Analiza metod prognozowania kursów akcji

Wielkość: px
Rozpocząć pokaz od strony:

Download "Analiza metod prognozowania kursów akcji"

Transkrypt

1 Analiza metod prognozowania kursów akcji Izabela Łabuś Wydział InŜynierii Mechanicznej i Informatyki Kierunek informatyka, Rok V Specjalność informatyka ekonomiczna Politechnika Częstochowska Streszczenie Praca omawia moŝliwości prognozowania cen akcji waŝniejszych spółek na Warszawskiej Giełdzie Papierów Wartościowych. Porównano efektywność prognozowania na podstawie trzech najwaŝniejszych modeli prognostycznych, jakimi są: wyrównywanie wykładnicze, model oraz model regresji wielorakiej. Badania te zostały przeprowadzone na danych rzeczywistych dla ośmiu wybranych spółek. Wybór odpowiednich spółek nie był przypadkowy poniewaŝ do przeprowadzenia prognoz wybrano tylko te spółki, które są brane pod uwagę do konstruowania indeksu WIG 20. Indeks ten jest jednym z indeksów rynku, który charakteryzuje rynek podstawowy Giełdy Papierów Wartościowych w Warszawie. 1. Wstęp Niemal wszystkie akcje zmieniają swoje ceny codziennie, a duŝa ich część w sposób niemal ciągły. Wykresy cen przedstawiają, w zaleŝności od nastawienia obserwatora, efekt równowaŝenia się sił popytu i podaŝy, dyskontowanie przyszłych zdarzeń, reakcje na wydarzenia historyczne bądź efekt manipulacji akcjami. Te bądź jeszcze inne przyczyny zmian cen usiłuje się wykorzystać w analizie historycznych przebiegów i próbie prognozowania przyszłego zachowania cen. Zachowanie poszczególnych akcji zapisane w postaci kolejnych cen i przekształcone do postaci graficznej to dla kaŝdego inwestora wykres ceny. 2. Prognozowanie na podstawie najwaŝniejszych modeli Model wyrównywania wykładniczego stało się bardzo popularne jako metoda prognozowania dla wielu typów szeregów czasowych. Metoda ta została rozwinięta niezaleŝnie przez

2 Browna i Holta. Modeli wyrównywania wykładniczego jest kilka rodzajów. Szereg czasowy moŝe nie mieć składnika sezonowego albo moŝe go mieć jako składnik (dodawany - addytywny) lub jako czynnik (mnoŝony - multiplikatywny). Po drugie: moŝemy w szeregu mieć trend liniowy, wykładniczy lub gasnący. Po obserwacji szeregów do badań wykorzystano wiodącą okresowość 7 dni, składnik sezonowy był zawsze addytywny natomiast jeŝeli chodzi o postać trendu to albo był to trend wykładniczy bądź gasnący Model Metodologia została rozwinięta przez Boxa i Jenkinsa (1976) [1]. Mimo swych zalet i elastyczności, jest techniką złoŝoną; nie jest łatwa w uŝyciu, wymaga duŝego doświadczenia i chociaŝ często daje zadowalające wyniki, to zaleŝą one w duŝym stopniu od badacza. W modelu wyróŝnia się trzy typy parametrów: parametry autoregresyjne (p), rząd róŝnicowania (d) oraz parametry średniej ruchomej (q). Do identyfikacji modelu naleŝało zidentyfikować liczbę i typ tych parametrów. Podstawowym narzędziem do identyfikacji były wykresy szeregów, korelogramy autokorelacji i autokorelacji cząstkowej. Model ARMA ma zastosowanie tylko do szeregów stacjonarnych. W praktyce, większość szeregów, z którymi mamy do czynienia to szeregi niestacjonarne o zmiennej wartości oczekiwanej. W takim przypadku trzeba było dokonać albo ekstrakcji trendu, albo wziąć do modelowania róŝnice kolejnych próbek Model regresji wielorakiej Termin "regresja" został po raz pierwszy uŝyty przez Pearsona w 1908 roku [2]. Do budowy modelu prognostycznego oszacowano model zawierający aktualne wartości cen akcji oraz wstępnie zidentyfikowane składowe okresowe w postaci odpowiednio opóźnionych zmiennych autoregresyjnych. 3. Analiza wybranych szeregów czasowych kursów akcji Analizie zostały poddane następujące spółki: BZWBK, TP S.A., AGORA, DĘBICA, COMARCH, KĘTY, KGHM oraz PEKAO. Wszystkie obliczenia przeprowadzono w pakiecie Statistica 6.0. Szeregi czasowe kursów akcji powyŝej wymienionych spółek obejmowały 60 kolejnych sesji. Na rysunkach poniŝej (Rys. 1, Rys. 2, Rys. 3) przedstawiono otrzymane prognozy dla spółki COMARCH.

3 Rys. 1. Szereg poddany wyrównywaniu wykładniczemu i prognoza dla spółki COMARCH. Rys. 2. Prognoza punktowa i przedziałowa dla spółki COMARCH przy poziomie ±0,45- model. Rys. 3. Szereg czasowy oraz prognoza dla spółki COMARCH- model regresji wielorakiej.

4 Sesja Wartość rzeczywista Dla poziomu :90% Wyrównanie wykładnicze Dla poziomu : 90% 56, , ,5 55, , , , , , , ,2 55, , , , , , , ,2 55, , , , , , , ,3 55, , , , ,6538 Tabela 1. Porównanie trafności prognoz trzech modeli wraz z granicami dla spółki COMARCH Prognoza dla spółki COMARCH Wyrównanie wykładnicze Rys. 4. Zestawienie otrzymanych prognoz spółki COMARCH. Z wykresu moŝna odczytać, Ŝe najbardziej trafne prognozy otrzymano metodami wyrównywania wykładniczego oraz.

5 Na rysunkach poniŝej (Rys. 5, Rys. 6, Rys. 7) przedstawiono otrzymane prognozy dla spółki KGHM. Rys. 5. Szereg poddany wyrównywaniu wykładniczemu oraz prognoza dla spółki KGHM. Rys. 6. Prognoza punktowa i przedziałowa dla spółki KGHM przy poziomie ±0,45- model. Rys. 7. Szereg czasowy oraz prognoza dla spółki KGHM- model regresji wielorakiej.

6 Sesja Wartość rzeczywista Dla poziomu. : 90% Wyrównanie wykładnicze Dla poziomu : 90% 28, , ,2 28, , , , , , , ,5 28, , , , , , , ,7 28, , , , , , , ,9 29, , , , ,5148 Tabela 2. Porównanie trafności prognoz trzech modeli wraz z granicami dla spółki KGHM , , , ,5 Prognoza dla spółki KGHM Rys. 8. Zestawienie otrzymanych prognoz spółki KGHM. W przypadku spółki KGHM wszystkie trzy metody prognostyczne sprawdziły się bardzo dobrze, otrzymano trafne prognozy.

