Testowanie hipotez statystycznych

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Testowanie hipotez statystycznych"

Transkrypt

1 Temat Testowanie hipotez statystycznych Kody znaków: Ŝółte wyróŝnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1

2 Zagadnienia omawiane na zajęciach 1. Idea i pojęcia teorii testowania hipotez statystycznych 2. Testowanie hipotezy dotyczącej: a. średniej z rozkładu normalnego b. porównaniu dwóch średnich z rozkładów normalnych c. porównaniu dwóch wariancji z rozkładów normalnych d. porównaniu dwóch frakcji z rozkładów dwupunktowych 2

3 Był problem Cecha X masa owocu pewnej odmiany ZałoŜenie Cecha X ma w populacji rozkład normalny, X ~ N(µ, σ 2 ), gdzie µ, σ 2 nieznane Cel Wyznaczyć ocenę średniej masy jednego owocu tej odmiany µ 3

4 Był problem cd. Działanie Estymujemy parametr µ na podstawie wylosowanej próby: x 1, x 2,..., x n ; np. 191,2; 193,0; 195,1; 184,3; 197,6; 200,8; 194,2; 198,7; 189,5; 200,2 4

5 Był problem cd. Wynik Ocena punktowa µ wynosi Ocena przedziałowa x = 194, 46g µ 190,75 ; 198,17 P = 95% 5

6 Jest problem Cecha X masa owocu pewnej odmiany ZałoŜenie Cecha X ma w populacji rozkład normalny, X ~ N(µ, σ 2 ), gdzie µ, σ 2 nieznane Cel Wyznaczyć ocenę średniej masy jednego owocu tej odmiany µ Zbadać wartość średniej masy jednego owocu tej odmiany µ. 6

7 Jest problem cd. Pytanie Czy moŝna przyjąć, Ŝe średnia masa jednego owocu tej odmiany µ jest równa 200? µ = 200 Decyzja tak / nie 7

8 Jest problem cd. µ = 200 Badana hipoteza Weryfikacja hipotezy (Testowanie hipotezy) tak / nie Decyzja 8

9 Idea testowania hipotez - przykład Badamy krąŝek o wymiarach zbliŝonych do monety jednozłotowej ze stronami oznaczonymi: A, B. Mamy ustalić, czy krąŝek jest symetryczny? (podczas rzutów tym krąŝkiem kaŝda ze stron będzie się pojawiać z jednakową częstością). Chcemy dostać odpowiedź: tak/nie 9

10 Hipoteza merytoryczna 1. Formułujemy hipotezę merytoryczną (stwierdzenie): inaczej: krąŝek jest symetryczny stosunek wyników A do B wynosi 1:1 inaczej: p-stwo otrzymania wyniku A wynosi 0,5 10

11 Testowanie hipotezy 2. Wybieramy wartość testową (test) do zbadania hipotezy: liczba wyników A w próbie, ozn. L A 3. Określamy regułę podejmowania decyzji tak/nie odnośnie hipotezy na podstawie wartości testowej dla próby 3. Losujemy próbę: x 1, x 2,..., x n 4. Wyznaczamy wartość testową dla wylosowanej próby 11

12 Testowanie hipotezy cd. 5. Formułujemy wniosek odnośnie hipotezy (podejmujemy decyzję odrzucić/nie odrzucić ) 12

13 Idea testowania hipotez przykład cd. Przykładowa reguła podejmowania decyzji: Jeśli wypadnie od 4, 5 lub 6 wyników A w 10-elementowej próbie, to krąŝek uznamy za symetryczny, w przeciwnym przypadku - za niesymetryczny. 13

14 Idea testowania hipotez przykład 1 Wylosowana próba: A B B B B A B B B B Wyznaczamy liczbę wyników A w próbie (wartości testu): L A = 2 Formułujemy wniosek odnośnie hipotezy: na podstawie próby odrzucamy hipotezę, Ŝe krąŝek jest symetryczny 14

15 Idea testowania hipotez przykład 2 Wylosowana próba: A A B A B A A B B A Wyznaczamy liczbę wyników A w próbie (wartość testu): L A = 6 Formułujemy wniosek odnośnie hipotezy: na podstawie próby przyjmujemy hipotezę, Ŝe krąŝek jest symetryczny 15

16 Teoretyczne podstawy testowania hipotez Doświadczenie losowe: rzut symetrycznym krąŝkiem ze stronami A, B hipoteza o symetryczności jest prawdziwa 16

17 Teoretyczne podstawy cd. X liczba wyników A w 10 - elementowej próbie X~B(n = 10, p = 0,5) Wyznaczymy rozkład p-stwa zmiennej losowej X ze wzoru Bernoulliego 17

18 Teoretyczne podstawy cd. Wykres funkcji rozkładu p-stwa zmiennej losowej X 0,3 p-stwo 0,2 0, wartości X 18

19 Teoretyczne podstawy cd. wartość X pstwo 0 0, , , , , , , , , , ,001 P { X = 0} = 0,001 p-stwo zdarzenia, Ŝe w próbie wypadnie 0 wyników A (Ŝadnego wyniku A, same wyniki B) wynosi 0,001 19

20 Teoretyczne podstawy cd. wartość X pstwo 0 0, , , , , , , , , , ,001 Przykładowa reguła podejmowania decyzji: hipotezę odrzucimy jeśli X = 0 lub X = 10 20

21 Teoretyczne podstawy cd. wartość X pstwo 0 0, , , , , , , , , , ,001 Przykładowa reguła podejmowania decyzji: hipotezę odrzucimy jeśli X = 0 lub X = 10 Odrzucając hipotezę popełniamy błąd, bo jest ona prawdziwa. 21

22 Teoretyczne podstawy cd. wartość X pstwo 0 0, , , , , , , , , , ,001 Przykładowa reguła: hipotezę odrzucimy jeśli X = 0 lub X = 10 Hipotezę odrzucamy z p-stwem P{ X = 0 lub X = 10} = = P{ X = 0} + P{ X = 10} = = 0,001 +0,001 = 0,002 22

23 Teoretyczne podstawy cd. wartość X pstwo 0 0, , , , , , , , , , ,001 Przykładowa reguła: hipotezę odrzucimy jeśli X = 0 lub X = 10 Hipotezę odrzucamy z p-stwem 0,002 Odrzucając hipotezę popełnimy błąd Błąd popełniamy z pstwem 0,002 23

