Testowanie hipotez statystycznych.

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Testowanie hipotez statystycznych."

Transkrypt

1 Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011

2 Temat. Test zgodności χ 2 Pearsona.

3 Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie P{X 1 = x i } = p i, i = 1,..., k. Oznaczmy przez O i liczbę tych zmiennych spośród X 1,..., X n, które przyjęły wartość x i a przez E i = np i oczekiwaną liczbę wartości x i. Wektor losowy (O 1, O 2,..., O k ) ma rozkład wielomianowy z parametrami n i (p 1,..., p k ) natomiast zmienna losowa χ 2 P = k i=1 (O i E i ) 2 E i, ma asymptotyczny rozkład chi kwadrat z (k 1) stopniami swobody χ 2 k 1.

4 Test zgodności χ 2 dla hipotezy prostej Rozważmy dyskretną zmienną losową X o nieznanym rozkładzie P{X = x i } = q i, i = 1,..., k, q i są nieznane. Stawiamy hipotezę H 0 : q i = p i dla każdego i = 1,..., k. Statystyka testowa to statystyka Pearsona χ 2 P χ 2 P = k i=1 która w tym przypadku ma postać (O i E i ) 2 E i, χ 2 P = k i=1 (O i np i ) 2 np i.

5 Test zgodności χ 2 dla hipotezy prostej Rozważmy dyskretną zmienną losową X o nieznanym rozkładzie P{X = x i } = q i, i = 1,..., k, q i są nieznane. Stawiamy hipotezę H 0 : q i = p i dla każdego i = 1,..., k. Statystyka testowa to statystyka Pearsona χ 2 P χ 2 P = k i=1 która w tym przypadku ma postać (O i E i ) 2 E i, χ 2 P = k i=1 (O i np i ) 2 np i.

6 Przykład Sprawdzamy, że cyfry z tabeli i O i są wygenerowane z rozkładu jednostajnego. Przetestujemy hipotezę H 0 : P{X = i} = 1, dla każdego i = 0,..., 9, 10 na poziomie istotności α = 0, 01.

7 Przykład Sprawdzamy, że cyfry z tabeli i O i są wygenerowane z rozkładu jednostajnego. Przetestujemy hipotezę H 0 : P{X = i} = 1, dla każdego i = 0,..., 9, 10 na poziomie istotności α = 0, 01.

8 Przykład Sprawdzamy, że cyfry z tabeli i O i są wygenerowane z rozkładu jednostajnego. Przetestujemy hipotezę H 0 : P{X = i} = 1, dla każdego i = 0,..., 9, 10 na poziomie istotności α = 0, 01.

9 Przykład cd. W tabeli jest 320 cyfr a więc n = 320. Wszystkie częstości oczekiwane są takie same E i = n 10 = = 32. Statystyka testowa ma wartość χ 2 P = 2, 5, natomiast kwantyl rzędu 0, 99 dla rozkładu χ 2 z 9 stopniami swobody jest równy χ 2 9:0,01 = 21, 67. Tak więc nie ma podstaw do odrzucenia hipotezy zerowej i przyjmujemy H 0, (p wartość jest w tym przypadku równa p = 0, 981.)

10 Test zgodności χ 2 dla rozkładu ciągłego. Test χ 2 możemy także stosować do sprawdzania hipotez o postaci rozkładu ciągłego. W tym celu należy wyznaczyć rozłączne klasy A 1,..., A k (podobnie jak przy konstrukcji histogramu) i obliczyć, przy założeniu hipotezy zerowej H 0, prawdopodobieństwa p 1 = P{X A 1 }, p 2 = P{X A 2 },..., p k = P{X A k }. Niech n oznacza wielkość próby, a O i liczbę obserwacji w i tej klasie. Za pomocą testu χ 2 Pearsona możemy sprawdzić, czy zaobserwowane częstości O 1, O 2,..., O k podlegają rozkładowi z gęstością {p i, i = 1,..., k}.

11 Test zgodności χ 2 dla rozkładu ciągłego. Test χ 2 możemy także stosować do sprawdzania hipotez o postaci rozkładu ciągłego. W tym celu należy wyznaczyć rozłączne klasy A 1,..., A k (podobnie jak przy konstrukcji histogramu) i obliczyć, przy założeniu hipotezy zerowej H 0, prawdopodobieństwa p 1 = P{X A 1 }, p 2 = P{X A 2 },..., p k = P{X A k }. Niech n oznacza wielkość próby, a O i liczbę obserwacji w i tej klasie. Za pomocą testu χ 2 Pearsona możemy sprawdzić, czy zaobserwowane częstości O 1, O 2,..., O k podlegają rozkładowi z gęstością {p i, i = 1,..., k}.

12 Test zgodności χ 2 dla rozkładu ciągłego. Test χ 2 możemy także stosować do sprawdzania hipotez o postaci rozkładu ciągłego. W tym celu należy wyznaczyć rozłączne klasy A 1,..., A k (podobnie jak przy konstrukcji histogramu) i obliczyć, przy założeniu hipotezy zerowej H 0, prawdopodobieństwa p 1 = P{X A 1 }, p 2 = P{X A 2 },..., p k = P{X A k }. Niech n oznacza wielkość próby, a O i liczbę obserwacji w i tej klasie. Za pomocą testu χ 2 Pearsona możemy sprawdzić, czy zaobserwowane częstości O 1, O 2,..., O k podlegają rozkładowi z gęstością {p i, i = 1,..., k}.

13 Test zgodności χ 2 dla rozkładu ciągłego. Test χ 2 możemy także stosować do sprawdzania hipotez o postaci rozkładu ciągłego. W tym celu należy wyznaczyć rozłączne klasy A 1,..., A k (podobnie jak przy konstrukcji histogramu) i obliczyć, przy założeniu hipotezy zerowej H 0, prawdopodobieństwa p 1 = P{X A 1 }, p 2 = P{X A 2 },..., p k = P{X A k }. Niech n oznacza wielkość próby, a O i liczbę obserwacji w i tej klasie. Za pomocą testu χ 2 Pearsona możemy sprawdzić, czy zaobserwowane częstości O 1, O 2,..., O k podlegają rozkładowi z gęstością {p i, i = 1,..., k}.