7 Na poniŝszych rysunkach przedstawiono otrzymane prognozy dla pozostałych badanych spółek Prognoza dla spółki BZWBK Rys. 9. Zestawienie otrzymanych prognoz spółki BZWBK. 14,4 14, ,8 13,6 13,4 13,2 Prognoza dla spółki TP S.A Rys. 10. Zestawienie otrzymanych prognoz spółki TP S.A Prognoza dla spółki AGORA Prognoza dla spółki DĘBICA Rys. 11. Zestawienie otrzymanych prognoz spółki AGORA. Rys. 12. Zestawienie otrzymanych prognoz spółki DĘBICA Prognoza dla spółki KĘTY Rys. 13. Zestawienie otrzymanych prognoz spółki KĘTY Prognoza dla spółki PEKAO Rys. 14. Zestawienie otrzymanych prognoz spółki PEKAO.

8 4. Podsumowanie Przeprowadzone badania wykazały, Ŝe wybrane modele statystyczne mogą być zastosowane w prognozowaniu cen akcji na giełdzie. Najbardziej dokładne prognozy otrzymano za pomocą: metody wyrównywania wykładniczego oraz modelu. Najprostszy model regresji wielorakiej sprawdził się nieco gorzej ale reasumując otrzymane wyniki to prognozy nie odbiegają w znacznym stopniu od wartości rzeczywistych. Zaletą regresji wielorakiej oraz modelu jest to, Ŝe moŝna otrzymać oprócz prognozy punktowej równieŝ prognozy przedziałowe. Dysponując prognozami przedziałowymi moŝna określić dokładność obliczeń oraz lepiej podejmować decyzje czy inwestować w akcje danej spółki czy teŝ nie. PoniŜej po analizie prognoz umieszczono ranking spółek, dla których po zastosowaniu modelu otrzymano najbardziej trafne prognozy. 1. KGHM, 2. BZWBK, 3. KĘTY, 4. COMARCH, 5. TP S.A., 6. AGORA, 7. DĘBICA, 8. PEKAO. Jak widać, wybrany model prognostyczny najlepiej sprawdził się dla szeregu czasowego spółki KGHM. Oznacza to, Ŝe po zastosowaniu tego modelu najlepiej opłaca się inwestować w akcje tej spółki. Bibliografia [1] Paweł Dittmann, Prognozowanie w zarządzaniu przedsiębiorstwem. [2] Aleksander Zeliaś, Barbara Pawełek, Stanisław Wanat, Prognozowanie ekonomiczne. Teoria. Przykłady. Zadania.

3. Analiza własności szeregu czasowego i wybór typu modelu

3. Analiza własności szeregu czasowego i wybór typu modelu 3. Analiza własności szeregu czasowego i wybór typu modelu 1. Metody analizy własności szeregu czasowego obserwacji 1.1. Analiza wykresu szeregu czasowego 1.2. Analiza statystyk opisowych zmiennej prognozowanej

Bardziej szczegółowo

Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA

Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA Zagadnienie 1: Prognozowanie za pomocą modeli liniowych i kwadratowych przy wykorzystaniu Analizy regresji wielorakiej w programie STATISTICA Zadanie 1 (Plik danych: Transport w Polsce (1990-2015)) Na

Bardziej szczegółowo

PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY

PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY Joanna Chrabołowska Joanicjusz Nazarko PROGNOZOWANIE PRZYCHODÓW ZE SPRZEDAŻY NA PRZYKŁADZIE PRZEDSIĘBIORSTWA HANDLOWEGO TYPU CASH & CARRY Wprowadzenie Wśród wielu prognoz szczególną rolę w zarządzaniu

Bardziej szczegółowo

Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA

Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Modele tej klasy są modelami ateoretycznymi Ważną klasę modeli dynamicznych stanowią

Bardziej szczegółowo

SYLABUS. 4.Studia Kierunek studiów/specjalność Poziom kształcenia Forma studiów Ekonomia Studia pierwszego stopnia Studia stacjonarne i niestacjonarne

SYLABUS. 4.Studia Kierunek studiów/specjalność Poziom kształcenia Forma studiów Ekonomia Studia pierwszego stopnia Studia stacjonarne i niestacjonarne SYLABUS 1.Nazwa przedmiotu Prognozowanie i symulacje 2.Nazwa jednostki prowadzącej Katedra Metod Ilościowych i Informatyki przedmiot Gospodarczej 3.Kod przedmiotu E/I/A.16 4.Studia Kierunek studiów/specjalność

Bardziej szczegółowo

Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych - uwarunkowania i metody. Sylwia Grudkowska NBP Mariusz Hamulczuk IERIGś-PIB

Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych - uwarunkowania i metody. Sylwia Grudkowska NBP Mariusz Hamulczuk IERIGś-PIB Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych - uwarunkowania i metody Sylwia Grudkowska NBP Mariusz Hamulczuk IERIGś-PIB Plan prezentacji Wprowadzenie do prognozowania Metody

Bardziej szczegółowo

Wykład 5: Analiza dynamiki szeregów czasowych

Wykład 5: Analiza dynamiki szeregów czasowych Wykład 5: Analiza dynamiki szeregów czasowych ... poczynając od XIV wieku zegar czynił nas najpierw stróżów czasu, następnie ciułaczy czasu, i wreszcie obecnie - niewolników czasu. W trakcie tego procesu

Bardziej szczegółowo

Analiza autokorelacji

Analiza autokorelacji Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.

Bardziej szczegółowo

Czy moŝna zarobić na rekomendacjach maklerskich? czyli słów kilka o trafności i skuteczności rekomendacji giełdowych

Czy moŝna zarobić na rekomendacjach maklerskich? czyli słów kilka o trafności i skuteczności rekomendacji giełdowych Czy moŝna zarobić na rekomendacjach maklerskich? czyli słów kilka o trafności i skuteczności rekomendacji giełdowych Prezentację przygotował Piotr Cieślak Analityk SII Co to jest rekomendacja? Rekomendacja

Bardziej szczegółowo

Co trzeba wiedzieć korzystając z modelu ARIMA i które parametry są kluczowe?

