (n 1) T t 1 α2 (n 1)) = 1 α 2 α 1 = 1 α ( ) X µ P t α1 (n 1) S 0 / n 1 t 1 α 2 (n 1) = ( ) S 0 S = P X t α1 (n 1) µ X t 1 α2 (n 1) 0 = 1 α n 1 n 1

28 Przedział ufności dla średniej w rozkładzie normalnym z nieznaną wariancją Przedział ufności dla µ przy nieznanym σ jest postaci [ X t ] α 1 (n 1) S 0 t 1 α2 (n 1) S ; X 0 n 1 n 1

29 Przedział ufności dla średniej w rozkładzie normalnym z nieznaną wariancją Przedział ufności dla µ przy nieznanym σ jest postaci [ X t ] α 1 (n 1) S 0 t 1 α2 (n 1) S ; X 0 n 1 n 1 Niech teraz α 1 = α 2 = α 2, wówczas najkrótszy przedział ufności dla µ jest postaci [ X t 1 α/2(n 1) S 0 ; X + t ] 1 α/2(n 1) S 0. n 1 n 1

30 Przykład Przykład Na podstawie wielokrotnych obserwacji ustalono, że rozkład czasu dojazdu do pracy osób zatrudnionych w sklepach pewnej sieci jest rozkładem normalnym. W celu oszacowania nieznanej średniej w tym rozkładzie wylosowano niezależnie 17 elementową próbę pracowników. Średni czas dojazdu w tej próbie wynosił 40 minut a odchylenie standardowe stanowiło połowę czasu średniego. Wyznacz 95% przedział ufności dla średniego czasu dojazdu do pracy dla ogółu pracowników.

31 Przykład Przykład Na podstawie wielokrotnych obserwacji ustalono, że rozkład czasu dojazdu do pracy osób zatrudnionych w sklepach pewnej sieci jest rozkładem normalnym. W celu oszacowania nieznanej średniej w tym rozkładzie wylosowano niezależnie 17 elementową próbę pracowników. Średni czas dojazdu w tej próbie wynosił 40 minut a odchylenie standardowe stanowiło połowę czasu średniego. Wyznacz 95% przedział ufności dla średniego czasu dojazdu do pracy dla ogółu pracowników. Dane: X = 40 S = = 20 n = 17 1 α = poziom ufności, a stąd α = 0.05 t (16) = 2.12.

32 Przykład Przykład Obliczmy końce przedziałów ufności X t 1 α/2(n 1) S = 40 = = 29.4 n 1 16 X + t 1 α/2(n 1) S = 40 + = = 50.59, n 1 16

33 Przykład Przykład Obliczmy końce przedziałów ufności X t 1 α/2(n 1) S = 40 = = 29.4 n 1 16 X + t 1 α/2(n 1) S = 40 + = = 50.59, n 1 16 stąd µ [29.4, 50.59] A zatem z prawdopodobieństwem 0.95 możemy stwierdzić, że średni czasu dojazdu do pracy dla ogółu pracowników mieści się w przedziale [29.4, 50.59].

34 Przedział ufności dla średniej w dowolnym rozkładzie

35 Przedziały ufności dla średniej w dowolnym rozkładzie X 1, X 2,..., X n - próba z rozkładu o rozmiarze n 100 o nieznanej średniej EX i = µ i wariancji Var(X i ) = σ 2.

36 Przedziały ufności dla średniej w dowolnym rozkładzie X 1, X 2,..., X n - próba z rozkładu o rozmiarze n 100 o nieznanej średniej EX i = µ i wariancji Var(X i ) = σ 2. Z Centralnego Twierdzenia Granicznego: Z = X µ σ/ n n Y

37 Przedziały ufności dla średniej w dowolnym rozkładzie X 1, X 2,..., X n - próba z rozkładu o rozmiarze n 100 o nieznanej średniej EX i = µ i wariancji Var(X i ) = σ 2. Z Centralnego Twierdzenia Granicznego: Z = X µ σ/ n n Y N (0, 1),

38 Przedziały ufności dla średniej w dowolnym rozkładzie X 1, X 2,..., X n - próba z rozkładu o rozmiarze n 100 o nieznanej średniej EX i = µ i wariancji Var(X i ) = σ 2. Z Centralnego Twierdzenia Granicznego: a stąd: lim P n Z = X µ σ/ n ( gdzie u 1 = u α1, u 2 = u 1 α2. n Y N (0, 1), u 1 X ) µ σ/ n u 2 = 1 α,

39 Przedziały ufności dla średniej w dowolnym rozkładzie Przedział ufności (asymptotyczny) dla średniej µ na poziomie ufności 1 α jest postaci: 1. gdy σ znane: 2. gdy σ nie jest znane: [ [ X u 1 α/2 σ ; X + u ] 1 α/2 σ n n X u 1 α/2 S ; X + u ] 1 α/2 S n n

40 Przykład Przykład Załóżmy, że p 100%, 0 p 1 wyborców jest zdecydowana poprzeć pewnego kandydata w najbliższych wyborach. W celu oszacowania wartości p przeprowadzono ankietę (przewidującą dwie odpowiedzi: TAK lub NIE) wśród 1076 osób, z czego 324 odpowiedziały TAK. Wyznaczymy 90% przedział ufności dla p.