24 Teoretyczne podstawy cd. wartość X pstwo 0 0, , , , , , , , , , ,001 Przykładowa reguła: hipotezę odrzucimy jeśli X = 0 lub X = 10 Błędną decyzję o odrzuceniu hipotezy prawdziwej podejmujemy z pstwem 0,002 24

25 Teoretyczne podstawy cd. Dalej: Jeśli liczba wyników A w próbie wyniesie od 1 do 9, to hipotezy nie moŝna odrzucić ( hipotezę przyjmujemy ). Przyjmując hipotezę prawdziwą nie popełniamy błędu. Poprawną decyzję o przyjęciu hipotezy podejmujemy z p-stwem 0,

26 Teoretyczne podstawy cd. Inna reguła podejmowania decyzji: hipotezę odrzucimy jeśli X { 0, 1, 2, 3, 7, 8, 9, 10 } Przy tej regule p-stwo popełnienia błędu (podjęcia błędnej decyzji o odrzuceniu hipotezy prawdziwej) wynosi P ( X { 0, 1, 2, 3, 7, 8, 9, 10 }) = 0,

27 Teoretyczne podstawy cd. Inne reguły podejmowania decyzji: Odrzucenie hipotezy przy liczbie wyników A X = 0 lub = 10 X 1 lub 9 Pstwo popełnienia błędu X 0,002 X 0,022 2 X 0,110 3 X 0,344 4 X 0,754 X { 0, 1,..., 10 } 1 X lub 8 X lub 7 X lub 6 27

28 Teoretyczne podstawy cd. Inne reguły podejmowania decyzji: Odrzucenie hipotezy przy liczbie wyników A X = 0 lub = 10 X 1 lub 9 Pstwo popełnienia błędu X 0,002 X 0,022 2 X 0,110 3 X 0,344 4 X 0,754 X { 0, 1,..., 10 } 1 X lub 8 X lub 7 X lub 6 Jakie p-stwo popełnienia błędu akceptujemy? 28

29 Teoretyczne podstawy cd. Jakie p-stwo popełnienia błędu akceptujemy? Graniczne p-stwo błędu poziom istotności, ozn. α (alfa) np. α = 0,05 albo α = 0,01 Jeśli przyjmiemy α = 0,2, to obszar krytyczny dla hipotezy (odrzucenia hipotezy) to zbiór {0,1, 2, 8, 9, 10}, a obszar dopuszczalny { 3, 4, 5, 6, 7}. 29

30 Teoretyczne podstawy cd. Odrzucenie hipotezy przy liczbie wyników A X = 0 lub = 10 X 1 lub 9 Pstwo popełnienia błędu X 0,002 X 0,022 2 X 0,110 3 X 0,344 4 X 0,754 X { 0, 1,..., 10 } 1 X lub 8 X lub 7 X lub 6 30

31 Teoretyczne podstawy cd. Dla α = 0,2 obszar krytyczny dla hipotezy (obszar odrzucenia hipotezy) to zbiór {0,1, 2, 8, 9, 10} a obszar dopuszczalny to zbiór { 3, 4, 5, 6, 7}

32 Teoretyczne podstawy cd. 1. Formułujemy hipotezę: p-stwo otrzymania wyniku A wynosi 0,5 2. Wybieramy test do zbadania hipotezy: liczba wystąpień wyniku A w próbie losowej, ozn.: L A 3. Przyjmujemy poziom istotności α (tym samym wyznaczamy obszar krytyczny testu) dla α = 0,2, obszar krytyczny to zbiór { 0, 1, 2, 8, 9, 10} 32

33 Teoretyczne podstawy cd. 4. Losowujemy próbę: A B B B B A B B B B 5. Wyznaczamy wartości testu dla wylosowanej próby: L A =2 33

34 Teoretyczne podstawy cd. 6. Formułujemy wniosek odnośnie hipotezy (hipotezę odrzucamy, gdy wartość testu wpada do obszaru krytycznego; w przeciwnym przypadku hipotezy nie odrzucamy Odrzucamy hipotezę, Ŝe krąŝek jest symetryczny 34

35 Terminologia i oznaczenia Hipoteza statystyczna to dowolne przypuszczenie dotyczące rozkładu p-stwa cechy X (typ rozkładu, parametr rozkładu) Testowaną hipotezę nazywamy hipotezą zerową, ozn.: H 0 W przykładzie cecha X~B(n, p); hipoteza zerowa H 0 : p = 0,5. 35

36 Terminologia i oznaczenia cd. Funkcja testowa ozn. np.: t-studenta, F-Fishera, χ 2 chi-kwadrat W przykładzie funkcja testowa L A = liczba wyników A Wartość empiryczna funkcji testowej (wartość funkcji testowej dla próby), np.: t emp, F emp, χ 2 emp. W przykładzie L Aemp = 2 36

37 Terminologia i oznaczenia cd. Poziom istotności α. α akceptowalne p-stwo popełnienia błędu (przy odrzucaniu hipotezy prawdziwej), np. α = 0,01, α = 0,05 37

38 Terminologia i oznaczenia cd. Wartość krytyczna funkcji testowej (wartość krytyczna testu) np.: t kryt, F kryt, χ 2 kryt; t kryt = t α,v taka, Ŝe P{ t v > t α,v } = α, gdzie t v jest zmienną losową o rozkładzie t-studenta z v stopniami swobody; F kryt = F α,u,v taka, Ŝe P{ F u,v > F α,u,v }= α, gdzie F u,v jest zmienną losową o rozkładzie F-Fishera z liczbami stopni swobody u, v. 38

39 Terminologia i oznaczenia cd. χ 2 kryt= χ 2 α, v taka, Ŝe P{ χ 2 v > χ 2 α, v } = α, gdzie χ 2 v jest zmienną losową o rozkładzie chi-kwadrat z liczbą stopni swobody v. Wartość p p = P{ t v > t emp } 39

40 Błędy wnioskowania STAN RZECZYWISTY H 0 prawdziwa H 0 nieprawdziwa (fałszywa) ODRZUCIĆ H 0 błąd I rodzaju, pstwo = α wniosek prawidłowy WNIOSEK NIE ODRZUCAĆ H 0 wniosek prawidłowy błąd II rodzaju, pstwo = β 40

41 Błędy wnioskowania - definicje Błąd I rodzaju - błąd wnioskowania polegający na odrzuceniu hipotezy zerowej, która jest prawdziwa; pstwo wystąpienia tego błędu powinno być małe, np. α = 0,05 lub α = 0,01; α - poziom istotności testu. Błąd II rodzaju - błąd wnioskowania polegający na nieodrzuceniu hipotezy zerowej, która jest fałszywa. 41