Co trzeba wiedzieć korzystając z modelu ARIMA i które parametry są kluczowe? Prognozowanie Co trzeba wiedzieć korzystając z modelu ARIMA Marta Płonka Predictive Solutions W trzecim już artykule dotyczącym szeregów czasowych przyjrzymy się modelom ARIMA. Dzisiaj skupimy się na metodzie

Bardziej szczegółowo

Arkadiusz Manikowski Zbigniew Tarapata. Prognozowanie i symulacja rozwoju przedsiębiorstw

Arkadiusz Manikowski Zbigniew Tarapata. Prognozowanie i symulacja rozwoju przedsiębiorstw Arkadiusz Manikowski Zbigniew Tarapata Prognozowanie i symulacja rozwoju przedsiębiorstw Warszawa 2002 Recenzenci doc. dr. inż. Ryszard Mizera skład i Łamanie mgr. inż Ignacy Nyka PROJEKT OKŁADKI GrafComp,

Bardziej szczegółowo

A.Światkowski. Wroclaw University of Economics. Working paper

A.Światkowski. Wroclaw University of Economics. Working paper A.Światkowski Wroclaw University of Economics Working paper 1 Planowanie sprzedaży na przykładzie przedsiębiorstwa z branży deweloperskiej Cel pracy: Zaplanowanie sprzedaży spółki na rok 2012 Słowa kluczowe:

Bardziej szczegółowo

Dopasowywanie modelu do danych

Dopasowywanie modelu do danych Tematyka wykładu dopasowanie modelu trendu do danych; wybrane rodzaje modeli trendu i ich właściwości; dopasowanie modeli do danych za pomocą narzędzi wykresów liniowych (wykresów rozrzutu) programu STATISTICA;

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK

PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK 1 PROGNOZOWANIE I SYMULACJE 2 http://www.outcome-seo.pl/excel1.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodatek Solver jest dostępny w menu Narzędzia. Jeżeli Solver nie jest

Bardziej szczegółowo

3. Modele tendencji czasowej w prognozowaniu

3. Modele tendencji czasowej w prognozowaniu II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa

Bardziej szczegółowo

MODELE ARIMA W PROGNOZOWANIU SPRZEDAŻY***

MODELE ARIMA W PROGNOZOWANIU SPRZEDAŻY*** ZAGADNIENIA TECHNICZNO-EKONOMICZNE Tom 48 Zeszyt 3 2003 Joanna Chrabołowska*, Joanicjusz Nazarko** MODELE ARIMA W PROGNOZOWANIU SPRZEDAŻY*** W artykule przedstawiono metodykę budowy modeli ARIMA oraz ich

Bardziej szczegółowo

Metody Prognozowania

Metody Prognozowania Wprowadzenie Ewa Bielińska 3 października 2007 Plan 1 Wprowadzenie Czym jest prognozowanie Historia 2 Ciągi czasowe Postępowanie prognostyczne i prognozowanie Predykcja długo- i krótko-terminowa Rodzaje

Bardziej szczegółowo

PROGNOZOWANIE CENY OGÓRKA SZKLARNIOWEGO ZA POMOCĄ SIECI NEURONOWYCH

PROGNOZOWANIE CENY OGÓRKA SZKLARNIOWEGO ZA POMOCĄ SIECI NEURONOWYCH InŜynieria Rolnicza 14/2005 Sławomir Francik Katedra InŜynierii Mechanicznej i Agrofizyki Akademia Rolnicza w Krakowie PROGNOZOWANIE CENY OGÓRKA SZKLARNIOWEGO ZA POMOCĄ SIECI NEURONOWYCH Streszczenie W

Bardziej szczegółowo

Po co w ogóle prognozujemy?

Po co w ogóle prognozujemy? Po co w ogóle prognozujemy? Pojęcie prognozy: racjonalne, naukowe przewidywanie przyszłych zdarzeń stwierdzenie odnoszącym się do określonej przyszłości formułowanym z wykorzystaniem metod naukowym, weryfikowalnym

Bardziej szczegółowo

Trend - róŝne sposoby określania kierunku ruchu ceny Investors Level

Trend - róŝne sposoby określania kierunku ruchu ceny Investors Level Trend - róŝne sposoby określania kierunku ruchu ceny Investors Level Paweł Śliwa stowarzyszenie@satrf.org trend Jest to tendencja, moda czy teŝ kierunek w którym podąŝa cena przez dominującą część czasu.

Bardziej szczegółowo

WYKORZYSTANIE MODELI AUTOREGRESJI DO PROGNOZOWANIA SZEREGU CZASOWEGO ZWIĄZANEGO ZE SPRZEDAŻĄ ASORTYMENTU HUTNICZEGO

WYKORZYSTANIE MODELI AUTOREGRESJI DO PROGNOZOWANIA SZEREGU CZASOWEGO ZWIĄZANEGO ZE SPRZEDAŻĄ ASORTYMENTU HUTNICZEGO 5/18 ARCHIWUM ODLEWNICTWA Rok 2006, Rocznik 6, Nr 18 (1/2) ARCHIVES OF FOUNDRY Year 2006, Volume 6, N o 18 (1/2) PAN Katowice PL ISSN 1642-5308 WYKORZYSTANIE MODELI AUTOREGRESJI DO PROGNOZOWANIA SZEREGU

Bardziej szczegółowo

MODELE AUTOREGRESYJNE W PROGNOZOWANIU CEN ZBÓŻ W POLSCE

MODELE AUTOREGRESYJNE W PROGNOZOWANIU CEN ZBÓŻ W POLSCE METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XI/2, 2010, str. 254 263 MODELE AUTOREGRESYJNE W PROGNOZOWANIU CEN ZBÓŻ W POLSCE Agnieszka Tłuczak Zakład Ekonometrii i Metod Ilościowych, Wydział Ekonomiczny

Bardziej szczegółowo

Wytyczne do projektów

Wytyczne do projektów Wytyczne do projektów Prognozowanie i symulacje wszystkie rodzaje studiów Politechnika Śląska Wydział Organizacji i Zarządzania w Zabrzu rok akademicki 2012/13 Wytyczne do projektów Prognozowanie i symulacje

Bardziej szczegółowo

Kształtowanie się cen m 2 mieszkania we Wrocławiu w krótkim okresie

Kształtowanie się cen m 2 mieszkania we Wrocławiu w krótkim okresie Kształtowanie się cen m 2 mieszkania we Wrocławiu w krótkim okresie Projekt prognostyczny ElŜbieta Bulak Piotr Olszewski Michał Tomanek Tomasz Witka IV ZI gr. 13. Wrocław 2007 I. Sformułowanie zadania

Bardziej szczegółowo

Wykład 6: Analiza danych czasowych Wykresy, indeksy dynamiki

Wykład 6: Analiza danych czasowych Wykresy, indeksy dynamiki Wykład 6: Analiza danych czasowych Wykresy, indeksy dynamiki ... poczynając od XIV wieku zegar czynił nas najpierw stróżów czasu, następnie ciułaczy czasu, i wreszcie obecnie - niewolników czasu. W trakcie

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

Budowa portfela inwestycyjnego za pomocą siły relatywnej i elementy pairs trading

Budowa portfela inwestycyjnego za pomocą siły relatywnej i elementy pairs trading Budowa portfela inwestycyjnego za pomocą siły relatywnej i elementy pairs trading Krzysztof Borowski KBC Securities Krzysztof Borowski - Analiza techniczna 1 AT / AF Metody analizy na giełdzie: Analiza

Bardziej szczegółowo

Prognozowanie popytu. mgr inż. Michał Adamczak

Prognozowanie popytu. mgr inż. Michał Adamczak Prognozowanie popytu mgr inż. Michał Adamczak Plan prezentacji 1. Definicja prognozy 2. Klasyfikacja prognoz 3. Szereg czasowy 4. Metody prognozowania 4.1. Model naiwny 4.2. Modele średniej arytmetycznej

Bardziej szczegółowo

Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF

Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF Statystyka opisowa Opracował: dr hab. Eugeniusz Gatnar, prof. WSBiF 120 I. Ogólne informacje o przedmiocie Cel przedmiotu: Opanowanie podstaw teoretycznych, poznanie przykładów zastosowań metod statystycznych.