14 Test zgodności χ 2 dla rozkładu ciągłego. Test χ 2 możemy także stosować do sprawdzania hipotez o postaci rozkładu ciągłego. W tym celu należy wyznaczyć rozłączne klasy A 1,..., A k (podobnie jak przy konstrukcji histogramu) i obliczyć, przy założeniu hipotezy zerowej H 0, prawdopodobieństwa p 1 = P{X A 1 }, p 2 = P{X A 2 },..., p k = P{X A k }. Niech n oznacza wielkość próby, a O i liczbę obserwacji w i tej klasie. Za pomocą testu χ 2 Pearsona możemy sprawdzić, czy zaobserwowane częstości O 1, O 2,..., O k podlegają rozkładowi z gęstością {p i, i = 1,..., k}.

15 Test zgodności χ 2 dla rozkładu ciągłego. Test χ 2 możemy także stosować do sprawdzania hipotez o postaci rozkładu ciągłego. W tym celu należy wyznaczyć rozłączne klasy A 1,..., A k (podobnie jak przy konstrukcji histogramu) i obliczyć, przy założeniu hipotezy zerowej H 0, prawdopodobieństwa p 1 = P{X A 1 }, p 2 = P{X A 2 },..., p k = P{X A k }. Niech n oznacza wielkość próby, a O i liczbę obserwacji w i tej klasie. Za pomocą testu χ 2 Pearsona możemy sprawdzić, czy zaobserwowane częstości O 1, O 2,..., O k podlegają rozkładowi z gęstością {p i, i = 1,..., k}.

16 Test zgodności χ 2 dla rozkładu ciągłego cd. Metodę tę zilustrujemy następującym przykładem. Przykład Według producenta pojemność jego naczynie miareczkowego ma rozkład normalny z wartością średnią równą nominalnej pojemności oraz odchyleniu standardowym równym 0, 01 mm 3. Aby to sprawdzić, przebadano pojemność 200 naczyń o nominalnej pojemności równej 30 mm 3. Wyznaczono k = 10 rozłącznych klas A 1,..., A 10. Ich granice z zaobserwowanymi liczebnościami są podane w tabeli

17 Test zgodności χ 2 dla rozkładu ciągłego cd. Metodę tę zilustrujemy następującym przykładem. Przykład Według producenta pojemność jego naczynie miareczkowego ma rozkład normalny z wartością średnią równą nominalnej pojemności oraz odchyleniu standardowym równym 0, 01 mm 3. Aby to sprawdzić, przebadano pojemność 200 naczyń o nominalnej pojemności równej 30 mm 3. Wyznaczono k = 10 rozłącznych klas A 1,..., A 10. Ich granice z zaobserwowanymi liczebnościami są podane w tabeli

18 Przykład cd. i Klasa O i E i 1 (, 29, 980] 2 4, 55 2 (29, 980, 29, 985] 13 8, 81 3 (29, 985, 29, 990] 20 18, 37 4 (29, 990, 29, 995] 26 29, 98 5 (29, 995, 30, 000] 40 38, 29 6 (30, 000, 30, 005] 42 38, 29 7 (30, 005, 30, 010] 26 29, 98 8 (30, 010, 30, 015] 21 18, 37 9 (30, 015, 30, 020] 10 8, (30, 020, + ) 0 4, 55

19 Przykład cd. Niech X oznacza pomiar pojemności oraz niech q i = P{X A i }. W zapewnienia producenta oznaczają, że X ma rozkład normalny N(30, 00, 0, 0001). My sprawdzamy hipotezę H 0 : q i = p i, w której p i = Φ ( ) ai 30 Φ 0, 01 gdzie A i = (a i 1, a i ] jest i tą klasą. ( ai , 01 Na podstawie danych z tablicy, w których łączymy w jedną dwie dolne i dwie górne klasy otrzymujemy następującą wartość statystyki testowej χ 2 P = 3, 06. Ponieważ przy 7 stopniach swobody p wartość wynosi 0,879, nie ma podstaw do odrzucenia hipotezy zerowej H 0, a w takim razie także hipotezy o rozkładzie normalnym N(0, 1) pojemności naczyń miareczkowych. ),

20 Przykład cd. Niech X oznacza pomiar pojemności oraz niech q i = P{X A i }. W zapewnienia producenta oznaczają, że X ma rozkład normalny N(30, 00, 0, 0001). My sprawdzamy hipotezę H 0 : q i = p i, w której p i = Φ ( ) ai 30 Φ 0, 01 gdzie A i = (a i 1, a i ] jest i tą klasą. ( ai , 01 Na podstawie danych z tablicy, w których łączymy w jedną dwie dolne i dwie górne klasy otrzymujemy następującą wartość statystyki testowej χ 2 P = 3, 06. Ponieważ przy 7 stopniach swobody p wartość wynosi 0,879, nie ma podstaw do odrzucenia hipotezy zerowej H 0, a w takim razie także hipotezy o rozkładzie normalnym N(0, 1) pojemności naczyń miareczkowych. ),

21 Test zgodności χ 2 dla rozkładu ciągłego cd. Uwaga Przybliżenie rozkładem χ 2 można uznać za dopuszczalne, gdy np i 5 dla każdego i = 1,..., k.

