Ćwiczenie 11. Wprowadzenie teoretyczne

Podobne dokumenty
Ćwiczenie 12/13. Komputerowy hologram Fouriera. Wprowadzenie teoretyczne

Ćwiczenie 3. Wybrane techniki holografii. Hologram podstawy teoretyczne

Ćwiczenie 12. Wprowadzenie teoretyczne

Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 6. Badanie właściwości hologramów

Laboratorium Informatyki Optycznej ĆWICZENIE 2. Koherentne korelatory optyczne i hologram Fouriera

Rys. 1 Geometria układu.

Laboratorium Informatyki Optycznej ĆWICZENIE 3. Dwuekspozycyjny hologram Fresnela

Ćwiczenie 9 Y HOLOGRAM. Punkt P(x,y) emituje falę sferyczną o długości, której amplituda zespolona w płaszczyźnie hologramu ma postać U R exp( ikr)

Laboratorium Optyki Falowej

ĆWICZENIE 5. HOLOGRAM KLASYCZNY TYPU FRESNELA

Rys. 1 Schemat układu obrazującego 2f-2f

WSTĘP DO OPTYKI FOURIEROWSKIEJ

Ćwiczenie H2. Hologram Fresnela

Laboratorium Informatyki Optycznej ĆWICZENIE 7. Hologram gruby widoczny w zakresie 360

Optyka Fourierowska. Wykład 9 Hologramy cyfrowe

Różne reżimy dyfrakcji

Ćwiczenie 4. Część teoretyczna

Rejestracja i rekonstrukcja fal optycznych. Hologram zawiera pełny zapis informacji o fali optycznej jej amplitudzie i fazie.

Fala jest zaburzeniem, rozchodzącym się w ośrodku, przy czym żadna część ośrodka nie wykonuje zbyt dużego ruchu

Hologram gruby (objętościowy)

PROPAGACJA PROMIENIOWANIA PRZEZ UKŁAD OPTYCZNY W UJĘCIU FALOWYM. TRANSFORMACJE FAZOWE I SYGNAŁOWE

Ćwiczenie: "Zagadnienia optyki"

Laboratorium Informatyki Optycznej ĆWICZENIE 5. Sprzęganie fazy

Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 4. Badanie optycznej transformaty Fouriera

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ

ĆWICZENIE 6. Hologram gruby

Rys. 1 Interferencja dwóch fal sferycznych w punkcie P.

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne

WSTĘP DO OPTYKI FOURIEROWSKIEJ

Badanie zjawisk optycznych przy użyciu zestawu Laser Kit

Ćwiczenie 4. Doświadczenie interferencyjne Younga. Rys. 1

ĆWICZENIA LABORATORYJNE Z KONSTRUKCJI METALOWCH. Ć w i c z e n i e H. Interferometria plamkowa w zastosowaniu do pomiaru przemieszczeń

Ćwiczenie 3. Koherentne korelatory optyczne

WSTĘP DO OPTYKI FOURIEROWSKIEJ

Laboratorium optycznego przetwarzania informacji i holografii. Ćwiczenie 3. Częstotliwości przestrzenne struktur okresowych

Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje.

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

Mikroskop teoria Abbego

Fotonika. Plan: Wykład 2: Elementy refrakcyjne i dyfrakcyjne

BADANIE I ACHROMATYZACJA PRĄŻKÓW INTERFERENCYJNYCH TWORZONYCH ZA POMOCĄ ZWIERCIADŁA LLOYDA

Wyznaczanie rozmiarów szczelin i przeszkód za pomocą światła laserowego

MODULATOR CIEKŁOKRYSTALICZNY

ODWZOROWANIE I PRZETWARZANIE SYGNAŁU OPTYCZNEGO W OŚWIETLENIU KOHERENTNYM

Badania elementów i zespołów maszyn laboratorium (MMM4035L)

Laboratorium Informatyki Optycznej ĆWICZENIE 1. Optyczna filtracja sygnałów informatycznych

Interferometr Macha-Zehndera. Zapis sinusoidalnej siatki dyfrakcyjnej i pomiar jej okresu przestrzennego.

Metody Obliczeniowe Mikrooptyki i Fotoniki. - Dyfrakcja różne reżimy - Obliczanie elementów dyfrakcyjnych

OPTYKA FALOWA I (FTP2009L) Ćwiczenie 2. Dyfrakcja światła na szczelinach.