Bardziej szczegółowo

Niepewność metody FMEA. Wprowadzenie 2005-12-28

Niepewność metody FMEA. Wprowadzenie 2005-12-28 5-1-8 Niepewność metody FMEA Wprowadzenie Doskonalenie produkcji metodą kolejnych kroków odbywa się na drodze analizowania przyczyn niedociągnięć, znajdowania miejsc powstawania wad, oceny ich skutków,

Bardziej szczegółowo

Test wskaźnika C/Z (P/E)

Test wskaźnika C/Z (P/E) % Test wskaźnika C/Z (P/E) W poprzednim materiale przedstawiliśmy Państwu teoretyczny zarys informacji dotyczący wskaźnika Cena/Zysk. W tym artykule zwrócimy uwagę na praktyczne zastosowania tego wskaźnika,

Bardziej szczegółowo

Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych

Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych Prognozowanie cen surowców w rolnych na podstawie szeregów w czasowych Mariusz Hamulczuk Pułtusk 06.12.1011 Wprowadzenie Przewidywanie a prognozowanie Metoda prognozowania rodzaje metod i prognoz Czy moŝna

Bardziej szczegółowo

KOMPUTEROWE WSPOMAGANIE ZARZĄDZANIA PROJEKTAMI W PRZEDSIĘBIORSTWIE

KOMPUTEROWE WSPOMAGANIE ZARZĄDZANIA PROJEKTAMI W PRZEDSIĘBIORSTWIE KOMPUTEROWE WSPOMAGANIE ZARZĄDZANIA PROJEKTAMI W PRZEDSIĘBIORSTWIE Seweryn SPAŁEK Streszczenie: Zarządzanie projektami staje się coraz bardziej powszechne w przedsiębiorstwach produkcyjnych, handlowych

Bardziej szczegółowo

Nazwa przedmiotu: Informatyczne systemy statystycznej obróbki danych. Informatics systems for the statistical treatment of data Kierunek:

Nazwa przedmiotu: Informatyczne systemy statystycznej obróbki danych. Informatics systems for the statistical treatment of data Kierunek: Nazwa przedmiotu: Informatyczne systemy statystycznej obróbki danych I KARTA PRZEDMIOTU CEL PRZEDMIOTU Informatics systems for the statistical treatment of data Kierunek: Forma studiów Informatyka Stacjonarne

Bardziej szczegółowo

MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek

MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek Tytuł: Autor: MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek Wstęp Książka "Modelowanie polskiej gospodarki z pakietem R" powstała na bazie materiałów, które wykorzystywałem przez ostatnie

Bardziej szczegółowo

2008-03-18 wolne wolne 2008-03-25 wolne wolne

2008-03-18 wolne wolne 2008-03-25 wolne wolne PLAN SPOTKAŃ ĆWICZEŃ: Data Grupa 2a Grupa 4a Grupa 2b Grupa 4b 2008-02-19 Zajęcia 1 Zajęcia 1 2008-02-26 Zajęcia 1 Zajęcia 1 2008-03-04 Zajęcia 2 Zajęcia 2 2008-03-11 Zajęcia 2 Zajęcia 2 2008-03-18 wolne

Bardziej szczegółowo

Analiza regresji - weryfikacja założeń

Analiza regresji - weryfikacja założeń Medycyna Praktyczna - portal dla lekarzy Analiza regresji - weryfikacja założeń mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie (Kierownik Zakładu: prof.

Bardziej szczegółowo

7.4 Automatyczne stawianie prognoz

7.4 Automatyczne stawianie prognoz szeregów czasowych za pomocą pakietu SPSS Następnie korzystamy z menu DANE WYBIERZ OBSERWACJE i wybieramy opcję WSZYSTKIE OBSERWACJE (wówczas wszystkie obserwacje są aktywne). Wreszcie wybieramy z menu

Bardziej szczegółowo

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego

Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Budowa sztucznych sieci neuronowych do prognozowania. Przykład jednostek uczestnictwa otwartego funduszu inwestycyjnego Dorota Witkowska Szkoła Główna Gospodarstwa Wiejskiego w Warszawie Wprowadzenie Sztuczne

Bardziej szczegółowo

Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006

Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006 Modele dynamiczne Paweł Cibis pcibis@o2.pl 27 kwietnia 2006 1 Wyodrębnianie tendencji rozwojowej 2 Etap I Wyodrębnienie tendencji rozwojowej Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Etap

Bardziej szczegółowo

- nowe wyzwania. Paweł Kominek

- nowe wyzwania. Paweł Kominek Informatyzacja przedsiębiorstw - nowe wyzwania Paweł Kominek Poznań, 05-01-2010 Plan prezentacji Zakres przedmiotu krótkie wprowadzenie Zakres przedmiotu krótkie wprowadzenie Systemy zarządzania Gry i

Bardziej szczegółowo

WYKORZYSTANIE ANALIZY TECHNICZNEJ W PROCESIE PODEJMOWANIA DECYZJI INWESTYCYJNYCH NA PRZYKŁADZIE KGHM POLSKA MIEDŹ S.A.

WYKORZYSTANIE ANALIZY TECHNICZNEJ W PROCESIE PODEJMOWANIA DECYZJI INWESTYCYJNYCH NA PRZYKŁADZIE KGHM POLSKA MIEDŹ S.A. Uniwersytet Wrocławski Wydział Prawa, Administracji i Ekonomii Instytut Nauk Ekonomicznych Zakład Zarządzania Finansami Studia Stacjonarne Ekonomii pierwszego stopnia Krzysztof Maruszczak WYKORZYSTANIE

Bardziej szczegółowo

Wyznaczanie symulacyjne granicy minimalnej w portfelu Markowitza

Wyznaczanie symulacyjne granicy minimalnej w portfelu Markowitza Wyznaczanie symulacyjne granicy minimalnej w portfelu Markowitza Łukasz Kanar UNIWERSYTET WARSZAWSKI WYDZIAŁ NAUK EKONOMICZNYCH WARSZAWA 2008 1. Portfel Markowitza Dany jest pewien portfel n 1 spółek giełdowych.