22 Test zgodności χ 2 dla hipotezy złożonej. Omówiliśmy przypadek, w którym sformułowana hipoteza H 0 określała całkowicie rozkład zmiennej losowej. W wielu zagadnieniach praktycznych stawia się również hipotezy, które nie określają całkowicie rozkładu. Możemy mieć na przykład do czynienia z hipotezą, która orzeka, że zmienna losowa X ma rozkład dyskretny o znanej postaci ogólnej {p i (θ), i = 1,..., k}, a parametr θ pozostaje nieokreślony.

23 W tej sytuacji nie możemy bezpośrednio skorzystać ze statystyki χ 2 P gdyż nie możemy obliczyć, E i = E i (θ) = np i (θ), teoretycznych oczekiwanych liczebności klas. Zależą one bowiem od wartości nieznanego parametru θ. Okazuje się, że jeśli nieznany parametr θ jest oszacowany za pomocą metody największej wiarogodności, to statystyka k χ 2 P = (O i E i (ˆθ)) 2, E i (ˆθ) i=1 gdzie ˆθ oznacza estymator największej wiarogodności parametru θ, ma nadal asymptotyczny rozkład χ 2 ale już nie z k 1 stopniami swobody ale z k 2 stopniami swobody.

24 Test zgodności χ 2 dla hipotezy złożonej cd. Przykład W diploidalnej populacji z losowym kojarzeniem częstość allelu A jest równa θ. Jeśli populacja znajduje się w równowadze Hardyego-Weinberga to częstości genotypów AA, Aa i aa są równe odpowiednio θ 2, 2θ(1 θ) i (1 θ) 2.

25 Przykład cd. Załóżmy, że w populacji stwierdzono 110 osobników o genotypie AA, 235 osobników o genotypie Aa oraz 155 osobników o genotypie aa. Czy istnieje podstawa do odrzucenia hipotezy o znajdowaniu się tej populacji w warunkach równowagi Hardyego-Wainberga.

26 Przykład cd. W tym przypadku hipoteza zerowa ma postać H 0 : p 1 (θ) = θ 2, p 2 (θ) = 2θ(1 θ), p 3 (θ) = (1 θ) 2. Estymator parametru θ wyznaczony metodą największej wiarogodności jest postaci ˆθ = 2n 1 + n 2, 2n gdzie n = n 1 + n 2 + n 3. Ponieważ Genotyp AA Aa aa n i więc ˆθ = 0, 455.

27 Przykład cd. W tym przypadku hipoteza zerowa ma postać H 0 : p 1 (θ) = θ 2, p 2 (θ) = 2θ(1 θ), p 3 (θ) = (1 θ) 2. Estymator parametru θ wyznaczony metodą największej wiarogodności jest postaci ˆθ = 2n 1 + n 2, 2n gdzie n = n 1 + n 2 + n 3. Ponieważ Genotyp AA Aa aa n i więc ˆθ = 0, 455.

28 Przykład cd. W tym przypadku hipoteza zerowa ma postać H 0 : p 1 (θ) = θ 2, p 2 (θ) = 2θ(1 θ), p 3 (θ) = (1 θ) 2. Estymator parametru θ wyznaczony metodą największej wiarogodności jest postaci ˆθ = 2n 1 + n 2, 2n gdzie n = n 1 + n 2 + n 3. Ponieważ Genotyp AA Aa aa n i więc ˆθ = 0, 455.

29 Przykład cd. Statystyka testowa jest więc równa χ 2 P ( , 51)2 ( , 97)2 ( , 51)2 = , , , 51 = 1, 369. Dla tej wartości statystyki testowej p wartość jest równa 0,24, czyli nie ma podstaw do odrzucenia hipotezy zerowej.

30 Przykład cd. Statystyka testowa jest więc równa χ 2 P ( , 51)2 ( , 97)2 ( , 51)2 = , , , 51 = 1, 369. Dla tej wartości statystyki testowej p wartość jest równa 0,24, czyli nie ma podstaw do odrzucenia hipotezy zerowej.

31 Testowanie hipotezy o niezależności Za pomocą testu χ 2 możemy przetestować hipotezę o niezależności dwóch zmiennych losowych. Niech (X, Y ) będzie dwuwymiarowym wektorem losowym o rozkładzie dyskretnym r ij = P{X = x i, Y = y j }, i = 1,..., a, j = 1,..., b. Rozkład {r ij } możemy wygodnie zapisać w tablicy X/Y y 1 y 2... y b x 1 r 11 r r 1b x 2 r 21 r r 2b x a r a1 r a2... r ab

32 Testowanie hipotezy o niezależności Za pomocą testu χ 2 możemy przetestować hipotezę o niezależności dwóch zmiennych losowych. Niech (X, Y ) będzie dwuwymiarowym wektorem losowym o rozkładzie dyskretnym r ij = P{X = x i, Y = y j }, i = 1,..., a, j = 1,..., b. Rozkład {r ij } możemy wygodnie zapisać w tablicy X/Y y 1 y 2... y b x 1 r 11 r r 1b x 2 r 21 r r 2b x a r a1 r a2... r ab

33 Testowanie hipotezy o niezależności Stawiamy hipotezę zerową H 0, że zmienne losowe X i Y są niezależne. H 0 : P {(X, Y ) = (x i, y j )} = P {X = x i } P {Y = y j }, dla wszystkich i, j Jeśli wprowadzimy oznaczenia p i = P{X = x i } oraz q j = P{Y = y j } to możemy hipotezę H 0 zapisać w postaci H 0 : r ij = p i q j, dla wszystkich i, j.