41 Przykład Przykład Załóżmy, że p 100%, 0 p 1 wyborców jest zdecydowana poprzeć pewnego kandydata w najbliższych wyborach. W celu oszacowania wartości p przeprowadzono ankietę (przewidującą dwie odpowiedzi: TAK lub NIE) wśród 1076 osób, z czego 324 odpowiedziały TAK. Wyznaczymy 90% przedział ufności dla p. Zauważmy, że mamy do czynienia z rozkładem dwumianowym, gdzie p jest wartością oczekiwaną zmiennej losowej X i zdefiniowanej następująco: { 1 pytana osoba odpowie TAK X i = 0 pytana osoba odpowie NIE

42 Przykład Przykład Dane: n = 1076 X = = ( ) S 2 = = α = poziom ufności, a zatem α = 0.1 t 0.95 (1075) = Przedział ufności dla p jest postaci: (0.278; 0.324) Zatem na danego kandydata zdecydowanych jest głosować % = 30.1% wyborców, z dopuszczalnym błędem statystycznym równym d n = 2.3%.

STATYSTYKA wykład 5-6

STATYSTYKA wykład 5-6 TATYTYKA wykład 5-6 Twierdzenia graniczne Rozkłady statystyk z próby Wanda Olech Twierdzenia graniczne Jeżeli rozpatrujemy ciąg zmiennych losowych {X ; X ;...; X n }, to zdarza się, że ich rozkłady przy

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;

Bardziej szczegółowo

Oszacowanie i rozkład t

Oszacowanie i rozkład t Oszacowanie i rozkład t Marcin Zajenkowski Marcin Zajenkowski () Oszacowanie i rozkład t 1 / 31 Oszacowanie 1 Na podstawie danych z próby szacuje się wiele wartości w populacji, np.: jakie jest poparcie

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statystyczna analiza danych Marek Ptak 21 października 2013 Marek Ptak Statystyka 21 października 2013 1 / 70 Część I Wstęp Marek Ptak Statystyka 21 października 2013 2 / 70 LITERATURA A. Łomnicki, Wprowadzenie

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów

Bardziej szczegółowo

Generatory takie mają niestety okres, po którym sekwencja liczb powtarza się.

Generatory takie mają niestety okres, po którym sekwencja liczb powtarza się. 1 Wstęp Będziemyrozważaćgeneratorytypux n+1 =f(x n,x n 1,...,x n k )(modm). Zakładamy,żeargumentamifunkcjifsąliczbycałkowitezezbioru0,1,...,M 1. Dla ustalenia uwagi mogą to być generatory liniowe typu:

Bardziej szczegółowo

O ŚREDNIEJ STATYSTYCZNEJ

O ŚREDNIEJ STATYSTYCZNEJ O ŚREDNIEJ STATYSTYCZNEJ Ryszard Zieliński XII Międzynarodowe Warsztaty dla Młodych Matematyków Rachunek Prawdopodobieństwa i Statystyka Kraków, 20 26 IX 2009 r. WYNIKI OBSERWACJI X 1, X 2,..., X n WYNIKI

Bardziej szczegółowo

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl

Statystyka Opisowa z Demografią oraz Biostatystyka. Zmienne losowe. Aleksander Denisiuk. denisjuk@euh-e.edu.pl Statystyka Opisowa z Demografią oraz Biostatystyka Zmienne losowe Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.

Bardziej szczegółowo

Test lewostronny dla hipotezy zerowej:

Test lewostronny dla hipotezy zerowej: Poznajemy testowanie hipotez statystycznych w środowisku R Zajęcia z dnia 11 maja 2011 roku Najpierw teoria TESTY ISTOTNOŚCI WARTOŚCI ŚREDNIEJ W POPULACJI GENERALNEJ gdy znana jest wariancja!!! Test prawostronny

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

ZALICZENIA. W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III

ZALICZENIA. W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III ZALICZENIA W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III 1 Wariant I. PROBLEM WŁASNY Sformułować własne zadanie statystyczne związane z własną pracą badawczą

Bardziej szczegółowo

STATYSTYKA zadania do ćwiczeń. Weryfikacja hipotez część I.