Bardziej szczegółowo

Typowe błędy w analizie rynku nieruchomości przy uŝyciu metod statystycznych

Typowe błędy w analizie rynku nieruchomości przy uŝyciu metod statystycznych Typowe błędy w analizie rynku nieruchomości przy uŝyciu metod statystycznych Sebastian Kokot XXI Krajowa Konferencja Rzeczoznawców Majątkowych, Międzyzdroje 2012 Rzetelnie wykonana analiza rynku nieruchomości

Bardziej szczegółowo

Nowa Netia. Sytuacja miesiąc po nabyciu Tele2 Polska. Telekonferencja dla inwestorów 14 października 2008

Nowa Netia. Sytuacja miesiąc po nabyciu Tele2 Polska. Telekonferencja dla inwestorów 14 października 2008 Nowa Netia Sytuacja miesiąc po nabyciu Tele2 Polska Telekonferencja dla inwestorów 14 października 2008 Informacje zawarte w niniejszej prezentacji zawierają stwierdzenia dotyczące przyszłości (prognozy).

Bardziej szczegółowo

Prognozowanie na podstawie modelu ekonometrycznego

Prognozowanie na podstawie modelu ekonometrycznego Prognozowanie na podstawie modelu ekonometrycznego Przykład. Firma usługowa świadcząca usługi doradcze w ostatnich kwartałach (t) odnotowała wynik finansowy (yt - tys. zł), obsługując liczbę klientów (x1t)

Bardziej szczegółowo

Analiza wyników egzaminu gimnazjalnego w województwie pomorskim w latach

Analiza wyników egzaminu gimnazjalnego w województwie pomorskim w latach Barbara Przychodzeń Analiza wyników egzaminu gimnazjalnego w województwie pomorskim w latach 2012-2013 W 2012 roku po raz pierwszy został przeprowadzony egzamin gimnazjalny według nowych zasad. Zmiany

Bardziej szczegółowo

egzamin oraz kolokwium

egzamin oraz kolokwium KARTA PRZEDMIOTU Kod przedmiotu E/FIRP/PSY w języku polskim Prognozowanie i symulacje Nazwa przedmiotu w języku angielskim Forecasting and simulation USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW Kierunek

Bardziej szczegółowo

Indeksy dynamiki (o stałej i zmiennej podstawie)

Indeksy dynamiki (o stałej i zmiennej podstawie) Indeksy dynamiki (o stałej i zmiennej podstawie) Proste indeksy dynamiki określają tempo zmian pojedynczego szeregu czasowego. Wyodrębnia się dwa podstawowe typy indeksów: indeksy o stałej podstawie; indeksy

Bardziej szczegółowo

SPRAWDZIAN NR 1 ROBERT KOPERCZAK, ID studenta : k4342

SPRAWDZIAN NR 1 ROBERT KOPERCZAK, ID studenta : k4342 TECHNIKI ANALITYCZNE W BIZNESIE SPRAWDZIAN NR 1 Autor pracy ROBERT KOPERCZAK, ID studenta : k4342 Kraków, 22 Grudnia 2009 2 Spis treści 1 Zadanie 1... 3 1.1 Szereg rozdzielczy wag kobiałek.... 4 1.2 Histogram

Bardziej szczegółowo

Analiza rynku gazu ziemnego w Polsce w latach i prognozy na lata

Analiza rynku gazu ziemnego w Polsce w latach i prognozy na lata NAFTA-GAZ listopad 2010 ROK LXVI Piotr Kosowski, Jerzy Stopa, Stanisław Rychlicki Akademia Górniczo-Hutnicza w Krakowie Analiza rynku gazu ziemnego w Polsce w latach 2003 2009 i prognozy na lata 2010 2012

Bardziej szczegółowo

Giełda, obligacje czy złoto? Najnowsze informacje o atrakcyjności sposobów inwestowania o czym pamiętać i na co zwracać uwagę w najbliŝszym czasie.

Giełda, obligacje czy złoto? Najnowsze informacje o atrakcyjności sposobów inwestowania o czym pamiętać i na co zwracać uwagę w najbliŝszym czasie. Giełda, obligacje czy złoto? Najnowsze informacje o atrakcyjności sposobów inwestowania o czym pamiętać i na co zwracać uwagę w najbliŝszym czasie. Listopad to kontynuacja trendu wzrostowego na polskiej

Bardziej szczegółowo

Kurs USD/PLN perspektywa długoterminowa, kurs z 22 maja 2015 roku = 3,7307

Kurs USD/PLN perspektywa długoterminowa, kurs z 22 maja 2015 roku = 3,7307 Raport Tygodniowy o sytuacji na rynkach finansowych Rynek walutowy Rynek akcji Poniedziałek, 25 maja 2015 roku Kurs USD/PLN perspektywa długoterminowa, kurs z 22 maja 2015 roku = 3,7307 Kurs spadł poniżej

Bardziej szczegółowo

Regresja linearyzowalna

Regresja linearyzowalna 1 z 5 2007-05-09 23:22 Medycyna Praktyczna - portal dla lekarzy Regresja linearyzowalna mgr Andrzej Stanisz z Zakładu Biostatystyki i Informatyki Medycznej Collegium Medicum UJ w Krakowie Data utworzenia:

Bardziej szczegółowo

Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia. związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy

Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia. związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy Analiza dynami zjawisk Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy się w tej tematyce. Indywidualne indeksy dynamiki Indywidualne

Bardziej szczegółowo

Analiza dynamiki. Sesja Cena akcji 1 42,9 2 41, ,5 5 41, , ,5

Analiza dynamiki. Sesja Cena akcji 1 42,9 2 41, ,5 5 41, , ,5 Analiza dynamiki Zadanie 1 Dynamikę produkcji samochodów osobowych przez pewną fabrykę w latach 2007-2013 opisuje następujący ciąg indeksów łańcuchowych: 1,1; 1,2; 1,3; 1,4; 0,8; 0,9. a) Jak zmieniała

Bardziej szczegółowo

Analiza dyskryminacyjna w prognozowaniu cen akcji

Analiza dyskryminacyjna w prognozowaniu cen akcji Dorota Wiśniewska Analiza dyskryminacyjna w prognozowaniu cen akcji Nowa koncepcja konstruowania prognoz jakościowych 2 SPIS TREŚCI WSTĘP... 5 ROZDZIAŁ 1 PROGNOZOWANIE ZMIAN CEN AKCJI W ŚWIETLE ZNANYCH

Bardziej szczegółowo

... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu...

... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu... 4 Prognozowanie historyczne Prognozowanie - przewidywanie przyszłych zdarzeń w oparciu dane - podstawowy element w podejmowaniu decyzji... prognozowanie nie jest celem samym w sobie a jedynie narzędziem

Bardziej szczegółowo

Rodzaje wykresów i zasady ich budowy

Rodzaje wykresów i zasady ich budowy Rodzaje wykresów i zasady ich budowy Poznanie rodzajów wykresów oraz zasad ich budowy powinno stanowić pierwszy krok do zgłębiania tajników analizy technicznej. Wykresy przedstawiają przede wszystkim ceny

Bardziej szczegółowo

Wpływ horyzontu prognozy i długości szeregu czasowego na jakość predykcji w ruchu drogowym w Polsce

Wpływ horyzontu prognozy i długości szeregu czasowego na jakość predykcji w ruchu drogowym w Polsce ROGOWSKI Andrzej 1 Wpływ horyzontu prognozy i długości szeregu czasowego na jakość predykcji w ruchu drogowym w Polsce bezpieczeństwo, ruch drogowy,, trend, model Streszczenie W pracy przeanalizowano moŝliwość

Bardziej szczegółowo

Case nr 3. Zaawansowana Eksploracja Danych (Specj. TPD) Szeregi czasowe i prognozowanie

Case nr 3. Zaawansowana Eksploracja Danych (Specj. TPD) Szeregi czasowe i prognozowanie Case nr 3. Zaawansowana Eksploracja Danych (Specj. TPD) Szeregi czasowe i prognozowanie Jerzy Stefanowski, Instytut Informatyki Politechnika Poznańska 2010/11. Cel studium przypadku: Studium poświęcone

Bardziej szczegółowo

Studenckie Koło Naukowe Rynków Kapitałowych Citigroup Inc. (C) - spółka notowana na giełdzie nowojorskiej (NYSE).

Studenckie Koło Naukowe Rynków Kapitałowych Citigroup Inc. (C) - spółka notowana na giełdzie nowojorskiej (NYSE). Citigroup Inc. (C) - spółka notowana na giełdzie nowojorskiej (NYSE). Citigroup Inc. jest amerykańskim holdingiem prowadzącym zdywersyfikowaną działalność w zakresie usług bankowych i finansowych, w szczególności:

Bardziej szczegółowo

Zajęcia 1. Statystyki opisowe

Zajęcia 1. Statystyki opisowe Zajęcia 1. Statystyki opisowe 1. Znajdź dane dotyczące liczby mieszkańców w polskich województwach. Dla tych danych oblicz: a) Średnią, b) Medianę, c) Dominantę, d) Wariancję, e) Odchylenie standardowe,

Bardziej szczegółowo

Rola innowacji w ocenie ryzyka eksploatacji obiektów hydrotechnicznych

Rola innowacji w ocenie ryzyka eksploatacji obiektów hydrotechnicznych Politechnika Krakowska Instytut Inżynierii i Gospodarki Wodnej Rola innowacji w ocenie ryzyka eksploatacji obiektów hydrotechnicznych XXVI Konferencja Naukowa Metody Komputerowe w Projektowaniu i Analizie

Bardziej szczegółowo

PROGNOZOWANIE RENTOWNOŚCI PRODUKCJI WĘGLA KAMIENNEGO Z WYKORZYSTANIEM MODELU KOMPUTEROWEGO

PROGNOZOWANIE RENTOWNOŚCI PRODUKCJI WĘGLA KAMIENNEGO Z WYKORZYSTANIEM MODELU KOMPUTEROWEGO PROGNOZOWANIE RENTOWNOŚCI PRODUKCJI WĘGLA KAMIENNEGO Z WYKORZYSTANIEM MODELU KOMPUTEROWEGO Jolanta BIJAŃSKA, Krzysztof WODARSKI Streszczenie: W artykule przedstawiono model komputerowy, który został opracowany

Bardziej szczegółowo

A B. Modelowanie reakcji chemicznych: numeryczne rozwiązywanie równań na szybkość reakcji chemicznych B: 1. da dt. A v. v t

A B. Modelowanie reakcji chemicznych: numeryczne rozwiązywanie równań na szybkość reakcji chemicznych B: 1. da dt. A v. v t B: 1 Modelowanie reakcji chemicznych: numeryczne rozwiązywanie równań na szybkość reakcji chemicznych 1. ZałóŜmy, Ŝe zmienna A oznacza stęŝenie substratu, a zmienna B stęŝenie produktu reakcji chemicznej

Bardziej szczegółowo

ZESZYTY NAUKOWE WSOWL. Nr 3 (157) 2010 ISSN NAUKI TECHNICZNE

ZESZYTY NAUKOWE WSOWL. Nr 3 (157) 2010 ISSN NAUKI TECHNICZNE ZESZYTY NAUKOWE WSOWL Nr 3 (57) 2 ISSN 73-857 NAUKI TECHNICZNE Magdalena ROGALSKA Zdzisław HEJDUCKI ANALIZA PORÓWNAWCZA PROGNOZOWANIA PRODUKCJI BUDOWLANEJ Z ZASTOSOWANIEM METOD REGRESJI KROKOWEJ, SIECI

Bardziej szczegółowo

Raport Tygodniowy. o sytuacji na rynkach finansowych. Rynek walutowy. Rynek akcji

Raport Tygodniowy. o sytuacji na rynkach finansowych. Rynek walutowy. Rynek akcji Raport Tygodniowy o sytuacji na rynkach finansowych Rynek walutowy Rynek akcji Poniedziałek, 21 grudnia 2015 roku Kurs USD/PLN perspektywa długoterminowa, kurs z 18 grudnia 2015 roku = 3,9317 Kurs dolara

Bardziej szczegółowo

SPRAWDZIAN NR 2 ROBERT KOPERCZAK, ID studenta : k4342

SPRAWDZIAN NR 2 ROBERT KOPERCZAK, ID studenta : k4342 TECHNIKI ANALITYCZNE W BIZNESIE SPRAWDZIAN NR 2 Autor pracy ROBERT KOPERCZAK, ID studenta : k4342 Kraków, 22 Grudnia 2009 2 Spis treści 1 Zadanie 1... 3 1.1 Uszkodzi się tylko pierwsza maszyna.... 3 1.2

Bardziej szczegółowo

EV/EBITDA. Dług netto = Zobowiązania oprocentowane (Środki pieniężne + Ekwiwalenty)

EV/EBITDA. Dług netto = Zobowiązania oprocentowane (Środki pieniężne + Ekwiwalenty) EV/EBITDA EV/EBITDA jest wskaźnikiem porównawczym stosowanym przez wielu analityków, w celu znalezienia odpowiedniej spółki pod kątem potencjalnej inwestycji długoterminowej. Jest on trudniejszy do obliczenia

Bardziej szczegółowo

Ćwiczenia 13 WAHANIA SEZONOWE

Ćwiczenia 13 WAHANIA SEZONOWE Ćwiczenia 3 WAHANIA SEZONOWE Wyrównanie szeregu czasowego (wyodrębnienie czystego trendu) mechanicznie Zadanie. Badano spożycie owoców i przetworów (yt) (w kg) w latach według kwartałów: kwartał lata 009