34 Testowanie hipotezy o niezależności Hipoteza zerowa jest hipotezą złożoną. Nie określamy ani prawdopodobieństw r ij ani prawdopodobieństw p i oraz q j. Orzekamy jedynie, że prawdopodobieństwo r ij jest równe iloczynowi pewnych liczb p i oraz q j, które będziemy traktować jako parametry. Ponieważ p 1 + p p a = 1 oraz q 1 + q q b = 1 więc mamy a + b 2 niezależnych parametrów, które musimy estymować na podstawie danych. Dwa pozostałe parametry, p a oraz q b, określamy za pomocą równości a 1 b 1 p a = 1 p i oraz q b = 1 q j. i=1 j=1

35 Testowanie hipotezy o niezależności Estymacji dokonujemy na podstawie n elementowej próby prostej (X 1, Y 1 ), (X 2, Y 2 ),..., (X n, Y n ). Oznaczmy przez O ij liczbę par (X k, Y k ) równych (x i, y j ). Wygodnie jest zapisać dane w tabeli X/Y y 1 y 2... y b Suma x 1 O 11 O O 1b O 1 x 2 O 21 O O 2b O O 1. x a O a1 O a2... O ab O a Suma O 1 O 2... O b n gdzie O i O j oznacza sumę liczb w i tym wierszu, oznacza sumę liczb w j tej kolumnie.

36 Testowanie hipotezy o niezależności Estymatorami wyznaczonymi metoda największej wiarogodności nieznanych parametrów p 1,..., p a oraz q 1,..., q b są odpowiednio oraz ˆp i = O i, i = 1,..., a, n ˆq j = O j, j = 1,..., b. n

37 Procedurę testowania opieramy na statystyce testowej Po przekształceniu χ 2 P = b a j=1 i=1 χ 2 P = n b j=1 i=1 ( O ij n O i n n O i n O j n ( a O ij O i O j n ) O 2 j n ) 2 O i O j. Statystyka χ 2 P ma asymptotyczny rozkład chi kwadrat z (a 1)(b 1) stopniami swobody..

38 Procedurę testowania opieramy na statystyce testowej Po przekształceniu χ 2 P = b a j=1 i=1 χ 2 P = n b j=1 i=1 ( O ij n O i n n O i n O j n ( a O ij O i O j n ) O 2 j n ) 2 O i O j. Statystyka χ 2 P ma asymptotyczny rozkład chi kwadrat z (a 1)(b 1) stopniami swobody..

39 Procedurę testowania opieramy na statystyce testowej Po przekształceniu χ 2 P = b a j=1 i=1 χ 2 P = n b j=1 i=1 ( O ij n O i n n O i n O j n ( a O ij O i O j n ) O 2 j n ) 2 O i O j. Statystyka χ 2 P ma asymptotyczny rozkład chi kwadrat z (a 1)(b 1) stopniami swobody..

40 Stopnie swobody Liczba stopni swobody wynika z faktu, że mamy k = ab klatek oraz szacujemy a + b 2 niezależnych parametrów, a więc liczba swobody rozkładu statystyki testowej jest równa ν = ab 1 (a + b 2) = (a 1)(b 1).

41 Stopnie swobody Liczba stopni swobody wynika z faktu, że mamy k = ab klatek oraz szacujemy a + b 2 niezależnych parametrów, a więc liczba swobody rozkładu statystyki testowej jest równa ν = ab 1 (a + b 2) = (a 1)(b 1).

42 Przykład W fabryce telewizorów sądzi się, że jakość obrazu wyprodukowanego telewizora nie zależy od jakości dźwięku. Aby sprawdzić to przypuszczenie, zbadano 100 wybranych losowo telewizorów i otrzymano wynik podany w tablicy: Obraz/Dźwięk zła dobra wysoka Suma zła dobra wysoka Suma

43 Przykład W fabryce telewizorów sądzi się, że jakość obrazu wyprodukowanego telewizora nie zależy od jakości dźwięku. Aby sprawdzić to przypuszczenie, zbadano 100 wybranych losowo telewizorów i otrzymano wynik podany w tablicy: Obraz/Dźwięk zła dobra wysoka Suma zła dobra wysoka Suma

44 Przykład cd. Należy postawić i przetestować hipotezę, przyjmując poziom istotności 1 α = 0, 9. Hipoteza zerowa orzeka, że jakość dźwięku jest niezależna od jakości obrazu.

45 Przykład cd. Należy postawić i przetestować hipotezę, przyjmując poziom istotności 1 α = 0, 9. Hipoteza zerowa orzeka, że jakość dźwięku jest niezależna od jakości obrazu.

46 Przykład cd. Należy postawić i przetestować hipotezę, przyjmując poziom istotności 1 α = 0, 9. Hipoteza zerowa orzeka, że jakość dźwięku jest niezależna od jakości obrazu.

47 Przykład cd. Oczekiwana częstość w poszczególnych klatkach. Jakość obrazu/dźwięku zła dobra wysoka Suma zła 11, 56 14, 62 7, dobra 13, 60 17, 20 9, wysoka 8, 84 11, 18 5, Suma 34, 00 43, 00 23, Otrzymujemy wartość statystyki χ 2 P = 5, 23 dla rozkładu χ2 z 4 stopniami swobody daje to p wartość równą 0,26. Tak więc nie ma podstaw do odrzucenia hipotezy zerowej. Jakość dźwięku jest niezależna od jakości obrazu.

48 Przykład cd. Oczekiwana częstość w poszczególnych klatkach. Jakość obrazu/dźwięku zła dobra wysoka Suma zła 11, 56 14, 62 7, dobra 13, 60 17, 20 9, wysoka 8, 84 11, 18 5, Suma 34, 00 43, 00 23, Otrzymujemy wartość statystyki χ 2 P = 5, 23 dla rozkładu χ2 z 4 stopniami swobody daje to p wartość równą 0,26. Tak więc nie ma podstaw do odrzucenia hipotezy zerowej. Jakość dźwięku jest niezależna od jakości obrazu.

49 Przykład cd. Oczekiwana częstość w poszczególnych klatkach. Jakość obrazu/dźwięku zła dobra wysoka Suma zła 11, 56 14, 62 7, dobra 13, 60 17, 20 9, wysoka 8, 84 11, 18 5, Suma 34, 00 43, 00 23, Otrzymujemy wartość statystyki χ 2 P = 5, 23 dla rozkładu χ2 z 4 stopniami swobody daje to p wartość równą 0,26. Tak więc nie ma podstaw do odrzucenia hipotezy zerowej. Jakość dźwięku jest niezależna od jakości obrazu.