42 Hipoteza H 0 : µ = µ 0 ZałoŜenia: 1. cecha X ~ N(µ, σ 2 ), µ, σ 2 - nieznane 2. próba losowa: x 1, x 2,..., x n ; n liczebność próby H 0 : µ = µ 0 (porównanie z normą) test t - Studenta; poziom istotności α Funkcja testowa: t emp = x s µ 0 n 42

43 Wnioskowanie 1: Hipoteza H 0 : µ = µ 0 cd. jeŝeli t emp > t α,v= n-1, to hipotezę H 0 odrzucamy, w przeciwnym przypadku H 0 nie moŝna odrzucić. Wnioskowanie 2 (równowaŝne z wnioskowaniem 1): jeŝeli wartość p < α, to hipotezę H 0 odrzucamy, w przeciwnym przypadku H 0 nie moŝna odrzucić. 43

44 Przykład H 0 : µ = 200 Cecha X masa owocu pewnej odmiany. ZałóŜmy, Ŝe X ~ N(µ, σ 2 ), gdzie µ, σ 2 nieznane Hipoteza zerowa H 0 : µ = 200 Test t -Studenta, poziom istotności α =0,05 Próba: 191,2; 193,0; 195,1; 184,3; 197,6; 200,8; 194,2; 198,7; 189,5; 200,2 44

45 Parametry próby: n=10, Przykład H 0 : µ = 200 cd. x = 194, 46g, s = 5,19 g Wartość empiryczna funkcji testowej: t emp x µ = 0 n = s 194, = 5,19 10 = 3,3755 Wartość krytyczna funkcji testowej t α,v = n-1 = t 0,05, 9 = 2,

46 Przykład H 0 : µ = 200 cd. Wnioskowanie 1 (wniosek statystyczny): t emp =3,3375> 2,2622 = t 0,05,9, zatem hipotezę zerową H 0 odrzucamy. Wniosek merytoryczny: nie moŝna przyjąć, Ŝe średnia masa owocu tej odmiany wynosi 200 g. 46

47 Wartości krytyczne rozkładu t-studenta X ~ t ν - X zmienna losowa o rozkładzie t-studenta z liczbą stopni swobody v, α - poziom istotności, t α, ν - wartość krytyczna - liczba taka, Ŝe P( X > t α, ν ) = α ν \ α 0,400 0,300 0,200 0,100 0,050 0,025 0,010 0,005 0, ,3764 1,9626 3,0777 6, , , , , , ,0607 1,3862 1,8856 2,9200 4,3027 6,2054 9, , , ,9785 1,2498 1,6377 2,3534 3,1824 4,1765 5,8408 7, , ,9410 1,1896 1,5332 2,1318 2,7765 3,4954 4,6041 5,5975 8, ,9195 1,1558 1,4759 2,0150 2,5706 3,1634 4,0321 4,7733 6, ,9057 1,1342 1,4398 1,9432 2,4469 2,9687 3,7074 4,3168 5, ,8960 1,1192 1,4149 1,8946 2,3646 2,8412 3,4995 4,0294 5, ,8889 1,1081 1,3968 1,8595 2,3060 2,7515 3,3554 3,8325 5, ,8834 1,0997 1,3830 1,8331 2,2622 2,6850 3,2498 3,6896 4, ,8791 1,0931 1,3722 1,8125 2,2281 2,6338 3,1693 3,5814 4, ,8755 1,0877 1,3634 1,7959 2,2010 2,5931 3,1058 3,4966 4, ,8726 1,0832 1,3562 1,7823 2,1788 2,5600 3,0545 3,4284 4,

48 Przykład ilustracja graficzna Ozn.: t emp = X S µ n f(x) y = f (x) funkcja gęstości rozkładu t-studenta z v=9 stopniami swobody 0 wartości t 48

49 Przykład ilustracja graficzna cd. y = f (x) funkcja gęstości rozkładu t-studenta z v = 9 stopniami swobody α 0, 05 Pole = = = 0, Pole=1-α=0,95 α 0, 05 Pole = = = 0, t 0,05, 9 = -2, t 0,05,9 =2,2622 wartości t obszar dopuszczenia hipotezy obszar odrzucenia hipotezy (krytyczny) 49

50 Przykład ilustracja graficzna cd. y = f (x) funkcja gęstości rozkładu t-studenta z v = 9 stopniami swobody Pole = wartość p Pole = α = 0,05 -t emp =-3,34 - t kryt = -2,26 0 t kryt =2,26 t emp =3,34 wartości t 50

51 Hipoteza H 0 : µ 1 = µ 2 ZałoŜenia: 1. cecha X 1 ~N(µ 1, σ 2 ), cecha X 2 ~N(µ 2, σ 2 ), µ 1, µ 2, σ 2 - nieznane parametry, 2. pobrano n 1 elementową próbę z pierwszej populacji oraz n 2 -elementową próbę z drugiej populacji H 0 : µ 1 = µ 2 (porównanie średnich w dwóch populacjach), test t-studenta, poziom istotności α 51

52 52 Hipoteza H 0 : µ 1 = µ 2 cd. Funkcja testowa: r emp s x x t 2 1 = gdzie: + = n n s s e r błąd stand. róŝnicy średnich, ( ) ( ) = n n n s n s s e wspólna wariancja;

53 Hipoteza H 0 : µ 1 = µ 2 cd. Wnioskowanie 1: jeŝeli t emp >t α, v = n1+n2-2, to hipotezę H 0 odrzucamy, w przeciwnym przypadku H 0 nie moŝna odrzucić. Wnioskowanie 2: jeŝeli p < α, to hipotezę H 0 odrzucamy, w przeciwnym przypadku H 0 nie moŝna odrzucić. 53

54 Hipoteza H 0 : σ 1 2 = σ 2 2 ZałoŜenia: 1. cecha X 1 ~N(µ 1, σ 1 2 ), cecha X 2 ~N(µ 2, σ 2 2 ), µ 1, µ 2, σ 1 2, σ nieznane parametry, 2. pobrano n 1 elementową próbę z pierwszej populacji oraz n 2 elementową próbę z drugiej populacji. H 0 : σ 1 2 = σ 2 2 (porównanie wariancji w dwóch populacjach), test F-Fishera, poziom istotności α. 54