WYZNACZANIE DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ

ĆWICZENIE 5/6 HOLOGRAM SYNTETYCZNY

Wyznaczenie długości fali świetlnej metodą pierścieni Newtona

Metody Optyczne w Technice. Wykład 5 Interferometria laserowa

Ćwiczenie 2. Wyznaczanie ogniskowych soczewek cienkich oraz płaszczyzn głównych obiektywów lub układów soczewek. Aberracje. Wprowadzenie teoretyczne

BADANIE INTERFEROMETRU YOUNGA

Dyfrakcja. interferencja światła. dr inż. Romuald Kędzierski

Ćwiczenie 12 (44) Wyznaczanie długości fali świetlnej przy pomocy siatki dyfrakcyjnej

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

Pomiar drogi koherencji wybranych źródeł światła

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej.

Podstawy Przetwarzania Sygnałów

Rys. 1 Pole dyfrakcyjne obiektu wejściowego. Rys. 2 Obiekt quasi-periodyczny.

Propagacja w przestrzeni swobodnej (dyfrakcja)

Ćwiczenie 2. Interferometr Ronchiego - badanie jakości soczewek. Sensor Shack ahartmann a badanie frontów sferycznych i porównanie z falą płaską.

Interferencja i dyfrakcja

ĆWICZENIE 6/7. NUMERYCZNE MODELOWANIE ZJAWISKA PROPAGACJI ŚWIATŁA. ZAPROJEKTOWANIE I WYKONANIE HOLOGRAMU SYNTETYCZNEGO OBIEKTU TRÓJWYMIAROWEGO

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA

pobrano z serwisu Fizyka Dla Każdego zadania z fizyki, wzory fizyczne, fizyka matura

7. Szybka transformata Fouriera fft

Wykład III. Interferencja fal świetlnych i zasada Huygensa-Fresnela

Ćwiczenie 3. Właściwości przekształcenia Fouriera

Problemy optyki falowej. Teoretyczne podstawy zjawisk dyfrakcji, interferencji i polaryzacji światła.

WYZNACZANIE PROMIENIA KRZYWIZNY SOCZEWKI I DŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ PIERŚCIENI NEWTONA

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 02/08. PIOTR KURZYNOWSKI, Wrocław, PL JAN MASAJADA, Nadolice Wielkie, PL

Pomiar ogniskowych soczewek metodą Bessela

POMIARY OPTYCZNE 1. Wykład 1. Dr hab. inż. Władysław Artur Woźniak

Wyznaczanie długości fali świetlnej za pomocą spektrometru siatkowego

Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1-

Piotr Targowski i Bernard Ziętek WYZNACZANIE MACIERZY [ABCD] UKŁADU OPTYCZNEGO

SCENARIUSZ LEKCJI Temat lekcji: Soczewki i obrazy otrzymywane w soczewkach

Wstęp do fotografii. piątek, 15 października ggoralski.com

Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

PRZEKSZTAŁCANIE WIĄZKI LASEROWEJ PRZEZ UKŁADY OPTYCZNE

Prawa optyki geometrycznej

Ćwiczenie 53. Soczewki

Obrazowanie za pomocą soczewki

GWIEZDNE INTERFEROMETRY MICHELSONA I ANDERSONA

Politechnika Warszawska

BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat

ZASTOSOWANIE LASERÓW W HOLOGRAFII

Odgłosy z jaskini (11) Siatka odbiciowa

OPTYKA GEOMETRYCZNA I INSTRUMENTALNA


Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.

PODSTAWY DYFRAKCJI WYBRANE ZAGADNIENIA DYFRAKCJI FRAUNHOFERA Krzysztof

POMIARY OPTYCZNE 1. Proste przyrządy optyczne. Damian Siedlecki

f = -50 cm ma zdolność skupiającą

LASERY I ICH ZASTOSOWANIE

Szczegółowe kryteria oceniania z fizyki w gimnazjum. kl. III

AKADEMIA MORSKA KATEDRA NAWIGACJI TECHNICZEJ

Transkrypt:

Ćwiczenie 11 Komputerowy hologram Fouriera. I Wstęp Wprowadzenie teoretyczne W klasycznej holografii w wyniku interferencji wiązki światła zmodyfikowanej przez pewien przedmiot i spójnej z nią wiązki odniesienia otrzymujemy zestaw prążków interferencyjnych (interferogram). Ten skomplikowany wzór po zapisaniu na emulsji holograficznej można traktować jako zbiór wielu mikroskopijnych siatek dyfrakcyjnych. Przy oświetleniu takiej struktury siatki uginają światło w taki sposób, że na ekranie, elemencie światłoczułym CCD bądź siatkówce oka tworzy się obraz rzeczywisty zarejestrowanego przedmiotu. Wspomniany wzór prążków interferencyjnych jest niezwykle gęsty i złożony, tym niemniej istnieją metody numeryczne pozwalające na obliczenie interferogramu obiektu płaskiego (przeźrocza) przy pomocy komputera (stąd nazwa hologram komputerowy ). II Hologram Fouriera Hologramy możemy umownie podzielić w zależności od odległości odtwarzanego obrazu rzeczywistego na: hologram Fresnela odtwarza obraz w skończonej odległości, hologram Fouriera odtwarza obraz w nieskończoności. Numeryczne zaprojektowanie hologramu Fresnela wymaga obliczania propagacji światła na odległość rekonstrukcji. W przypadku hologramu Fouriera projektowanie jest o wiele prostsze, gdyż zakłada jedynie obliczenie transformaty Fouriera obiektu. Dlatego w tym ćwiczeniu skupimy się na hologramie Fouriera. Hologram Fouriera jest w istocie zapisem widma obiektu wejściowego, tj. jego transformaty Fouriera. Przy oświetleniu takiego hologramu falą płaską front falowy za hologramem musi zostać poddany wtórnej transformacji Fouriera by uzyskać rekonstruowany obraz rzeczywisty. Dokonuje się tego najczęściej w jednej z dwóch poniżej przedstawionych konfiguracji: Hologram Rys. 1. Odtworzenie obrazu rzeczywistego z hologramu Fouriera poprzez oświetlenie falą płaską i użycie soczewki skupiającej o ogniskowej f. f Obraz rzeczywisty na ekranie

f Hologram Obraz rzeczywisty na ekranie Rys. 2. Odtworzenie obrazu rzeczywistego z hologramu Fouriera poprzez oświetlenie falą sferyczną zbieżną. II Algorytm obliczania rozkładu fazy hologramu Fouriera Najprostszym w implementacji i przez to bardzo popularnym jest algorytm IFTA (ang. Iterative Fourier Transform Algorithm). Jest to szczególny przypadek algorytmu Gerchberga-Saxtona, opublikowanego po raz pierwszy w 1972 roku. Schemat blokowy algorytmu dostosowanego do niniejszego ćwiczenia przedstawiono na Rys. 3 Losowa faza początkowa Wczytanie amplitudy z BMP FFT Nadpisanie amplitudy równej 1 FFT -1 nie Wykonano N iteracji? tak Binaryzacja fazy Eksport fazy Płaszczyzna hologramu Płaszczyzna obrazowa Rys. 3. Schemat blokowy algorytmu użytego w ćwiczeniu. W algorytmie wyróżnia się dwie płaszczyzny: płaszczyznę hologramu i płaszczyznę obrazową. Przejścia frontu falowego pomiędzy tymi płaszczyznami dokonuje się poprzez wykonanie transformacji Fouriera, którą jak pamiętamy w metodach numerycznych realizuje procedura FFT (ang. Fast Fourier Transform), a w układzie optycznym soczewka skupiająca. W algorytmie wykonuje się predefiniowaną liczbę N iteracji. 2

Zasadę działania metody IFTA można sformułować następująco: Faza podlega modyfikowaniu tak, by: a) w płaszczyźnie obrazowej otrzymać żądany obraz b) w płaszczyźnie hologramu jednorodną amplitudę. O ile punkt a) jest oczywisty, o tyle punkt b) wymaga dodatkowego wyjaśnienia. Istotne jest, by zaprojektowany hologram posiadał jak najwięcej informacji o przedmiocie zapisanej w rozkładzie fazy a jak najmniej w części amplitudowej. W idealnym przypadku część amplitudowa nie będzie niosła żadnej informacji (tj. amplituda będzie jednakowa na całej powierzchni hologramu) - w takim przypadku pominięcie części amplitudowej nie usunie żadnej informacji i nie zmieni jakości rekonstruowanego obrazu. Część amplitudową musimy pominąć, gdyż w procesie naświetlania, wywołania, utrwalenia i odbielenia kliszy holograficznej uzyskuje się strukturę czysto fazową, nie amplitudowo-fazową. Wytworzenie hologramu amplitudowo-fazowego wymagałoby stworzenia dwóch struktur oraz dokładnego ich złożenia z precyzyjnym pozycjonowaniem. Dlatego zwykle wytwarza się tylko elementy czysto fazowe. Biorąc pod uwagę wyżej sformułowane wymagania dotyczące amplitudy i fazy w płaszczyznach: hologramu i obrazowej, powyższy schemat algorytmu IFTA jest uzasadniony w każdej iteracji w płaszczyźnie hologramu wymuszamy amplitudę jednorodną, w płaszczyźnie obrazu wymuszamy amplitudę żądanej bitmapy. Mówiąc inaczej, optymalizacja wprowadzana przez IFTA wykorzystuje fakt, że ludzkie oko nie dostrzega stanu fazy, dlatego może być ona dowolnie zmieniana by uzyskać najwierniejsze odtworzenie amplitudy zakodowanego obrazu. Przykładowo, Rys. 4. przedstawia obraz wejściowy oraz jego widmo fourierowskie: amplitudę i fazę. Rys. 4. Przykładowy obraz wejściowy, jego transformata Fouriera: amplituda, faza. W przypadku zwykłego pominięcia informacji amplitudowej rekonstrukcja z hologramu pokazana jest na Rys. 5a. Widać wyraźnie niedokładność odtworzenia oraz niski kontrast. W przypadku zastosowania algorytmu IFTA jakość uzyskanego obrazu wzrasta znacząco, jak to przedstawiono na Rys. 5b. Częściowo jest to zasługą losowej fazy początkowej, która w układzie optycznym odpowiada matówce (rozpraszaczowi). 3