50 Tablice kontyngencji Dla danych, które możemy przedstawić w tablicy dwudzielczej X/Y 0 1 Suma 0 a b a + b 1 c d c + d Suma a + c b + d n statystyka χ 2 P przyjmuje postać χ 2 P = n(ad bc) 2 (a + b)(c + d)(a + c)(b + d).

51 Tablice kontyngencji Dla danych, które możemy przedstawić w tablicy dwudzielczej X/Y 0 1 Suma 0 a b a + b 1 c d c + d Suma a + c b + d n statystyka χ 2 P przyjmuje postać χ 2 P = n(ad bc) 2 (a + b)(c + d)(a + c)(b + d).

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

Kolokwium ze statystyki matematycznej

Kolokwium ze statystyki matematycznej Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę

Bardziej szczegółowo

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4. Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności. Dr Anna ADRIAN Paw B5, pok407

Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności. Dr Anna ADRIAN Paw B5, pok407 Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Weryfikacja hipotez dotyczących postaci nieznanego rozkładu -Testy zgodności.

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

Estymacja parametrów rozkładu cechy

Estymacja parametrów rozkładu cechy Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ

MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ MATEMATYKA Z ELEMENTAMI STATYSTYKI LABORATORIUM KOMPUTEROWE DLA II ROKU KIERUNKU ZARZĄDZANIE I INŻYNIERIA PRODUKCJI ZESTAWY ZADAŃ Opracowała: Milena Suliga Wszystkie pliki pomocnicze wymienione w treści

Bardziej szczegółowo

Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1

Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1 Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, Ŝe 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.

Bardziej szczegółowo

TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.

TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne. Zajmiemy

Bardziej szczegółowo

Gdy n jest duże, statystyka ta (zwana statystyką chikwadrat), przy założeniu prawdziwości hipotezy H 0, ma w przybliżeniu rozkład χ 2 (k 1).

Gdy n jest duże, statystyka ta (zwana statystyką chikwadrat), przy założeniu prawdziwości hipotezy H 0, ma w przybliżeniu rozkład χ 2 (k 1). PRZYKŁADY TESTÓW NIEPARAMETRYCZNYCH. Test zgodności χ 2. Ten test służy testowaniu hipotezy, czy rozważana zmienna ma pewien ustalony rozkład, czy też jej rozkład różni się od tego ustalonego. Tym testem

Bardziej szczegółowo

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0 Testowanie hipotez Każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy nazywamy hipotezą statystyczną. Hipoteza określająca jedynie wartości nieznanych parametrów liczbowych badanej cechy

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM

Bardziej szczegółowo

Statystyka matematyczna. Wykład III. Estymacja przedziałowa

Statystyka matematyczna. Wykład III. Estymacja przedziałowa Statystyka matematyczna. Wykład III. e-mail:e.kozlovski@pollub.pl Spis treści Rozkłady zmiennych losowych 1 Rozkłady zmiennych losowych Rozkład χ 2 Rozkład t-studenta Rozkład Fischera 2 Przedziały ufności

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematyczna Anna Janicka wykład X, 9.05.206 TESTOWANIE HIPOTEZ STATYSTYCZNYCH II: PORÓWNYWANIE TESTÓW Plan na dzisiaj 0. Przypomnienie potrzebnych definicji. Porównywanie testów 2. Test jednostajnie

Bardziej szczegółowo

TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas

TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas TESTOWANIE HIPOTEZ STATYSTYCZNYCH Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne.

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Karl Popper... no matter how many instances of white swans we may have observed, this does not

Bardziej szczegółowo

TESTOWANIE HIPOTEZ STATYSTYCZNYCH

TESTOWANIE HIPOTEZ STATYSTYCZNYCH TETOWANIE HIPOTEZ TATYTYCZNYCH HIPOTEZA TATYTYCZNA przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Prawdziwość tego przypuszczenia jest oceniana na

Bardziej szczegółowo

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28 Statystyka #5 Testowanie hipotez statystycznych Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2016/2017 1 / 28 Testowanie hipotez statystycznych 2 / 28 Testowanie hipotez statystycznych

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich

Bardziej szczegółowo

STATYSTYKA

STATYSTYKA Wykład 1 20.02.2008r. 1. ROZKŁADY PRAWDOPODOBIEŃSTWA 1.1 Rozkład dwumianowy Rozkład dwumianowy, 0 1 Uwaga: 1, rozkład zero jedynkowy. 1 ; 1,2,, Fakt: Niech,, będą niezależnymi zmiennymi losowymi o jednakowym

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014 Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu

Bardziej szczegółowo

Definicja 1 Statystyką nazywamy (mierzalną) funkcję obserwowalnego wektora losowego

Definicja 1 Statystyką nazywamy (mierzalną) funkcję obserwowalnego wektora losowego Rozdział 1 Statystyki Definicja 1 Statystyką nazywamy (mierzalną) funkcję obserwowalnego wektora losowego X = (X 1,..., X n ). Uwaga 1 Statystyka jako funkcja wektora zmiennych losowych jest zmienną losową

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Wykład 8 Dane kategoryczne

Wykład 8 Dane kategoryczne Wykład 8 Dane kategoryczne Wrocław, 19.04.2017r Zmienne kategoryczne 1 Przykłady zmiennych kategorycznych 2 Zmienne nominalne, zmienne ordynalne (porządkowe) 3 Zmienne dychotomiczne kodowanie zmiennych

Bardziej szczegółowo

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotności, p-wartość i moc testu Wrocław, 01.03.2017r Przykład 2.1 Właściciel firmy produkującej telefony komórkowe twierdzi, że wśród jego produktów