55 Hipoteza H 0 : σ 1 2 = σ 2 2 cd. Funkcja testowa: F emp = max ( s min ( s ,, s s ) ) 55

56 Hipoteza H 0 : σ 1 2 = σ 2 2 Wnioskowanie 1: jeŝeli F emp > F α/2, v licz, v mian, to hipotezę H 0 odrzucamy, w przeciwnym przypadku H 0 nie moŝna odrzucić. UWAGA: v licz liczba stopni swobody dla licznika, v mian - liczba stopni swobody dla mianownika, v i = n i 1. 56

57 Hipoteza H 0 : σ 1 2 = σ 2 2 Wnioskowanie 2: jeŝeli wartość p < α, to hipotezę H 0 odrzucamy, w przeciwnym przypadku H 0 nie moŝna odrzucić. 57

58 Hipoteza H 0 : p 1 = p 2 ZałoŜenia: 1. cecha X 1 ma rozkład dwupunktowy z nieznanym parametrem p 1, 2. cecha X 2 ma rozkład dwupunktowy z nieznanym parametrem p 2, 3. pobrano n 1 elementową próbę z pierwszej populacji oraz n 2 elementową próbę z drugiej populacji, k i liczba elementów wyróŝnionych w i-tej próbie; p = i k n i i p = k n k n

59 Hipoteza H 0 : p 1 = p 2 cd. H 0 : p 1 = p 2 (porównanie frakcji w dwóch populacjach), test przybliŝony u (dla duŝych prób), poziom istotności α. Funkcja testowa: u emp = p p 1 p ( 1 p) + n n

60 Wnioskowanie: Hipoteza H 0 : p 1 = p 2 cd. jeŝeli u emp u α, to hipotezę H odrzucamy, w przeciwnym przypadku H 0 nie moŝna odrzucić. 60

61 Pojęcia cd. Hipoteza alternatywna, ozn. H 1 przyjmowana po odrzuceniu hipotezy zerowej. Moc testu - p-stwo nieodrzucenia prawdziwej hipotezy alternatywnej. Od testu wymagamy, aby był najmocniejszy, czyli z duŝym p-stwem odrzucał fałszywą hipotezę zerową. 61

WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH

WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH WYKŁAD 8 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Było: Estymacja parametrów rozkładu teoretycznego punktowa przedziałowa Przykład. Cecha X masa owocu pewnej odmiany. ZałoŜenie: cecha X ma w populacji rozkład

Bardziej szczegółowo

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd.

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 9. TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd. WYKŁAD 9 TESTOWANIE HIPOTEZ STATYSTYCZNYCH cd. Było: Przykład 1. Badano krąŝek o wymiarach zbliŝonych do monety jednozłotowej ze stronami oznaczonymi: A, B. NaleŜy ustalić, czy krąŝek jest symetryczny?

Bardziej szczegółowo

Testowanie hipotez statystycznych cd.

Testowanie hipotez statystycznych cd. Temat Testowanie hipotez statystycznych cd. Kody znaków: żółte wyróżnienie nowe pojęcie pomarańczowy uwaga kursywa komentarz 1 Zagadnienia omawiane na zajęciach 1. Przykłady testowania hipotez dotyczących:

Bardziej szczegółowo

Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1

Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1 Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, Ŝe 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.

Bardziej szczegółowo

Matematyka i statystyka matematyczna dla rolników w SGGW

Matematyka i statystyka matematyczna dla rolników w SGGW Było: Testowanie hipotez (ogólnie): stawiamy hipotezę, wybieramy funkcję testową f (test statystyczny), przyjmujemy poziom istotności α; tym samym wyznaczamy obszar krytyczny testu (wartość krytyczną funkcji

Bardziej szczegółowo

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa

Błędy przy testowaniu hipotez statystycznych. Decyzja H 0 jest prawdziwa H 0 jest faszywa Weryfikacja hipotez statystycznych Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o prawdziwości lub fałszywości którego wnioskuje się na podstawie

Bardziej szczegółowo

Estymacja punktowa i przedziałowa

Estymacja punktowa i przedziałowa Temat: Estymacja punktowa i przedziałowa Kody znaków: żółte wyróżnienie nowe pojęcie czerwony uwaga kursywa komentarz 1 Zagadnienia 1. Statystyczny opis próby. Idea estymacji punktowej pojęcie estymatora

Bardziej szczegółowo

Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych

Statystyka matematyczna. Wykład IV. Weryfikacja hipotez statystycznych Statystyka matematyczna. Wykład IV. e-mail:e.kozlovski@pollub.pl Spis treści 1 2 3 Definicja 1 Hipoteza statystyczna jest to przypuszczenie dotyczące rozkładu (wielkości parametru lub rodzaju) zmiennej

Bardziej szczegółowo

Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1

Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT. Anna Rajfura 1 Temat: BADANIE ZGODNOŚCI ROZKŁADU CECHY (EMPIRYCZNEGO) Z ROZKŁADEM TEORETYCZNYM TEST CHI-KWADRAT Anna Rajfura 1 Przykład wprowadzający Wiadomo, że 40% owoców ulega uszkodzeniu podczas pakowania automatycznego.

Bardziej szczegółowo

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej

Bardziej szczegółowo

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu

Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotn. istotności, p-wartość i moc testu Wykład 2 Hipoteza statystyczna, test statystyczny, poziom istotności, p-wartość i moc testu Wrocław, 01.03.2017r Przykład 2.1 Właściciel firmy produkującej telefony komórkowe twierdzi, że wśród jego produktów

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

TESTOWANIE HIPOTEZ STATYSTYCZNYCH

TESTOWANIE HIPOTEZ STATYSTYCZNYCH TETOWANIE HIPOTEZ TATYTYCZNYCH HIPOTEZA TATYTYCZNA przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Prawdziwość tego przypuszczenia jest oceniana na

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

Weryfikacja hipotez statystycznych za pomocą testów statystycznych

Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów statystycznych Weryfikacja hipotez statystycznych za pomocą testów stat. Hipoteza statystyczna Dowolne przypuszczenie co do rozkładu populacji generalnej

Bardziej szczegółowo

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2

STATYSTYKA I DOŚWIADCZALNICTWO. Wykład 2 STATYSTYKA I DOŚWIADCZALNICTWO Wykład Parametry przedziałowe rozkładów ciągłych określane na podstawie próby (przedziały ufności) Przedział ufności dla średniej s X t( α;n 1),X + t( α;n 1) n s n t (α;