STATYSTYKA zadania do ćwiczeń. Weryfikacja hipotez część I. STATYSTYKA zadania do ćwiczeń Weryfikacja hipotez część I Zad 1 W pewnej firmie postanowiono zbadać staż pracy pracowników W tym celu wylosowano prostą próbę losową z populacji pracowników i otrzymano,

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć:

1. Opis tabelaryczny. 2. Graficzna prezentacja wyników. Do technik statystyki opisowej można zaliczyć: Wprowadzenie Statystyka opisowa to dział statystyki zajmujący się metodami opisu danych statystycznych (np. środowiskowych) uzyskanych podczas badania statystycznego (np. badań terenowych, laboratoryjnych).

Bardziej szczegółowo

Finansowe szeregi czasowe

Finansowe szeregi czasowe 24 kwietnia 2009 Modelem szeregu czasowego jest proces stochastyczny (X t ) t Z, czyli rodzina zmiennych losowych, indeksowanych liczbami całkowitymi i zdefiniowanych na pewnej przestrzeni probabilistycznej

Bardziej szczegółowo

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2 Instytut Matematyczny Uniwersytet Wrocławski Zakres egzaminu magisterskiego Wybrane rozdziały anazlizy i topologii 1 i 2 Pojęcia, fakty: Definicje i pojęcia: metryka, iloczyn skalarny, norma supremum,

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna dla kierunku Zarządzanie na studiach drugiego stopnia Wojciech Kordecki Wyższa Szkoła Handlowa we Wrocławiu Wrocław 2012 Materiał wyłącznie do użytku edukacyjnego. Reprodukcja do

Bardziej szczegółowo

Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d.

Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d. Środowisko R wprowadzenie c.d. Wykład R2; 21.05.07 Struktury danych w R c.d. Oprócz zmiennych i wektorów strukturami danych w R są: macierze; ramki (ang. data frames); listy; klasy S3 1 Macierze Macierze

Bardziej szczegółowo

Statystyka Opisowa z Demografią oraz Biostatystyka. Aleksander Denisiuk. denisjuk@euh-e.edu.pl

Statystyka Opisowa z Demografią oraz Biostatystyka. Aleksander Denisiuk. denisjuk@euh-e.edu.pl Statystyka Opisowa z Demografią oraz Biostatystyka TesttStudenta Aleksander Denisiuk denisjuk@euh-e.edu.pl Elblaska Uczelnia Humanistyczno-Ekonomiczna ul. Lotnicza 2 82-300 Elblag oraz Biostatystyka p.

Bardziej szczegółowo

Sterowanie wielkością zamówienia w Excelu - cz. 3

Sterowanie wielkością zamówienia w Excelu - cz. 3 Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji

Bardziej szczegółowo

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych

Spis treści. Laboratorium III: Testy statystyczne. Inżynieria biomedyczna, I rok, semestr letni 2013/2014 Analiza danych pomiarowych 1 Laboratorium III: Testy statystyczne Spis treści Laboratorium III: Testy statystyczne... 1 Wiadomości ogólne... 2 1. Krótkie przypomnienie wiadomości na temat testów statystycznych... 2 1.1. Weryfikacja

Bardziej szczegółowo

STATYSTYKA STOSOWANA MAP1079

STATYSTYKA STOSOWANA MAP1079 STATYSTYKA STOSOWANA MAP1079 LISTY ZADAŃ opracowanie W. Wawrzyniak-Kosz Literatura podstawowa 1.J.Koronacki, J.Mielniczuk, Statystyka dla studentów kierunków technicznych i przyrodniczych, WNT, Warszawa

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH

PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH Opracowała: Joanna Kisielińska 1 PODSTAWOWE ROZKŁADY ZMIENNYCH LOSOWYCH CIĄGŁYCH Rozkład normalny Zmienna losowa X ma rozkład normalny z parametrami µ i σ (średnia i odchylenie standardowe), jeśli jej

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych

Bardziej szczegółowo

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Pr(X 1 = 0) = 6/10, Pr(X 1 = 1) = 1/10, i gęstością: f(x) = 3/10 na przedziale (0, 1). Wobec tego Pr(X 1 + X 2 5/3) wynosi:

Bardziej szczegółowo

Diagramy Venna. Uwagi:

Diagramy Venna. Uwagi: Wykład 3: Prawdopodobieństwopodstawowe pojęcia i modele Często modelujemy zmienność używając rachunku prawdopodobieństwa. Prawdopodobieństwo opadów deszczu wynosi 80%. (zinterpretuj) Prawdopodobieństwo

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statytyka. v.0.9 egz mgr inf nietacj Statytyczna analiza danych Statytyka opiowa Szereg zczegółowy proty monotoniczny ciąg danych i ) n uzykanych np. w trakcie pomiaru lub za pomocą ankiety. Przykłady

Bardziej szczegółowo

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ Dopasowanie rozkładów Dopasowanie rozkładów- ogólny cel Porównanie średnich dwóch zmiennych 2 zmienne posiadają rozkład normalny -> test parametryczny (t- studenta) 2