Bardziej szczegółowo

Test t-studenta dla jednej średniej

Test t-studenta dla jednej średniej Test t-studenta dla jednej średniej Hipoteza zerowa: Średnia wartość zmiennej w populacji jest równa określonej wartości a 0 (a = a 0 ). Hipoteza alternatywna 1.: Średnia wartość zmiennej w populacji jest

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych

Bardziej szczegółowo

Wydział Matematyki. Testy zgodności. Wykład 03

Wydział Matematyki. Testy zgodności. Wykład 03 Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy

Bardziej szczegółowo

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

Statystyka matematyczna Test χ 2. Wrocław, 18.03.2016r

Statystyka matematyczna Test χ 2. Wrocław, 18.03.2016r Statystyka matematyczna Test χ 2 Wrocław, 18.03.2016r Zakres stosowalności Testowanie zgodności Testowanie niezależności Test McNemara Test ilorazu szans Copyright 2014, Joanna Szyda ZAKRES STOSOWALNOŚCI

Bardziej szczegółowo

Wykład 12 ( ): Testy dla dwóch prób w rodzinie rozkładów normalnych

Wykład 12 ( ): Testy dla dwóch prób w rodzinie rozkładów normalnych Wykład 12 (21.05.07): Testy dla dwóch prób w rodzinie rozkładów normalnych Przykład Rozważamy dane wygenerowane losowo; ( podobne do danych z przykładu 7.2 z książki A. Łomnickiego) n 1 = 9 poletek w dąbrowie,

Bardziej szczegółowo

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =. Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD października 2009

STATYSTYKA MATEMATYCZNA WYKŁAD października 2009 STATYSTYKA MATEMATYCZNA WYKŁAD 4 26 października 2009 Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ (X µ) 2 { (x µ) 2 exp 1 ( ) } x µ 2 dx 2 σ Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statystyczna analiza danych Testowanie hipotez statystycznych Ewa Szczurek szczurek@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski 1/23 Testowanie hipotez średniej w R Test istotności dla wartości

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N = HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki

Bardziej szczegółowo

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15 VI WYKŁAD STATYSTYKA 9/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 6 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności, zasady

Bardziej szczegółowo

Wykład 5 Problem dwóch prób - testowanie hipotez dla równości średnich

Wykład 5 Problem dwóch prób - testowanie hipotez dla równości średnich Wykład 5 Problem dwóch prób - testowanie hipotez dla równości średnich Magdalena Frąszczak Wrocław, 22.03.2017r Problem Behrensa Fishera Niech X = (X 1, X 2,..., X n ) oznacza próbę z rozkładu normalnego

Bardziej szczegółowo

Testy post-hoc. Wrocław, 6 czerwca 2016

Testy post-hoc. Wrocław, 6 czerwca 2016 Testy post-hoc Wrocław, 6 czerwca 2016 Testy post-hoc 1 metoda LSD 2 metoda Duncana 3 metoda Dunneta 4 metoda kontrastów 5 matoda Newman-Keuls 6 metoda Tukeya Metoda LSD Metoda Least Significant Difference

Bardziej szczegółowo

Statystyka matematyczna. Wykład VI. Zesty zgodności

Statystyka matematyczna. Wykład VI. Zesty zgodności Statystyka matematyczna. Wykład VI. e-mail:e.kozlovski@pollub.pl Spis treści 1 Testy zgodności 2 Test Shapiro-Wilka Test Kołmogorowa - Smirnowa Test Lillieforsa Test Jarque-Bera Testy zgodności Niech x

Bardziej szczegółowo

Metoda największej wiarogodności

Metoda największej wiarogodności Wprowadzenie Założenia Logarytm funkcji wiarogodności Metoda Największej Wiarogodności (MNW) jest bardziej uniwersalną niż MNK metodą szacowania wartości nieznanych parametrów Wprowadzenie Założenia Logarytm

Bardziej szczegółowo

Analiza niepewności pomiarów

Analiza niepewności pomiarów Teoria pomiarów Analiza niepewności pomiarów Zagadnienia statystyki matematycznej Dr hab. inż. Paweł Majda www.pmajda.zut.edu.pl Podstawy statystyki matematycznej Histogram oraz wielobok liczebności zmiennej

Bardziej szczegółowo

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012

Bardziej szczegółowo

Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki.

Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki. Powtórzenie wiadomości z rachunku prawdopodobieństwa i statystyki. Zaj ecia 5 Natalia Nehrebeceka 04 maja, 2010 Plan zaj eć 1 Rachunek prawdopodobieństwa Wektor losowy Wartość oczekiwana Wariancja Odchylenie

Bardziej szczegółowo

Statystyka w przykładach

Statystyka w przykładach w przykładach Tomasz Mostowski Zajęcia 10.04.2008 Plan Estymatory 1 Estymatory 2 Plan Estymatory 1 Estymatory 2 Własności estymatorów Zazwyczaj w badaniach potrzebujemy oszacować pewne parametry na podstawie

Bardziej szczegółowo

SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY

SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY Weryfikacja hipotez statystycznych Statystyka i demografia PROJEKT DOFINANSOWANY ZE ŚRODKÓW NARODOWEGO BANKU POLSKIEGO URZĄD STATYSTYCZNY

Bardziej szczegółowo

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.

Bardziej szczegółowo

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp tel.: +48 662 635 712 Liczba stron: 15 Data: 20.07.2010r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE

Bardziej szczegółowo

Prawdopodobieństwo i statystyka r.