Bardziej szczegółowo

Wydatki [zł] Wydatki 36,4 38, ,6 37,6 40, , ,5 33 Czas

Wydatki [zł] Wydatki 36,4 38, ,6 37,6 40, , ,5 33 Czas Wydatki [zł] Zestaw zadań z Zastosowania metod progn. Zadanie 1 Dany jest następujący szereg czasowy: t 1 2 3 4 5 6 7 8 y t 11 14 13 18 17 25 26 28 Dokonaj jego dekompozycji na podstawowe składowe. Wykonaj

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: ZIE n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2013/2014 Kod: ZIE n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Statystyka opisowa i ekonomiczna Rok akademicki: 2013/2014 Kod: ZIE-1-205-n Punkty ECTS: 6 Wydział: Zarządzania Kierunek: Informatyka i Ekonometria Specjalność: - Poziom studiów: Studia I

Bardziej szczegółowo

Popyt rynkowy. Wyprowadzenie funkcji popytu z funkcji uŝyteczności

Popyt rynkowy. Wyprowadzenie funkcji popytu z funkcji uŝyteczności Popyt rynkowy Wyprowadzenie funkcji popytu z funkcji uŝyteczności Zadanie 1 (*) Jak zwykle w tego typu zadaniach darujmy sobie tworzenie sztucznych przykładów i będziemy analizować wybór między dwoma dobrami

Bardziej szczegółowo

PROGNOZOWANIE W ZARZĄDZANIU

PROGNOZOWANIE W ZARZĄDZANIU Politechnika Białostocka Wydział Zarządzania Katedra Informatyki Gospodarczej i Logistyki Redaktor naukowy joanicjusz Nazarko PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM Cz. III Prognozowanie na podstawie

Bardziej szczegółowo

ANALIZA SZEREGÓW CZASOWYCH I PROGNOZOWANIE

ANALIZA SZEREGÓW CZASOWYCH I PROGNOZOWANIE ANALIZA SZEREGÓW CZASOWYCH I PROGNOZOWANIE Andrzej Sokołowski, Uniwersytet Ekonomiczny w Krakowie, StatSoft Polska Sp. z o.o. Wprowadzenie Analiza szeregów czasowych to jedna z części statystyki najczęściej

Bardziej szczegółowo

Objaśnienia wartości przyjętych w Wieloletniej Prognozie Finansowej na lata 2012 2039 Gminy Miasta Radomia.

Objaśnienia wartości przyjętych w Wieloletniej Prognozie Finansowej na lata 2012 2039 Gminy Miasta Radomia. Objaśnienia wartości przyjętych w Wieloletniej Prognozie Finansowej na lata 2012 2039 Gminy Miasta Radomia. Za bazę do opracowania Wieloletniej Prognozy Finansowej na kolejne lata przyjęto projekt budŝetu

Bardziej szczegółowo

SPIS TREŚCI. Do Czytelnika... 7

SPIS TREŚCI. Do Czytelnika... 7 SPIS TREŚCI Do Czytelnika.................................................. 7 Rozdział I. Wprowadzenie do analizy statystycznej.............. 11 1.1. Informacje ogólne..........................................

Bardziej szczegółowo

Organizacja i monitorowanie procesów magazynowych / Stanisław

Organizacja i monitorowanie procesów magazynowych / Stanisław Organizacja i monitorowanie procesów magazynowych / Stanisław KrzyŜaniak [et al.]. Poznań, 2013 Spis treści Przedmowa 11 1.1. Magazyn i magazynowanie 13 1.1.1. Magazyn i magazynowanie - podstawowe wiadomości

Bardziej szczegółowo

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej

Ekonometria. Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej Regresja liniowa, współczynnik zmienności, współczynnik korelacji liniowej, współczynnik korelacji wielorakiej Paweł Cibis pawel@cibis.pl 23 lutego 2007 1 Regresja liniowa 2 wzory funkcje 3 Korelacja liniowa

Bardziej szczegółowo

INFORMATOR TECHNICZNY WONDERWARE. IndustrialSQL Server Narzędzia do pobierania i analizy danych część 1

INFORMATOR TECHNICZNY WONDERWARE. IndustrialSQL Server Narzędzia do pobierania i analizy danych część 1 Informator Techniczny nr 13 12-11-1999 INFORMATOR TECHNICZNY WONDERWARE IndustrialSQL Server Narzędzia do pobierania i analizy danych część 1 Wonderware IndustrialSQL Server to jedyna w swoim rodzaju przemysłowa

Bardziej szczegółowo

Ćwiczenie 14. Maria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYMATYCZNYCH

Ćwiczenie 14. Maria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYMATYCZNYCH Ćwiczenie 14 aria Bełtowska-Brzezinska KINETYKA REAKCJI ENZYATYCZNYCH Zagadnienia: Podstawowe pojęcia kinetyki chemicznej (szybkość reakcji, reakcje elementarne, rząd reakcji). Równania kinetyczne prostych

Bardziej szczegółowo

OTWARTE FUNDUSZE EMERYTALNE W POLSCE Struktura funduszy emerytalnych pod względem liczby członków oraz wielkości aktywów

OTWARTE FUNDUSZE EMERYTALNE W POLSCE Struktura funduszy emerytalnych pod względem liczby członków oraz wielkości aktywów OTWARTE FUNDUSZE EMERYTALNE W POLSCE Struktura funduszy emerytalnych pod względem liczby członków oraz wielkości aktywów Tomasz Gruszczyk Informatyka i Ekonometria I rok, nr indeksu: 156012 Sopot, styczeń

Bardziej szczegółowo

ANALIZA HIERARCHICZNA PROBLEMU W SZACOWANIU RYZYKA PROJEKTU INFORMATYCZNEGO METODĄ PUNKTOWĄ. Joanna Bryndza

ANALIZA HIERARCHICZNA PROBLEMU W SZACOWANIU RYZYKA PROJEKTU INFORMATYCZNEGO METODĄ PUNKTOWĄ. Joanna Bryndza ANALIZA HIERARCHICZNA PROBLEMU W SZACOWANIU RYZYKA PROJEKTU INFORMATYCZNEGO METODĄ PUNKTOWĄ Joanna Bryndza Wprowadzenie Jednym z kluczowych problemów w szacowaniu poziomu ryzyka przedsięwzięcia informatycznego

Bardziej szczegółowo

Egzamin ze statystyki, Studia Licencjackie Stacjonarne. TEMAT C grupa 1 Czerwiec 2007

Egzamin ze statystyki, Studia Licencjackie Stacjonarne. TEMAT C grupa 1 Czerwiec 2007 Egzamin ze statystyki, Studia Licencjackie Stacjonarne TEMAT C grupa 1 Czerwiec 2007 (imię, nazwisko, nr albumu).. Przy rozwiązywaniu zadań, jeśli to konieczne, naleŝy przyjąć poziom istotności 0,01 i