Bardziej szczegółowo

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych

Bardziej szczegółowo

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15

VI WYKŁAD STATYSTYKA. 9/04/2014 B8 sala 0.10B Godz. 15:15 VI WYKŁAD STATYSTYKA 9/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 6 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności, zasady

Bardziej szczegółowo

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria Wykład 5 dr inż. Anna Skowrońska-Szmer zima 2017/2018 Hipotezy 2 Hipoteza zerowa (H 0 )- hipoteza o wartości jednego (lub wielu) parametru populacji. Traktujemy ją

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

VII WYKŁAD STATYSTYKA. 30/04/2014 B8 sala 0.10B Godz. 15:15

VII WYKŁAD STATYSTYKA. 30/04/2014 B8 sala 0.10B Godz. 15:15 VII WYKŁAD STATYSTYKA 30/04/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 7 (c.d) WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI Weryfikacja hipotez ( błędy I i II rodzaju, poziom istotności,

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI. Test zgodności i analiza wariancji Analiza wariancji WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI Test zgodności i analiza wariancji Analiza wariancji Test zgodności Chi-kwadrat Sprawdza się za jego pomocą ZGODNOŚĆ ROZKŁADU EMPIRYCZNEGO Z PRÓBY Z ROZKŁADEM HIPOTETYCZNYM

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Przykład. Producent pewnych detali twierdzi, że wadliwość jego produkcji nie przekracza 2%. Odbiorca pewnej partii tego produktu chce sprawdzić, czy może wierzyć producentowi.

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 9 i 10 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 9 i 10 1 / 30 TESTOWANIE HIPOTEZ STATYSTYCZNYCH

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga 1 Zagadnienia 1. Przypomnienie wybranych pojęć rachunku prawdopodobieństwa. Zmienna losowa. Rozkład

Bardziej szczegółowo

LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI LABORATORIUM 9 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI 1. Test dla dwóch średnich P.G. 2. Testy dla wskaźnika struktury 3. Testy dla wariancji DECYZJE Obszar krytyczny od pozostałej

Bardziej szczegółowo

1. Jednoczynnikowa analiza wariancji 2. Porównania szczegółowe

1. Jednoczynnikowa analiza wariancji 2. Porównania szczegółowe Zjazd 7. SGGW, dn. 28.11.10 r. Matematyka i statystyka matematyczna Tematy 1. Jednoczynnikowa analiza wariancji 2. Porównania szczegółowe nna Rajfura 1 Zagadnienia Przykład porównania wielu obiektów w

Bardziej szczegółowo

Testowanie hipotez cz. I

Testowanie hipotez cz. I Wykład 11 Testowanie hipotez cz. I TESTOWANIE HIPOTEZ STATYSTYCZNYCH Hipoteza statystyczna jest to przypuszczenie dotyczące nieznanej własności rozkładu prawdopodobieństwa badanej cechy populacji. W zadaniach

Bardziej szczegółowo

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych

Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne i weryfikacja hipotez statystycznych Wnioskowanie statystyczne Wnioskowanie statystyczne obejmuje następujące czynności: Sformułowanie hipotezy zerowej i hipotezy alternatywnej.

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria Wykład 5 Anna Skowrońska-Szmer lato 2016/2017 Hipotezy 2 Hipoteza zerowa (H 0 )- hipoteza o wartości jednego (lub wielu) parametru populacji. Traktujemy ją jako prawdziwą

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1.

ZMIENNE LOSOWE. Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R 1 tzn. X: R 1. Opracowała: Joanna Kisielińska ZMIENNE LOSOWE Zmienna losowa (ZL) X( ) jest funkcją przekształcającą przestrzeń zdarzeń elementarnych w zbiór liczb rzeczywistych R tzn. X: R. Realizacją zmiennej losowej

Bardziej szczegółowo

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 11 DOŚWIADCZENIE JEDNOCZYNNIKOWE W UKŁADZIE CAŁKOWICIE LOSOWYM PORÓWNANIA SZCZEGÓŁOWE

Matematyka i statystyka matematyczna dla rolników w SGGW WYKŁAD 11 DOŚWIADCZENIE JEDNOCZYNNIKOWE W UKŁADZIE CAŁKOWICIE LOSOWYM PORÓWNANIA SZCZEGÓŁOWE WYKŁAD 11 DOŚWIADCZENIE JEDNOCZYNNIKOWE W UKŁADZIE CAŁKOWICIE LOSOWYM PORÓWNANIA SZCZEGÓŁOWE Było: Przykład. W doświadczeniu polowym załoŝonym w układzie całkowicie losowym w czterech powtórzeniach porównano

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Statystyka Wykład 10 Wrocław, 22 grudnia 2011 Testowanie hipotez statystycznych Definicja. Hipotezą statystyczną nazywamy stwierdzenie dotyczące parametrów populacji. Definicja. Dwie komplementarne w problemie

Bardziej szczegółowo

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych.

Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Statystyka i opracowanie danych- W 8 Wnioskowanie statystyczne. Testy statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności. Dr Anna ADRIAN Paw B5, pok407

Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności. Dr Anna ADRIAN Paw B5, pok407 Rachunek prawdopodobieństwa i statystyka - W 9 Testy statystyczne testy zgodności Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Weryfikacja hipotez dotyczących postaci nieznanego rozkładu -Testy zgodności.

Bardziej szczegółowo

Badanie zgodności z określonym rozkładem. F jest dowolnym rozkładem prawdopodobieństwa. Test chi kwadrat zgodności. F jest rozkładem ciągłym

Badanie zgodności z określonym rozkładem. F jest dowolnym rozkładem prawdopodobieństwa. Test chi kwadrat zgodności. F jest rozkładem ciągłym Badanie zgodności z określonym rozkładem H 0 : Cecha X ma rozkład F F jest dowolnym rozkładem prawdopodobieństwa Test chi kwadrat zgodności F jest rozkładem ciągłym Test Kołmogorowa F jest rozkładem normalnym

Bardziej szczegółowo

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28

Statystyka. #5 Testowanie hipotez statystycznych. Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik. rok akademicki 2016/ / 28 Statystyka #5 Testowanie hipotez statystycznych Aneta Dzik-Walczak Małgorzata Kalbarczyk-Stęclik rok akademicki 2016/2017 1 / 28 Testowanie hipotez statystycznych 2 / 28 Testowanie hipotez statystycznych