Prawdopodobieństwo i statystyka r. Prawdopodobieństwo i statystyka 9.06.999 r. Zadanie. Rzucamy pięcioma kośćmi do gry. Następnie rzucamy ponownie tymi kośćmi, na których nie wypadły szóstki. W trzeciej rundzie rzucamy tymi kośćmi, na których

Bardziej szczegółowo

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

4.Zmienne losowe X 1, X 2,..., X 100 są niezależne i mają rozkład wykładniczy z α = 0.25 Jakie jest prawdopodobieństwo, że 1

4.Zmienne losowe X 1, X 2,..., X 100 są niezależne i mają rozkład wykładniczy z α = 0.25 Jakie jest prawdopodobieństwo, że 1 LISTA 7 W rozwiązaniu zadań 1-4 wykorzystać centralne twierdzenie graniczne. 1.Prawdopodobieństwo, że aparat zepsuje się w czasie jego konserwacji wynosi 0.02. Jakie jest prawdopodobieństwo, że w trakcie

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych 9 października 2008 ...czyli definicje na rozgrzewkę n-elementowa próba losowa - wektor n zmiennych losowych (X 1,..., X n ); intuicyjnie: wynik n eksperymentów realizacja próby (X 1,..., X n ) w ω Ω :

Bardziej szczegółowo

VII WYKŁAD STATYSTYKA. 30/04/2014 B8 sala 0.10B Godz. 15:15

VII WYKŁAD STATYSTYKA. 30/04/2014 B8 sala 0.10B Godz. 15:15 VII WYKŁAD STATYSTYKA 30/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 7 (c.d) WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności,

Bardziej szczegółowo

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu

Wykład Centralne twierdzenie graniczne. Statystyka matematyczna: Estymacja parametrów rozkładu Wykład 11-12 Centralne twierdzenie graniczne Statystyka matematyczna: Estymacja parametrów rozkładu Centralne twierdzenie graniczne (CTG) (Central Limit Theorem - CLT) Centralne twierdzenie graniczne (Lindenberga-Levy'ego)

Bardziej szczegółowo

Analiza autokorelacji

Analiza autokorelacji Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.

Bardziej szczegółowo

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1. Opracowała: Joanna Kisielińska ZMIENNE LOSOWE Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R tzn. X: R. Realizacją zmiennej losowej

Bardziej szczegółowo

Estymacja parametrów w modelu normalnym

Estymacja parametrów w modelu normalnym Estymacja parametrów w modelu normalnym dr Mariusz Grządziel 6 kwietnia 2009 Model normalny Przez model normalny będziemy rozumieć rodzine rozkładów normalnych N(µ, σ), µ R, σ > 0. Z Centralnego Twierdzenia

Bardziej szczegółowo

Dokładne i graniczne rozkłady statystyk z próby

Dokładne i graniczne rozkłady statystyk z próby Dokładne i graniczne rozkłady statystyk z próby Przypomnijmy Populacja Próba Wielkość N n Średnia Wariancja Odchylenie standardowe 4.2 Rozkład statystyki Mówimy, że rozkład statystyki (1) jest dokładny,

Bardziej szczegółowo

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona Sprawdzanie założeń przyjętych o modelu (etap IIIC przyjętego schematu modelowania regresyjnego) 1. Szum 2. Założenie niezależności zakłóceń modelu - autokorelacja składnika losowego - test Durbina - Watsona

Bardziej szczegółowo

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska Anna Stankiewicz Izabela Słomska Wstęp- statystyka w politologii Rzadkie stosowanie narzędzi statystycznych Pisma Karla Poppera

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH

WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Było: Estymacja parametrów rozkładu teoretycznego punktowa przedziałowa Przykład. Cecha X masa owocu pewnej odmiany. ZałoŜenie: cecha X ma w populacji rozkład

Bardziej szczegółowo

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona

Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności. Łączny rozkład cech X, Y jest normalny: Test współczynnika korelacji Pearsona Badanie zależności między cechami Obserwujemy dwie cechy: X oraz Y Obiekt (X, Y ) H 0 : Cechy X oraz Y są niezależne Próba: (X 1, Y 1 ),..., (X n, Y n ) Cechy X, Y są dowolnego typu: Test Chi Kwadrat niezależności

Bardziej szczegółowo

BADANIE POWTARZALNOŚCI PRZYRZĄDU POMIAROWEGO

BADANIE POWTARZALNOŚCI PRZYRZĄDU POMIAROWEGO Zakład Metrologii i Systemów Pomiarowych P o l i t e c h n i k a P o z n ańska ul Jana Pawła II 24 60-965 POZNAŃ budynek Centrum Mechatroniki, iomechaniki i Nanoinżynierii) wwwzmispmtputpoznanpl tel +48

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7

STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 STATYSTYKA I DOŚWIADCZALNICTWO Wykład 7 Analiza korelacji - współczynnik korelacji Pearsona Cel: ocena współzależności między dwiema zmiennymi ilościowymi Ocenia jedynie zależność liniową. r = cov(x,y

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XI: Testowanie hipotez statystycznych 12 stycznia 2015 Przykład Motywacja X 1, X 2,..., X N N (µ, σ 2 ), Y 1, Y 2,..., Y M N (ν, δ 2 ). Chcemy sprawdzić, czy µ = ν i σ 2 = δ 2, czyli że w obu populacjach

Bardziej szczegółowo

LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI 1. Test dla dwóch średnich P.G. 2. Testy dla wskaźnika struktury 3. Testy dla wariancji DECYZJE Obszar krytyczny od pozostałej

Bardziej szczegółowo

Statystyka. #6 Analiza wariancji. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2015/ / 14

Statystyka. #6 Analiza wariancji. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2015/ / 14 Statystyka #6 Analiza wariancji Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2015/2016 1 / 14 Analiza wariancji 2 / 14 Analiza wariancji Analiza wariancji jest techniką badania wyników,

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Przykład (wstępny). Producent twierdzi, że wadliwość produkcji wynosi 5%. My podejrzewamy, że rzeczywista wadliwość produkcji wynosi 15%. Pobieramy próbę stuelementową