Bardziej szczegółowo

50 zadań ze statystyki matematycznej dla studentów ZARZĄDZANIA z rozwiązaniami

50 zadań ze statystyki matematycznej dla studentów ZARZĄDZANIA z rozwiązaniami Jan Rusinek 50 zadań ze statystyki matematycznej dla studentów ZARZĄDZANIA z rozwiązaniami UWAGA! Ten tekst jest w trakcie przygotowania i sprawdzania. Może zawierać błędy. Jest sukcesywnie poprawiany

Bardziej szczegółowo

Metody oceny ryzyka operacyjnego

Metody oceny ryzyka operacyjnego Instytut Matematyki i Informatyki Wrocław, 10 VII 2009 Bazylejski Komitet Nadzoru Bankowego Umowa Kapitałowa - 1988 Opracowanie najlepszych praktyk rynkowych w zakresie zarządzania ryzykiem Nowa Umowa

Bardziej szczegółowo

Statystyki pozycyjne w procedurach estymacji i ich zastosowania w badaniach ekonomicznych

Statystyki pozycyjne w procedurach estymacji i ich zastosowania w badaniach ekonomicznych Statystyki pozycyjne w procedurach estymacji i ich zastosowania w badaniach ekonomicznych Dorota Pekasiewicz Statystyki pozycyjne w procedurach estymacji i ich zastosowania w badaniach ekonomicznych Dorota

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2011/2012

Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2011/2012 Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu Karta Instytut Pedagogiczny obowiązuje studentów rozpoczynających studia w roku akademickim 011/01 Kierunek studiów: Matematyka Profil: Ogólnoakademicki Forma

Bardziej szczegółowo

2015-01-15. Edycja pierwsza 2014/1015. dla kierunku fizyka medyczna, I rok, studia magisterskie

2015-01-15. Edycja pierwsza 2014/1015. dla kierunku fizyka medyczna, I rok, studia magisterskie 05-0-5. Opis różnicę pomiędy błędem pierwsego rodaju a błędem drugiego rodaju Wyniki eksperymentu składamy w dwie hipotey statystycne: H0 versus H, tak, by H0 odrucić i pryjąć H. Jeśli decydujemy, że pryjmujemy

Bardziej szczegółowo

PROGRAM NAUCZANIA PRZEDMIOTU OBOWIĄZKOWEGO NA WYDZIALE LEKARSKIM I ROK AKADEMICKI 2015/2016 PRZEWODNIK DYDAKTYCZNY dla STUDENTÓW I ROKU STUDIÓW

PROGRAM NAUCZANIA PRZEDMIOTU OBOWIĄZKOWEGO NA WYDZIALE LEKARSKIM I ROK AKADEMICKI 2015/2016 PRZEWODNIK DYDAKTYCZNY dla STUDENTÓW I ROKU STUDIÓW PROGRAM NAUCZANIA PRZEDMIOTU OBOWIĄZKOWEGO NA WYDZIALE LEKARSKIM I ROK AKADEMICKI 2015/2016 PRZEWODNIK DYDAKTYCZNY dla STUDENTÓW I ROKU STUDIÓW 1. NAZWA PRZEDMIOTU : BIOSTATYSTYKA Z ELEMENTAMI INFORMATYKI

Bardziej szczegółowo

Przegląd ważniejszych rozkładów

Przegląd ważniejszych rozkładów Przegląd ważniejszych rozkładów Rozkład dwupunktowy P (X = x) = { p dla x = a, 1 p dla x = b, to zmienna losowa X ma rozkład dwupunktowy z parametrem p (0 < p < 1). Rozkład ten pojawia się przy opisie

Bardziej szczegółowo

Modele selekcji próby

Modele selekcji próby Plan zajęć 1 Problem selekcji próby- heurystyka 2 Problem selekcji próby- teoria 3 Przykład empiryczny Selekcja próby 1 regresja tobitowa- cenzurowanie(transformacja) zmiennej objaśnianej 2 regresja ucięta-

Bardziej szczegółowo

Praktyczne aspekty doboru próby. Dariusz Przybysz Warszawa, 2 czerwca 2015

Praktyczne aspekty doboru próby. Dariusz Przybysz Warszawa, 2 czerwca 2015 Praktyczne aspekty doboru próby Dariusz Przybysz Warszawa, 2 czerwca 2015 Określenie populacji Przed przystąpieniem do badania, wybraniem sposobu doboru próby konieczne jest precyzyjne określenie populacji,

Bardziej szczegółowo

Analiza wyników egzaminu maturalnego z matematyki na poziomowe podstawowym

Analiza wyników egzaminu maturalnego z matematyki na poziomowe podstawowym Analiza wyników egzaminu maturalnego z matematyki na poziomowe podstawowym Do egzaminu maturalnego w II Liceum Ogólnokształcącego im. Mikołaja Kopernika w Cieszynie z matematyki na poziomie podstawowym