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski

Statystyczna analiza danych w programie STATISTICA (wykład 2) Dariusz Gozdowski Statystyczna analiza danych w programie STATISTICA (wykład ) Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Weryfikacja (testowanie) hipotez statystycznych

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 5. 2 listopada 2009

STATYSTYKA MATEMATYCZNA WYKŁAD 5. 2 listopada 2009 STATYSTYKA MATEMATYCZNA WYKŁAD 5 2 listopada 2009 Poprzedni wykład: przedział ufności dla µ, σ nieznane Rozkład N(µ, σ). Wnioskowanie o średniej µ, gdy σ nie jest znane Testowanie H : µ = µ 0, K : µ

Bardziej szczegółowo

Hipotezy statystyczne

Hipotezy statystyczne Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o którego prawdziwości lub fałszywości wnioskuje się na podstawie pobranej

Bardziej szczegółowo

Hipotezy statystyczne

Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy populacji, o którego prawdziwości lub fałszywości wnioskuje się na podstawie pobranej próbki losowej. Hipotezy

Bardziej szczegółowo

Estymacja parametrów rozkładu cechy

Estymacja parametrów rozkładu cechy Estymacja parametrów rozkładu cechy Estymujemy parametr θ rozkładu cechy X Próba: X 1, X 2,..., X n Estymator punktowy jest funkcją próby ˆθ = ˆθX 1, X 2,..., X n przybliżającą wartość parametru θ Przedział

Bardziej szczegółowo

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki

Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Tablica Wzorów Rachunek Prawdopodobieństwa i Statystyki Spis treści I. Wzory ogólne... 2 1. Średnia arytmetyczna:... 2 2. Rozstęp:... 2 3. Kwantyle:... 2 4. Wariancja:... 2 5. Odchylenie standardowe:...

Bardziej szczegółowo

Porównanie modeli statystycznych. Monika Wawrzyniak Katarzyna Kociałkowska

Porównanie modeli statystycznych. Monika Wawrzyniak Katarzyna Kociałkowska Porównanie modeli statystycznych Monika Wawrzyniak Katarzyna Kociałkowska Jaka jest miara podobieństwa? Aby porównywać rozkłady prawdopodobieństwa dwóch modeli statystycznych możemy użyć: metryki dywergencji

Bardziej szczegółowo

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0 Testowanie hipotez Każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy nazywamy hipotezą statystyczną. Hipoteza określająca jedynie wartości nieznanych parametrów liczbowych badanej cechy

Bardziej szczegółowo

Wstęp do probabilistyki i statystyki. Wykład 4. Statystyki i estymacja parametrów

Wstęp do probabilistyki i statystyki. Wykład 4. Statystyki i estymacja parametrów Wstęp do probabilistyki i statystyki Wykład 4. Statystyki i estymacja parametrów dr hab.inż. Katarzyna Zakrzewska, prof.agh, Katedra Elektroniki, WIET AGH Wstęp do probabilistyki i statystyki. Wykład 4

Bardziej szczegółowo

LABORATORIUM Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz.

LABORATORIUM Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz. LABORATORIUM 4 1. Populacja Generalna (PG) 2. Próba (P n ) 3. Kryterium 3σ 4. Błąd Średniej Arytmetycznej 5. Estymatory 6. Teoria Estymacji (cz. I) WNIOSKOWANIE STATYSTYCZNE (STATISTICAL INFERENCE) Populacja

Bardziej szczegółowo

hipotez statystycznych

hipotez statystycznych Weryfikacja hipotez statystycznych Przykład. Producent pewnych detali twierdzi, że wadliwość jego produkcji nie przekracza 2%. Odbiorca pewnej partii tego produktu chce sprawdzić, czy może wierzyć producentowi.

Bardziej szczegółowo

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo

STATYSTYKA

STATYSTYKA Wykład 1 20.02.2008r. 1. ROZKŁADY PRAWDOPODOBIEŃSTWA 1.1 Rozkład dwumianowy Rozkład dwumianowy, 0 1 Uwaga: 1, rozkład zero jedynkowy. 1 ; 1,2,, Fakt: Niech,, będą niezależnymi zmiennymi losowymi o jednakowym

Bardziej szczegółowo

SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY

SIGMA KWADRAT. Weryfikacja hipotez statystycznych. Statystyka i demografia CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY SIGMA KWADRAT CZWARTY LUBELSKI KONKURS STATYSTYCZNO-DEMOGRAFICZNY Weryfikacja hipotez statystycznych Statystyka i demografia PROJEKT DOFINANSOWANY ZE ŚRODKÓW NARODOWEGO BANKU POLSKIEGO URZĄD STATYSTYCZNY

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich

Bardziej szczegółowo

Porównanie dwóch rozkładów normalnych

Porównanie dwóch rozkładów normalnych Porównanie dwóch rozkładów normalnych Założenia: 1. X 1 N(µ 1, σ 2 1), X 2 N(µ 2, σ 2 2) 2. X 1, X 2 są niezależne Ocena µ 1 µ 2 oraz σ 2 1/σ 2 2. Próby: X 11,..., X 1n1 ; X 21,..., X 2n2 X 1, varx 1,

Bardziej szczegółowo

Wykład dla studiów doktoranckich IMDiK PAN. Biostatystyka I. dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW

Wykład dla studiów doktoranckich IMDiK PAN. Biostatystyka I. dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW Wykład dla studiów doktoranckich IMDiK PAN Biostatystyka I dr Anna Rajfura Kat. Doświadczalnictwa i Bioinformatyki SGGW anna_rajfura@sggw.pl Program wykładu w skrócie 1. Hipotezy o normalności rozkładu.

Bardziej szczegółowo

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25

Testowanie hipotez. Marcin Zajenkowski. Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Marcin Zajenkowski Marcin Zajenkowski () Testowanie hipotez 1 / 25 Testowanie hipotez Aby porównać ze sobą dwie statystyki z próby stosuje się testy istotności. Mówią one o tym czy uzyskane

Bardziej szczegółowo

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności.

TEST STATYSTYCZNY. Jeżeli hipotezę zerową odrzucimy na danym poziomie istotności, to odrzucimy ją na każdym większym poziomie istotności. TEST STATYSTYCZNY Testem statystycznym nazywamy regułę postępowania rozstrzygająca, przy jakich wynikach z próby hipotezę sprawdzaną H 0 należy odrzucić, a przy jakich nie ma podstaw do jej odrzucenia.