Bardziej szczegółowo

INFORMATYKA W SELEKCJI

INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI INFORMATYKA W SELEKCJI - zagadnienia 1. Dane w pracy hodowlanej praca z dużym zbiorem danych (Excel) 2. Podstawy pracy z relacyjną bazą danych w programie MS Access 3. Systemy statystyczne

Bardziej szczegółowo

Studenckie Koło Naukowe Rynków Kapitałowych

Studenckie Koło Naukowe Rynków Kapitałowych Colgate-Palmolive Co. (CL) - spółka notowana na giełdzie nowojorskiej (NYSE). Czym zajmuje się firma? Colgate-Palmolive jest jednym z wiodących producentów z kategorii zdrowia jamy ustnej, pielęgnacji

Bardziej szczegółowo

Sterowanie wielkością zamówienia w Excelu - cz. 3

Sterowanie wielkością zamówienia w Excelu - cz. 3 Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji

Bardziej szczegółowo

Kurs USD/PLN perspektywa długoterminowa, kurs z 15 maja 2015 roku = 3,5292

Kurs USD/PLN perspektywa długoterminowa, kurs z 15 maja 2015 roku = 3,5292 Raport Tygodniowy o sytuacji na rynkach finansowych Rynek walutowy Rynek akcji Poniedziałek, 18 maja 2015 roku Kurs USD/PLN perspektywa długoterminowa, kurs z 15 maja 2015 roku = 3,5292 Kurs spadł poniżej

Bardziej szczegółowo

Przykład 2. Stopa bezrobocia

Przykład 2. Stopa bezrobocia Przykład 2 Stopa bezrobocia Stopa bezrobocia. Komentarz: model ekonometryczny stopy bezrobocia w Polsce jest modelem nieliniowym autoregresyjnym. Podobnie jak model podaŝy pieniądza zbudowany został w

Bardziej szczegółowo

UE we Wrocławiu, WEZiT w Jeleniej Górze Katedra Ekonometrii i Informatyki

UE we Wrocławiu, WEZiT w Jeleniej Górze Katedra Ekonometrii i Informatyki UE we Wrocławiu, WEZiT w Jeleniej Górze Katedra Ekonometrii i Informatyki http://keii.ue.wroc.pl Prognozowanie procesów gospodarczych prowadzący: dr inż. Tomasz Bartłomowicz tomasz.bartlomowicz@ue.wroc.pl

Bardziej szczegółowo

Robert Kubicki, Magdalena Kulbaczewska Modelowanie i prognozowanie wielkości ruchu turystycznego w Polsce

Robert Kubicki, Magdalena Kulbaczewska Modelowanie i prognozowanie wielkości ruchu turystycznego w Polsce Robert Kubicki, Magdalena Kulbaczewska Modelowanie i prognozowanie wielkości ruchu turystycznego w Polsce Ekonomiczne Problemy Turystyki nr 3 (27), 57-70 2014 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO

Bardziej szczegółowo

Analiza zależności liniowych

Analiza zależności liniowych Narzędzie do ustalenia, które zmienne są ważne dla Inwestora Analiza zależności liniowych Identyfikuje siłę i kierunek powiązania pomiędzy zmiennymi Umożliwia wybór zmiennych wpływających na giełdę Ustala

Bardziej szczegółowo

APROKSYMACJA ZJAWISK RYNKOWYCH NARZĘDZIEM WSPOMAGAJĄCYM PODEJMOWANIE DECYZJI

APROKSYMACJA ZJAWISK RYNKOWYCH NARZĘDZIEM WSPOMAGAJĄCYM PODEJMOWANIE DECYZJI APROKSYMACJA ZJAWISK RYNKOWYCH NARZĘDZIEM WSPOMAGAJĄCYM PODEJMOWANIE DECYZJI Łukasz MACH Streszczenie: W artykule przedstawiono wybrane aspekty prognozowania czynników istotnie określających sytuację na

Bardziej szczegółowo

Ekonometria. Regresja liniowa, dobór postaci analitycznej, transformacja liniowa. Paweł Cibis 24 marca 2007

Ekonometria. Regresja liniowa, dobór postaci analitycznej, transformacja liniowa. Paweł Cibis 24 marca 2007 Regresja liniowa, dobór postaci analitycznej, transformacja liniowa Paweł Cibis pawel@cibis.pl 24 marca 2007 1 Regresja liniowa 2 Metoda aprioryczna Metoda heurystyczna Metoda oceny wzrokowej rozrzutu

Bardziej szczegółowo

Ekonometryczna analiza popytu na wodę

Ekonometryczna analiza popytu na wodę Jacek Batóg Uniwersytet Szczeciński Ekonometryczna analiza popytu na wodę Jednym z czynników niezbędnych dla funkcjonowania gospodarstw domowych oraz realizacji wielu procesów technologicznych jest woda.

Bardziej szczegółowo

Ile zarabiają managerowie Gdzie i komu w Polsce płacą najlepiej - raport Money.pl. Autor: Bartosz Chochołowski

Ile zarabiają managerowie Gdzie i komu w Polsce płacą najlepiej - raport Money.pl. Autor: Bartosz Chochołowski Ile zarabiają managerowie Gdzie i komu w Polsce płacą najlepiej - raport Money.pl Autor: Bartosz Chochołowski Wrocław, lipiec 2008 Najlepsze pensje mają szefowie działów finansowych - średnio ponad 11

Bardziej szczegółowo

Źródła danych: Wyniki pomiarów. Dane technologiczne

Źródła danych: Wyniki pomiarów. Dane technologiczne Przygotowanie danych dotyczących wielkości emisji do modelowania rozprzestrzenia się zanieczyszczeń w atmosferze przy uŝyciu pakietu oprogramowania Operat-2000 Przystępując do modelowania emisji naleŝy

Bardziej szczegółowo

23 Zagadnienia - Prognozowanie i symulacje

23 Zagadnienia - Prognozowanie i symulacje 1. WYJAŚNIJ POJĘCIE PROGNOZY I OMÓW PODSTAWOWE PEŁNIONE PRZEZ PROGNOZĘ FUNKCJE. Prognoza - jest to sąd dotyczący przyszłej wartości pewnego zjawiska o następujących właściwościach: jest sformułowany w

Bardziej szczegółowo

Istota funkcjonowania przedsiębiorstwa produkcyjnego. dr inż. Andrzej KIJ

Istota funkcjonowania przedsiębiorstwa produkcyjnego. dr inż. Andrzej KIJ Istota funkcjonowania przedsiębiorstwa produkcyjnego dr inż. Andrzej KIJ 1 Popyt rynkowy agregacja krzywych popytu P p2 p1 D1 q1 D2 q2 Q 2 Popyt rynkowy agregacja krzywych popytu P p2 p1 D1 +D2 D1 D2 q1

Bardziej szczegółowo