Bardziej szczegółowo

Analiza wariancji. dr Janusz Górczyński

Analiza wariancji. dr Janusz Górczyński Analiza wariancji dr Janusz Górczyński Wprowadzenie Powiedzmy, że badamy pewną populację π, w której cecha Y ma rozkład N o średniej m i odchyleniu standardowym σ. Powiedzmy dalej, że istnieje pewien czynnik

Bardziej szczegółowo

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

Zmienna losowa (wygrana w pojedynczej grze): (1, 0.5), ( 1, 0.5)

Zmienna losowa (wygrana w pojedynczej grze): (1, 0.5), ( 1, 0.5) Przykład 0. Gra polega na jednokrotnym rzucie symetryczną monetą, przy czym wygrywamy 1 jeżeli wypadnie orzeł oraz przegrywamy 1 jeżeli wypadnie reszka. Nasz początkowy kapitał wynosi 5. Jakie jest prawdopodobieństwo,

Bardziej szczegółowo

Janusz Wywiał Katedra Statystyki Akademia Ekonomiczna w Katowicach

Janusz Wywiał Katedra Statystyki Akademia Ekonomiczna w Katowicach Janusz Wywiał Katedra Statystyki Akademia Ekonomiczna w Katowicac Analiza dokładności ocen wartości średnic cec małyc firm W niniejszej pracy przedstawiono na odpowiednim materiale statystycznym praktyczny

Bardziej szczegółowo

Analiza Algorytmów. Informatyka, WPPT, Politechnika Wroclawska. 1 Zadania teoretyczne (ćwiczenia) Zadanie 1. Zadanie 2. Zadanie 3

Analiza Algorytmów. Informatyka, WPPT, Politechnika Wroclawska. 1 Zadania teoretyczne (ćwiczenia) Zadanie 1. Zadanie 2. Zadanie 3 Analiza Algorytmów Informatyka, WPPT, Politechnika Wroclawska 1 Zadania teoretyczne (ćwiczenia) Zadanie 1 Niech k będzie dodatnią liczbą całkowitą. Rozważ następującą zmienną losową Pr[X = k] = (6/π 2

Bardziej szczegółowo

Wycena papierów wartościowych - instrumenty pochodne

Wycena papierów wartościowych - instrumenty pochodne Matematyka finansowa - 8 Wycena papierów wartościowych - instrumenty pochodne W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,

Bardziej szczegółowo

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.

Bardziej szczegółowo

Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich

Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich Testy t-studenta są testami różnic pomiędzy średnimi czyli służą do porównania ze sobą dwóch średnich Zmienne muszą być zmiennymi ilościowym (liczymy i porównujemy średnie!) Są to testy parametryczne Nazwa

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

dr Dominik M. Marciniak Analizy statystyczne w pracach naukowych czego unikać, na co zwracać uwagę.

dr Dominik M. Marciniak Analizy statystyczne w pracach naukowych czego unikać, na co zwracać uwagę. dr Dominik M. Marciniak Analizy statystyczne w pracach naukowych czego unikać, na co zwracać uwagę. Statistics in academic papers, what to avoid and what to focus on. Uniwersytet Medyczny im. Piastów Śląskich

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Rachunek prawdopodobieństwa MAP1181 Wydział PPT, MS, rok akad. 213/14, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Bardziej szczegółowo

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k:

Często spotykany jest również asymetryczny rozkład gamma (Г), opisany za pomocą parametru skali θ i parametru kształtu k: Statystyczne opracowanie danych pomiarowych W praktyce pomiarowej często spotykamy się z pomiarami wielokrotnymi, gdy podczas pomiaru błędy pomiarowe (szumy miernika, czynniki zewnętrzne) są na tyle duże,

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 1 i 2 Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Słowo statystyka pochodzi od łacińskiego słowa status, które oznacza

Bardziej szczegółowo

Wykład 2. Wpływ stałej (odejmujemy 20) Liniowa transformacja zmiennych, cd. Liniowa transformacja zmiennych, cd. Liniowa transformacja zmiennych, cd.