Bardziej szczegółowo

Statystyka matematyczna

Statystyka matematyczna Statystyka matematyczna Wykład 9 i 10 Magdalena Alama-Bućko 14 i 21 maja 2018 Magdalena Alama-Bućko Statystyka matematyczna 14 i 21 maja 2018 1 / 25 Hipotezy statystyczne Hipoteza statystyczna nazywamy

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

1 Weryfikacja hipotez statystycznych

1 Weryfikacja hipotez statystycznych Spis treści Spis treści 1 Weryfikacja hipotez statystycznych 1 1.1 Pojęcia................................ 1 2 Porównania z normami 3 2.1 Wstęp................................ 3 2.2 Porównanie z normami:

Bardziej szczegółowo

Weryfikacja przypuszczeń odnoszących się do określonego poziomu cechy w zbiorowości (grupach) lub jej rozkładu w populacji generalnej,

Weryfikacja przypuszczeń odnoszących się do określonego poziomu cechy w zbiorowości (grupach) lub jej rozkładu w populacji generalnej, Szacownie nieznanych wartości parametrów (średniej arytmetycznej, odchylenia standardowego, itd.) w populacji generalnej na postawie wartości tych miar otrzymanych w próbie (estymacja punktowa, przedziałowa)

Bardziej szczegółowo

Porównanie wielu rozkładów normalnych

Porównanie wielu rozkładów normalnych Porównanie wielu rozkładów normalnych Założenia:. X i N(µ i, σi 2 ), i =,..., k 2. X,..., X k są niezależne Czy µ = = µ k? Czy σ 2 = = σ 2 k? Próby: X i,..., X ini, i =,..., k X i, varx i, s 2 i = varx

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Agenda Instytut Matematyki Politechniki Łódzkiej 2 stycznia 2012 Agenda Agenda 1 Wprowadzenie Agenda 2 Hipoteza oraz błędy I i II rodzaju Hipoteza alternatywna Statystyka testowa Zbiór krytyczny Poziom

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych JERZY STEFANOWSKI Instytut Informatyki Politechnika Poznańska Aktualizacja 2017 Plan wykładu 1. Metody wnioskowania statystycznego vs. metody opisu 2. Testowanie hipotez

Bardziej szczegółowo

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4. Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ

Bardziej szczegółowo

Wydział Matematyki. Testy zgodności. Wykład 03

Wydział Matematyki. Testy zgodności. Wykład 03 Wydział Matematyki Testy zgodności Wykład 03 Testy zgodności W testach zgodności badamy postać rozkładu teoretycznego zmiennej losowej skokowej lub ciągłej. Weryfikują one stawiane przez badaczy hipotezy

Bardziej szczegółowo

Statystyka matematyczna. Wykład V. Parametryczne testy istotności

Statystyka matematyczna. Wykład V. Parametryczne testy istotności Statystyka matematyczna. Wykład V. e-mail:e.kozlovski@pollub.pl Spis treści 1 Weryfikacja hipotezy o równości wartości średnich w dwóch populacjach 2 3 Weryfikacja hipotezy o równości wartości średnich

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematyczna Anna Janicka wykład IX, 25.04.2016 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Plan na dzisiaj 1. Hipoteza statystyczna 2. Test statystyczny 3. Błędy I-go i II-go rodzaju 4. Poziom istotności,

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD 4. Testowanie hipotez Estymacja parametrów

STATYSTYKA MATEMATYCZNA WYKŁAD 4. Testowanie hipotez Estymacja parametrów STATYSTYKA MATEMATYCZNA WYKŁAD 4 Testowanie hipotez Estymacja parametrów WSTĘP 1. Testowanie hipotez Błędy związane z testowaniem hipotez Etapy testowana hipotez Testowanie wielokrotne 2. Estymacja parametrów

Bardziej szczegółowo

WYKŁAD 5 TEORIA ESTYMACJI II

WYKŁAD 5 TEORIA ESTYMACJI II WYKŁAD 5 TEORIA ESTYMACJI II Teoria estymacji (wyznaczanie przedziałów ufności, błąd badania statystycznego, poziom ufności, minimalna liczba pomiarów). PRÓBA Próba powinna być reprezentacyjna tj. jak

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XI: Testowanie hipotez statystycznych 12 stycznia 2015 Przykład Motywacja X 1, X 2,..., X N N (µ, σ 2 ), Y 1, Y 2,..., Y M N (ν, δ 2 ). Chcemy sprawdzić, czy µ = ν i σ 2 = δ 2, czyli że w obu populacjach

Bardziej szczegółowo

Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności:

Zad. 4 Należy określić rodzaj testu (jedno czy dwustronny) oraz wartości krytyczne z lub t dla określonych hipotez i ich poziomów istotności: Zadania ze statystyki cz. 7. Zad.1 Z populacji wyłoniono próbę wielkości 64 jednostek. Średnia arytmetyczna wartość cechy wyniosła 110, zaś odchylenie standardowe 16. Należy wyznaczyć przedział ufności

Bardziej szczegółowo

Zawartość. Zawartość

Zawartość. Zawartość Opr. dr inż. Grzegorz Biesok. Wer. 2.05 2011 Zawartość Zawartość 1. Rozkład normalny... 3 2. Rozkład normalny standardowy... 5 3. Obliczanie prawdopodobieństw dla zmiennych o rozkładzie norm. z parametrami

Bardziej szczegółowo

TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy.

TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. TESTOWANIE HIPOTEZ Przez hipotezę statystyczną rozumiemy, najogólniej mówiąc, pewną wypowiedź na temat rozkładu interesującej nas cechy. Hipotezy dzielimy na parametryczne i nieparametryczne. Zajmiemy

Bardziej szczegółowo

Statystyka i opracowanie danych - W 4: Wnioskowanie statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407

Statystyka i opracowanie danych - W 4: Wnioskowanie statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 Statystyka i opracowanie danych - W 4: Wnioskowanie statystyczne. Weryfikacja hipotez statystycznych. Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Hipotezy i Testy statystyczne Każde badanie naukowe rozpoczyna

Bardziej szczegółowo

Weryfikacja przypuszczeń odnoszących się do określonego poziomu cechy w zbiorowości (grupach) lub jej rozkładu w populacji generalnej,

Weryfikacja przypuszczeń odnoszących się do określonego poziomu cechy w zbiorowości (grupach) lub jej rozkładu w populacji generalnej, Szacownie nieznanych wartości parametrów (średniej arytmetycznej, odchylenia standardowego, itd.) w populacji generalnej na postawie wartości tych miar otrzymanych w próbie (punktowa, przedziałowa) Weryfikacja

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych 9 października 2008 ...czyli definicje na rozgrzewkę n-elementowa próba losowa - wektor n zmiennych losowych (X 1,..., X n ); intuicyjnie: wynik n eksperymentów realizacja próby (X 1,..., X n ) w ω Ω :

Bardziej szczegółowo

Rozkłady statystyk z próby. Statystyka

Rozkłady statystyk z próby. Statystyka Rozkłady statystyk z próby tatystyka Rozkłady statystyk z próby Próba losowa pobrana z populacji stanowi realizacje zmiennej losowej jak ciąg zmiennych losowych (X, X,... X ) niezależnych i mających ten

Bardziej szczegółowo

TESTY NIEPARAMETRYCZNE. 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa.