Bardziej szczegółowo

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja)

weryfikacja hipotez dotyczących parametrów populacji (średnia, wariancja) PODSTAWY STATYSTYKI. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez 5. Testy parametryczne (na

Bardziej szczegółowo

TABLICE PODSTAWOWYCH ROZKŁADÓW PRAWDOPODOBIEŃSTWA. T4. Tablica kwantyli rozkładu chi-kwadrat (I część - poziomy kwantyli 0,5)

TABLICE PODSTAWOWYCH ROZKŁADÓW PRAWDOPODOBIEŃSTWA. T4. Tablica kwantyli rozkładu chi-kwadrat (I część - poziomy kwantyli 0,5) TABLICE PODSTAWOWYCH ROZKŁADÓW PRAWDOPODOBIEŃSTWA T1. Tablica dystrybuanty standardowego normalnego rozkładu N(0,1) T2. Tablica kwantyli standardowego normalnego rozkładu N(0,1) T3. Tablica kwantyli rozkładu

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 5. 2 listopada 2009

STATYSTYKA MATEMATYCZNA WYKŁAD 5. 2 listopada 2009 STATYSTYKA MATEMATYCZNA WYKŁAD 5 2 listopada 2009 Poprzedni wykład: przedział ufności dla µ, σ nieznane Rozkład N(µ, σ). Wnioskowanie o średniej µ, gdy σ nie jest znane Testowanie H : µ = µ 0, K : µ

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA 7.1 PL (wykład 1) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW STATYSTYKA to nauka, której przedmiotem

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE STATYSTYKA WNIOSKOWANIE STATYSTYCZNE ESTYMACJA oszacowanie z pewną dokładnością wartości opisującej rozkład badanej cechy statystycznej. WERYFIKACJA HIPOTEZ sprawdzanie słuszności przypuszczeń dotyczących

Bardziej szczegółowo

Wykład 11: Dane jakościowe. Rozkład χ 2. Test zgodności chi-kwadrat

Wykład 11: Dane jakościowe. Rozkład χ 2. Test zgodności chi-kwadrat Wykład 11: Dane jakościowe Obserwacje klasyfikujemy do klas Zliczamy liczbę obserwacji w każdej klasie Jeżeli są tylko dwie klasy, to jedną z nich możemy nazwać sukcesem, a drugą porażką. Generalnie, liczba

Bardziej szczegółowo

Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne

Wykład 4. Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym. 2. Rozkłady próbkowe. 3. Centralne twierdzenie graniczne Wykład 4 Plan: 1. Aproksymacja rozkładu dwumianowego rozkładem normalnym 2. Rozkłady próbkowe 3. Centralne twierdzenie graniczne Przybliżenie rozkładu dwumianowego rozkładem normalnym Niech Y ma rozkład

Bardziej szczegółowo

WYKŁAD 8 ANALIZA REGRESJI

WYKŁAD 8 ANALIZA REGRESJI WYKŁAD 8 ANALIZA REGRESJI Regresja 1. Metoda najmniejszych kwadratów-regresja prostoliniowa 2. Regresja krzywoliniowa 3. Estymacja liniowej funkcji regresji 4. Testy istotności współczynnika regresji liniowej

Bardziej szczegółowo

Pytanie: Kiedy do testowania hipotezy stosujemy rozkład normalny?

Pytanie: Kiedy do testowania hipotezy stosujemy rozkład normalny? Pytanie: Kiedy do testowania hipotezy stosujemy rozkład normalny? Gdy: badana cecha jest mierzalna (tzn. posiada rozkład ciągły); badana cecha posiada rozkład normalny; dysponujemy pojedynczym wynikiem;

Bardziej szczegółowo

LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów

LISTA 4. 7.Przy sporządzaniu skali magnetometru dokonano 10 niezależnych pomiarów LISTA 4 1.Na pewnym obszarze dokonano 40 pomiarów grubości warstwy piasku otrzymując w m.: 54, 58, 64, 69, 61, 56, 41, 48, 56, 61, 70, 55, 46, 57, 70, 55, 47, 62, 55, 60, 54,57,65,60,53,54, 49,58,62,59,55,50,58,

Bardziej szczegółowo

Badanie zależności pomiędzy zmiennymi

Badanie zależności pomiędzy zmiennymi Badanie zależności pomiędzy zmiennymi Czy istnieje związek, a jeśli tak, to jak silny jest pomiędzy np. wykształceniem personelu a jakością świadczonych usług? Ogólnie szukamy miary zależności (współzależności),

Bardziej szczegółowo

STATYSTYKA wykład 5-6

STATYSTYKA wykład 5-6 TATYTYKA wykład 5-6 Twierdzenia graniczne Rozkłady statystyk z próby Wanda Olech Twierdzenia graniczne Jeżeli rozpatrujemy ciąg zmiennych losowych {X ; X ;...; X n }, to zdarza się, że ich rozkłady przy

Bardziej szczegółowo

KARTA KURSU. (do zastosowania w roku akademickim 2015/16) Kod Punktacja ECTS* 3. Dr hab. Tadeusz Sozański

KARTA KURSU. (do zastosowania w roku akademickim 2015/16) Kod Punktacja ECTS* 3. Dr hab. Tadeusz Sozański KARTA KURSU (do zastosowania w roku akademickim 2015/16) Nazwa Statystyka 2 Nazwa w j. ang. Statistics 2 Kod Punktacja ECTS* 3 Koordynator Dr hab. Tadeusz Sozański (koordynator, konwersatorium) Zespół

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD STATYSTYK Z PRÓBY

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD STATYSTYK Z PRÓBY WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI ROZKŁAD STATYSTYK Z PRÓBY Próba losowa prosta To taki dobór elementów z populacji, że każdy element miał takie samo prawdopodobieństwo znalezienia się w próbie Niezależne

Bardziej szczegółowo