Wykład 2. Wpływ stałej (odejmujemy 20) Liniowa transformacja zmiennych, cd. Liniowa transformacja zmiennych, cd. Liniowa transformacja zmiennych, cd. Wykład 2 Wpływ przekształceń Co się stanie ze średnią i odchyleniem standardowym gdy zmienimy jednostki? stopnie Celsiusza stopnie Fahrenheita dolary 1,000 dolarów wartość faktyczna odległość od minimum

Bardziej szczegółowo

Metody statystyki medycznej stosowane w badaniach klinicznych

Metody statystyki medycznej stosowane w badaniach klinicznych Metody statystyki medycznej stosowane w badaniach klinicznych Statistics for clinical research & post-marketing surveillance część I Program szkolenia część I Wprowadzenie Podstawowe pojęcia statystyczne

Bardziej szczegółowo

Rozkłady dwóch zmiennych losowych

Rozkłady dwóch zmiennych losowych Rozkłady dwóch zmiennych losowych Uogólnienie pojęć na rozkład dwóch zmiennych Dystrybuanta i gęstość prawdopodobieństwa Rozkład brzegowy Prawdopodobieństwo warunkowe Wartości średnie i odchylenia standardowe

Bardziej szczegółowo

Statystyka. Tematyka wykładów. Przykładowe pytania. dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl. wersja 20.01.2013/13:40

Statystyka. Tematyka wykładów. Przykładowe pytania. dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl. wersja 20.01.2013/13:40 Statystyka dr Tomasz Giętkowski www.krajobraz.ukw.edu.pl wersja 20.01.2013/13:40 Tematyka wykładów 1. Definicja statystyki 2. Populacja, próba 3. Skale pomiarowe 4. Miary położenia (klasyczne i pozycyjne)

Bardziej szczegółowo

Analiza przeżycia. Wprowadzenie

Analiza przeżycia. Wprowadzenie Wprowadzenie Przedmiotem badania analizy przeżycia jest czas jaki upływa od początku obserwacji do wystąpienia określonego zdarzenia, które jednoznacznie kończy obserwację na danej jednostce. Analiza przeżycia

Bardziej szczegółowo

Statystyka i Analiza Danych

Statystyka i Analiza Danych Warsztaty Statystyka i Analiza Danych Gdańsk, 20-22 lutego 2014 Zastosowania analizy wariancji w opracowywaniu wyników badań empirycznych Janusz Wątroba StatSoft Polska Centrum Zastosowań Matematyki -

Bardziej szczegółowo

CAS Lecture Notes Numer 5

CAS Lecture Notes Numer 5 CAS Lecture Notes Numer 5 Centrum Studiów Zaawansowanych Politechniki Warszawskiej Warszawa Ryszard Zieliński Statystyka matematyczna stosowana Elementy Ryszard Zieliński Instytut Matematyczny Polska

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela

Statystyka w pracy badawczej nauczyciela Statystyka w pracy badawczej nauczyciela Wykład 1: Terminologia badań statystycznych dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka (1) Statystyka to nauka zajmująca się zbieraniem, badaniem

Bardziej szczegółowo

E2 - PROBABILISTYKA - Zadania do oddania

E2 - PROBABILISTYKA - Zadania do oddania E - PROBABILISTYKA - Zadania do oddania Parametr k = liczba trzycyfrowa dwie ostatnie cyfry to dwie ostatnie cyfry numeru indeksu pierwsza cyfra to pierwsza cyfra liczby liter pierwszego imienia. Poszczególne

Bardziej szczegółowo

Przykład: budowa placu zabaw (metoda ścieżki krytycznej)

Przykład: budowa placu zabaw (metoda ścieżki krytycznej) Przykład: budowa placu zabaw (metoda ścieżki krytycznej) Firma budowlana Z&Z podjęła się zadania wystawienia placu zabaw dla dzieci w terminie nie przekraczającym 20 dni. Listę czynności do wykonania zawiera

Bardziej szczegółowo

INDYWIDUALNE KONTO ZABEZPIECZENIA EMERYTALNEGO (IKZE)

INDYWIDUALNE KONTO ZABEZPIECZENIA EMERYTALNEGO (IKZE) INDYWIDUALNE KONTO ZABEZPIECZENIA EMERYTALNEGO (IKZE) P R E Z E N TA C J A W Y N I K Ó W Z B A D A N I A T Y P U O M N I B U S D L A PIPUIF 1 PRZYGOTOWAŁ: MARCIN KOŁAKOWSKI KOORDYNACJA: GRZEGORZ KOWALCZYK

Bardziej szczegółowo

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów

Bardziej szczegółowo

1. Projektowanie badania. 2. Dobór próby. 3. Dobór metody i budowa instrumentu. 4. Pomiar (badanie) 5. Redukcja danych. 6.