TESTY NIEPARAMETRYCZNE. 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa. TESTY NIEPARAMETRYCZNE 1. Testy równości średnich bez założenia normalności rozkładu zmiennych: Manna-Whitney a i Kruskala-Wallisa. Standardowe testy równości średnich wymagają aby badane zmienne losowe

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Przykład (wstępny). Producent twierdzi, że wadliwość produkcji wynosi 5%. My podejrzewamy, że rzeczywista wadliwość produkcji wynosi 15%. Pobieramy próbę stuelementową

Bardziej szczegółowo

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012

Bardziej szczegółowo

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych

WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych WYKŁADY ZE STATYSTYKI MATEMATYCZNEJ wykład 11 i 12 - Weryfikacja hipotez statystycznych Agata Boratyńska Agata Boratyńska Statystyka matematyczna, wykład 11 i 12 1 / 41 TESTOWANIE HIPOTEZ - PORÓWNANIE

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Karl Popper... no matter how many instances of white swans we may have observed, this does not

Bardziej szczegółowo

Wykład 3 Testowanie hipotez statystycznych o wartości średniej. średniej i wariancji z populacji o rozkładzie normalnym

Wykład 3 Testowanie hipotez statystycznych o wartości średniej. średniej i wariancji z populacji o rozkładzie normalnym Wykład 3 Testowanie hipotez statystycznych o wartości średniej i wariancji z populacji o rozkładzie normalnym Wrocław, 08.03.2017r Model 1 Testowanie hipotez dla średniej w rozkładzie normalnym ze znaną

Bardziej szczegółowo

Zadania ze statystyki, cz.6

Zadania ze statystyki, cz.6 Zadania ze statystyki, cz.6 Zad.1 Proszę wskazać, jaką część pola pod krzywą normalną wyznaczają wartości Z rozkładu dystrybuanty rozkładu normalnego: - Z > 1,25 - Z > 2,23 - Z < -1,23 - Z > -1,16 - Z

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA WYKŁAD października 2009

STATYSTYKA MATEMATYCZNA WYKŁAD października 2009 STATYSTYKA MATEMATYCZNA WYKŁAD 4 26 października 2009 Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ (X µ) 2 { (x µ) 2 exp 1 ( ) } x µ 2 dx 2 σ Rozkład N(µ, σ). Estymacja σ σ 2 = 1 σ 2π + = E µ,σ

Bardziej szczegółowo

1.1 Wstęp Literatura... 1

1.1 Wstęp Literatura... 1 Spis treści Spis treści 1 Wstęp 1 1.1 Wstęp................................ 1 1.2 Literatura.............................. 1 2 Elementy rachunku prawdopodobieństwa 2 2.1 Podstawy..............................

Bardziej szczegółowo

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH

WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH WIELKA SGH-OWA POWTÓRKA ZE STATYSTYKI TESTOWANIE HIPOTEZ PARAMETRYCZNYCH Co to są hipotezy statystyczne? Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej. Dzielimy je

Bardziej szczegółowo

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd. Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

LABORATORIUM 6 ESTYMACJA cz. 2

LABORATORIUM 6 ESTYMACJA cz. 2 LABORATORIUM 6 ESTYMACJA cz. 2 TEORIA ESTYMACJI I 1. ODRZUCANIE WYNIKÓW WĄTPLIWYCH PRÓBA P (m) (m-elementowa) Obliczenie: ; s bez wyników wątpliwych Odrzucenie wyników z poza przedziału: 3s PRÓBA LOSOWA

Bardziej szczegółowo

Wykład 12 Testowanie hipotez dla współczynnika korelacji

Wykład 12 Testowanie hipotez dla współczynnika korelacji Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 23 maja 2018 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych JERZY STEFANOWSKI Instytut Informatyki Politechnika Poznańska Plan wykładu 1. Metody wnioskowania statystycznego vs. metody opisu 2. Testowanie hipotez statystycznych

Bardziej szczegółowo

... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić).

... i statystyka testowa przyjmuje wartość..., zatem ODRZUCAMY /NIE MA POD- STAW DO ODRZUCENIA HIPOTEZY H 0 (właściwe podkreślić). Egzamin ze Statystyki Matematycznej, WNE UW, wrzesień 016, zestaw B Odpowiedzi i szkice rozwiązań 1. Zbadano koszt 7 noclegów dla 4-osobowej rodziny (kwatery) nad morzem w sezonie letnim 014 i 015. Wylosowano

Bardziej szczegółowo

Wykład 12 Testowanie hipotez dla współczynnika korelacji

Wykład 12 Testowanie hipotez dla współczynnika korelacji Wykład 12 Testowanie hipotez dla współczynnika korelacji Wrocław, 24 maja 2017 Współczynnik korelacji Niech będą dane dwie próby danych X = (X 1, X 2,..., X n ) oraz Y = (Y 1, Y 2,..., Y n ). Współczynnikiem

Bardziej szczegółowo

RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA

RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA MATEMATYCZNA LISTA 10 1.Dokonano 8 pomiarów pewnej odległości (w m) i otrzymano: 201, 195, 207, 203, 191, 208, 198, 210. Wiedząc,że błąd pomiaru ma rozkład normalny

Bardziej szczegółowo

Dokładne i graniczne rozkłady statystyk z próby

Dokładne i graniczne rozkłady statystyk z próby Dokładne i graniczne rozkłady statystyk z próby Przypomnijmy Populacja Próba Wielkość N n Średnia Wariancja Odchylenie standardowe 4.2 Rozkład statystyki Mówimy, że rozkład statystyki (1) jest dokładny,

Bardziej szczegółowo