a) b) Rys. 5. Rekonstrukcja numeryczna obrazu rzeczywistego a) bez procesu iteracyjnego, b) po 10 iteracjach algorytmu IFTA. Widoczny dodatkowy obraz odwrócony jest efektem binaryzacji fazy, koniecznej przed wydrukiem na drukarce laserowej. Odbywa się to analogicznie jak w przypadku binarnych siatek dyfrakcyjnych, które kierują tą samą ilość światła symetrycznie w +1 i -1 rząd dyfrakcyjny. W związku z tym efektem, aby napisy odtworzone w +1 i -1 rzędzie ugięcia się nie nakładały na siebie, należy przygotować pliki z napisami przesuniętymi poza centrum, tak jak pokazano na Rys. 4. Efektem działania algorytmu IFTA jest rozkład fazy (interferogram). Rozkład ten należy wydrukować i fotograficznie zmniejszyć na emulsję holograficzną wg Rys. 6. Rys. 6. Układ wykorzystywany do fotograficznego pomniejszania zakodowanego rozkładu fazy, zapisanego na wydruku drukarki laserowej. W aparacie fotograficznym znajduje się fragment płyty holograficznej. Uzyskana struktura fazowa (po odbieleniu) stanowić będzie wysokiej jakości iterowany syntetyczny hologram Fouriera. Hologramy zaprojektowane w ten sposób wykazują lepszą wydajność dyfrakcyjną i mniejszy udział spekli w odtwarzanym obrazie w porównaniu z hologramami nie-iterowanymi. Jak można się spodziewać, jakość rekonstrukcji poprawia się wraz z ilością wykonanych iteracji. 4

Przebieg ćwiczenia Niniejsze ćwiczenie dotyczy zaprojektowania syntetycznego hologramu Fouriera, wykonania go metodą fotograficznego zmniejszania oraz zbadania rekonstruowanych obrazów. Uwaga! Na ćwiczenie należy dostarczyć plik BMP o rozmiarze 1024x1024 pikseli, szaro odcieniowy (greyscale 8-bit), zawierający napis lub inny element graficzny, który zostanie zapisany w hologramie. Powinien to być biały napis/obiekt na czarnym tle umieszczony poza środkiem obrazu analogicznie jak na rysunku poniżej. Grubość linii powinna być podobna jak na poniższym przykładzie. Wykonanie ćwiczenie przebiega w następujących etapach: 1. Zaprojektowanie w programie LightSword 6 hologramu Fouriera na podstawie dostarczonego pliku BMP. Punkt ten jest wykonywany z prowadzącym zajęcia. 2. Wydrukowanie uzyskanych binarnych rozkładów fazy na drukarce laserowej. Pomiar wielkości wydruku. 3. Wykonanie hologramu poprzez: a. Sfotografowanie wydruku z powiększeniem do rozmiaru 20.48x20.48 mm b. Wywołanie i utrwalenie emulsji holograficznej c. Odbielenie emulsji holograficznej 4. Sfotografowanie obrazów rzeczywistych odtworzonych z hologramu na ekranie oraz skupiając bezpośrednio na macierzy CCD aparatu cyfrowego. Uwaga należy bezwzględnie użyć filtrów szarych. 5. Określenie odległości odtworzenia obrazu przy fotografowaniu z obiektywem przez hologram na podstawie nastawów ostrości obiektywu. 6. Odtworzenie obrazu rzeczywistego przez oświetlenie hologramu bezpośrednio wiązką laserową. Politechnika Warszawska Wydział Fizyki Pracownia Informatyki Optycznej Grudzień 2009 5