1. Projektowanie badania. 2. Dobór próby. 3. Dobór metody i budowa instrumentu. 4. Pomiar (badanie) 5. Redukcja danych. 6. 1. Projektowanie badania 2. Dobór próby 3. Dobór metody i budowa instrumentu badawczego 4. Pomiar (badanie) 5. Redukcja danych 6. Analiza danych 7. Przygotowanie raportu (prezentacja wyników) Określenie

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: AMA-2-311-MN-s Punkty ECTS: 6. Kierunek: Matematyka Specjalność: Matematyka w naukach technicznych i przyrodniczych

Rok akademicki: 2013/2014 Kod: AMA-2-311-MN-s Punkty ECTS: 6. Kierunek: Matematyka Specjalność: Matematyka w naukach technicznych i przyrodniczych Nazwa modułu: teoria ryzyka Rok akademicki: 2013/2014 Kod: AMA-2-311-MN-s Punkty ECTS: 6 Wydział: Matematyki Stosowanej Kierunek: Matematyka Specjalność: Matematyka w naukach technicznych i przyrodniczych

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, 23.09.2008 Biomatematyka

EGZAMIN DYPLOMOWY, część II, 23.09.2008 Biomatematyka Biomatematyka W 200-elementowej próbie losowej z diploidalnej populacji wystąpiło 89 osobników genotypu AA, 57 osobników genotypu Aa oraz 54 osobników genotypu aa. Na podstawie tych danych (a) dokonaj

Bardziej szczegółowo

Statystyka matematyczna w Excelu dla szkó³. Æwiczenia praktyczne

Statystyka matematyczna w Excelu dla szkó³. Æwiczenia praktyczne IDZ DO PRZYK ADOWY ROZDZIA SPIS TRE CI KATALOG KSI EK KATALOG ONLINE ZAMÓW DRUKOWANY KATALOG Statystyka matematyczna w Excelu dla szkó³. Æwiczenia praktyczne Autor: Andrzej Obecny ISBN: 83-7197-711-5 Format:

Bardziej szczegółowo

Proces modelowania zjawiska handlu zagranicznego towarami

Proces modelowania zjawiska handlu zagranicznego towarami Załącznik nr 1 do raportu końcowego z wykonania pracy badawczej pt. Handel zagraniczny w województwach (NTS2) realizowanej przez Centrum Badań i Edukacji Statystycznej z siedzibą w Jachrance na podstawie

Bardziej szczegółowo

Statystyczne metody analizy danych

Statystyczne metody analizy danych Statystyczne metody analizy danych Statystyka opisowa Wykład I-III Agnieszka Nowak - Brzezińska Definicje Statystyka (ang.statistics) - to nauka zajmująca się zbieraniem, prezentowaniem i analizowaniem

Bardziej szczegółowo

Matlab, zajęcia 3. Jeszcze jeden przykład metoda eliminacji Gaussa dla macierzy 3 na 3

Matlab, zajęcia 3. Jeszcze jeden przykład metoda eliminacji Gaussa dla macierzy 3 na 3 Matlab, zajęcia 3. Pętle c.d. Przypomnijmy sobie jak działa pętla for Możemy podać normalnie w Matlabie t=cputime; for i=1:20 v(i)=i; e=cputime-t UWAGA: Taka operacja jest bardzo czasochłonna i nieoptymalna

Bardziej szczegółowo

Wyznaczanie symulacyjne granicy minimalnej w portfelu Markowitza

Wyznaczanie symulacyjne granicy minimalnej w portfelu Markowitza Wyznaczanie symulacyjne granicy minimalnej w portfelu Markowitza Łukasz Kanar UNIWERSYTET WARSZAWSKI WYDZIAŁ NAUK EKONOMICZNYCH WARSZAWA 2008 1. Portfel Markowitza Dany jest pewien portfel n 1 spółek giełdowych.

Bardziej szczegółowo

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07 Statystyka dzieli się na trzy części: Przedmiot statystyki -zbieranie danych; -opracowanie i kondensacja danych (analiza danych);

Bardziej szczegółowo

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007

Ekonometria. Modele regresji wielorakiej - dobór zmiennych, szacowanie. Paweł Cibis pawel@cibis.pl. 1 kwietnia 2007 Modele regresji wielorakiej - dobór zmiennych, szacowanie Paweł Cibis pawel@cibis.pl 1 kwietnia 2007 1 Współczynnik zmienności Współczynnik zmienności wzory Współczynnik zmienności funkcje 2 Korelacja

Bardziej szczegółowo

Meta-analiza danych. Krzysztof Misztal 09.11.2009

Meta-analiza danych. Krzysztof Misztal 09.11.2009 Meta-analiza danych Krzysztof Misztal Uniwersytet Jagielloński Wydział Matematyki i Informatyki Informatyka 09.11.2009 1 Co to jest meta-analiza danych? 2 Fixed effects method 3 Heterogeniczność 4 Random

Bardziej szczegółowo

Metody numeryczne. Wykład nr 12. Dr Piotr Fronczak

Metody numeryczne. Wykład nr 12. Dr Piotr Fronczak Metody numeryczne Wykład nr 1 Dr Piotr Fronczak Generowanie liczb losowych Metody Monte Carlo są oparte na probabilistyce działają dzięki generowaniu liczb losowych. W komputerach te liczby generowane

Bardziej szczegółowo

Wykład 9: Markov Chain Monte Carlo

Wykład 9: Markov Chain Monte Carlo RAP 412 17.12.2008 Wykład 9: Markov Chain Monte Carlo Wykładowca: Andrzej Ruciński Pisarz: Ewelina Rychlińska i Wojciech Wawrzyniak Wstęp W tej części wykładu zajmiemy się zastosowaniami łańcuchów Markowa

Bardziej szczegółowo

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające. Plan wynikowy lasa III Technik pojazdów samochodowych/ Technik urządzeń

Bardziej szczegółowo

Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna

Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna Wielowymiarowa analiza regresji. Regresja wieloraka, wielokrotna Badanie współzależności zmiennych Uwzględniając ilość zmiennych otrzymamy 4 odmiany zależności: Zmienna zależna jednowymiarowa oraz jedna

Bardziej szczegółowo

Ł Ł Ś Ę ź ź ź ź Ś ź ż Ę Ę Ś ż Ś ń Ś Ó Ą Ł Ą Ś ź Ę ć Ś ź ż ż ż ż ż ć ż ż Ń ć ń Ś ź ż ń ć ć ż ć ż źń ć ż ż ż ź ń ć ć Ł ż Ę ń ć ż ń ż ż Ś ź ż ń ń Ś ż Ś ń Ś ż ż Ś ń Ą ż Ł ć ż ż ż ń ż ż ż ż ń Ł ń Ę Ę Ą ń ź

Bardziej szczegółowo

Ń Ó Ą Ó Ą Ń ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ź ć ć ć ć Ń ć ć ć ź ź Ą ć ć ć ź Ź ź ć ŚĆ ć ć ć ź ć źń Ć Ż ź ć ć ć ź ć Ż Ą ć Ż ć ź ć ź ź ź Ą ć ć ć ć ć ć Ą ć ć ć ć ć ć ć ć ć ć ź ć ć ć ć ć ć ć Ą ć Ó ź Ó Ó Ń Ą Ó

Bardziej szczegółowo

ń Ą ń Ż Ż ń Ó ź Ę ź ź Ę ć ć ć Ś ź ŚĆ Ś ź ź ź ź Ś ź ń Ś Ó Ć ŚĆ Ć ć ć ć ź ń ć Ó ń ń ń Ś ń ń Ś ń ź ź ź źń Ź Ś ń Ć Ś Ś Ź ń ń Ś ń ń Ś ź ź Ś ź źń Ś ć ć ń Ś ń ń Ś Ś Ś Ś ń ź ź Ś ź źń ź Ś ń ź Ś Ś Ś ź ń ń Ś ń ń

Bardziej szczegółowo

Motto. Czy to nie zabawne, że ci sami ludzie, którzy śmieją się z science fiction, słuchają prognoz pogody oraz ekonomistów? (K.

Motto. Czy to nie zabawne, że ci sami ludzie, którzy śmieją się z science fiction, słuchają prognoz pogody oraz ekonomistów? (K. Motto Cz to nie zabawne, że ci sami ludzie, którz śmieją się z science fiction, słuchają prognoz pogod oraz ekonomistów? (K. Throop III) 1 Specfika szeregów czasowch Modele szeregów czasowch są alternatwą

Bardziej szczegółowo

Badania marketingowe

Badania marketingowe Wiesz już co chcesz osiągnąć w badaniu marketingowym i jak to (idealnie) zorganizować. Ale jakimi metodami? Skąd pewność, że będą efektywne? Ćwiczenie: jaką metodą zbadasz co koledzy/koleżanki na sali

Bardziej szczegółowo

Analiza Statystyczna

Analiza Statystyczna Lekcja 5. Strona 1 z 12 Analiza Statystyczna Do analizy statystycznej wykorzystać można wbudowany w MS Excel pakiet Analysis Toolpak. Jest on instalowany w programie Excel jako pakiet dodatkowy. Oznacza

Bardziej szczegółowo

KARTA INFORMACYJNA PRZEDMIOTU

KARTA INFORMACYJNA PRZEDMIOTU Uniwersytet Rzeszowski WYDZIAŁ KIERUNEK Matematyczno-Przyrodniczy Fizyka techniczna SPECJALNOŚĆ RODZAJ STUDIÓW stacjonarne, studia pierwszego stopnia KARTA INFORMACYJNA PRZEDMIOTU NAZWA PRZEDMIOTU WG PLANU

Bardziej szczegółowo

Wstęp do analitycznych i numerycznych metod wyceny opcji

Wstęp do analitycznych i numerycznych metod wyceny opcji Wstęp do analitycznych i numerycznych metod wyceny opcji Jan Palczewski Wydział Matematyki, Informatyki i Mechaniki Uniwersytet Warszawski Warszawa, 16 maja 2008 Jan Palczewski Wycena opcji Warszawa, 2008

Bardziej szczegółowo