Eliminacja drgań w układach o słabym tłumieniu przy zastosowaniu filtru wejściowego (Input Shaping Filter)

Podobne dokumenty
Rys.1. Zasada eliminacji drgań. Odpowiedź impulsowa obiektu na obiektu impuls A1 (niebieska), A2 (czerwona) i ich sumę (czarna ze znacznikiem).

Badanie kaskadowego układu regulacji na przykładzie serwomechanizmu

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Wpływ tarcia na serwomechanizmy

Automatyka i sterowania

Serwomechanizmy sterowanie

Podstawy Automatyki. Wykład 6 - Miejsce i rola regulatora w układzie regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Automatyka i Regulacja Automatyczna Laboratorium Zagadnienia Seria II

4. Właściwości eksploatacyjne układów regulacji Wprowadzenie. Hs () Ys () Ws () Es () Go () s. Vs ()

Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ

Podstawy Automatyki. Wykład 7 - Jakość układu regulacji. Dobór nastaw regulatorów PID. dr inż. Jakub Możaryn. Instytut Automatyki i Robotyki

Część 1. Transmitancje i stabilność

14.9. Regulatory specjalne

Podstawy Automatyki. Wykład 7 - obiekty regulacji. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Układ regulacji ze sprzężeniem zwrotnym: - układ regulacji kaskadowej - układ regulacji stosunku

1. Regulatory ciągłe liniowe.

Podstawy Automatyki. Wykład 9 - Dobór regulatorów. dr inż. Jakub Możaryn. Warszawa, Instytut Automatyki i Robotyki

Obiekt. Obiekt sterowania obiekt, który realizuje proces (zaplanowany).

PL B1. POLITECHNIKA GDAŃSKA, Gdańsk, PL BUP 10/16. JAROSŁAW GUZIŃSKI, Gdańsk, PL PATRYK STRANKOWSKI, Kościerzyna, PL

Ćw. 18: Pomiary wielkości nieelektrycznych II

Technika regulacji automatycznej

Automatyka i pomiary wielkości fizykochemicznych. Instrukcja do ćwiczenia VI Dobór nastaw regulatora typu PID metodą Zieglera-Nicholsa.

Ćwiczenie 1. Badanie aktuatora elektrohydraulicznego. Sterowanie Napędów Maszyn i Robotów Przemysłowych - laboratorium. Instrukcja laboratoryjna

1. Opis teoretyczny regulatora i obiektu z opóźnieniem.

Sterowanie Napędów Maszyn i Robotów

Ćw. 18: Pomiary wielkości nieelektrycznych II

Sterowanie napędów maszyn i robotów

Projektowanie układów metodą sprzężenia od stanu - metoda przemieszczania biegunów

1. POJĘCIA PODSTAWOWE I RODZAJE UKŁADÓW AUTOMATYKI

WYDZIAŁ ELEKTRYCZNY KATEDRA AUTOMATYKI I ELEKTRONIKI. Badanie układu regulacji dwustawnej

PODSTAWY AUTOMATYKI. Analiza w dziedzinie czasu i częstotliwości dla elementarnych obiektów automatyki.

Procedura modelowania matematycznego

Dobór parametrów regulatora - symulacja komputerowa. Najprostszy układ automatycznej regulacji można przedstawić za pomocą

przy warunkach początkowych: 0 = 0, 0 = 0

Ćw. 18: Pomiary wielkości nieelektrycznych II

4. UKŁADY II RZĘDU. STABILNOŚĆ. Podstawowe wzory. Układ II rzędu ze sprzężeniem zwrotnym Standardowy schemat. Transmitancja układu zamkniętego

Sposoby modelowania układów dynamicznych. Pytania

PL B1. POLITECHNIKA WROCŁAWSKA, Wrocław, PL BUP 01/18. WIESŁAW FIEBIG, Wrocław, PL WUP 08/18 RZECZPOSPOLITA POLSKA

Sterowanie Napędów Maszyn i Robotów

Regulatory o działaniu ciągłym P, I, PI, PD, PID

Temat /6/: DYNAMIKA UKŁADÓW HYDRAULICZNYCH. WIADOMOŚCI PODSTAWOWE.

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

INSTRUKCJA Regulacja PID, badanie stabilności układów automatyki

Rys. 1 Otwarty układ regulacji

PODSTAWY AUTOMATYKI I MIERNICTWA PRZEMYSŁOWEGO Laboratorium 3 Regulatory PID i ich strojenie, Regulacja dwupołożeniowa

Badanie właściwości dynamicznych obiektów I rzędu i korekcja dynamiczna

Automatyka i robotyka ETP2005L. Laboratorium semestr zimowy

REDUKCJA ZJAWISKA CHATTERINGU W ALGORYTMIE SMC W STEROWANIU SERWOMECHANIZMÓW ELEKTROHYDRAULICZNYCH

Instrukcja do ćwiczenia 6 REGULACJA TRÓJPOŁOŻENIOWA

Politechnika Warszawska Instytut Automatyki i Robotyki. Prof. dr hab. inż. Jan Maciej Kościelny PODSTAWY AUTOMATYKI

Dla naszego obiektu ciągłego: przy czasie próbkowania T p =2.

Ogólny schemat blokowy układu ze sprzężeniem zwrotnym

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych

Regulator PID w sterownikach programowalnych GE Fanuc

CHARAKTERYSTYKI BRAMEK CYFROWYCH TTL

WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów

Kompensator PID. 1 sω z 1 ω. G cm. aby nie zmienić częstotliwości odcięcia f L. =G c0. s =G cm. G c. f c. /10=500 Hz aby nie zmniejszyć zapasu fazy

3. WRAŻLIWOŚĆ I BŁĄD USTALONY. Podstawowe wzory. Wrażliwość Wrażliwość transmitancji względem parametru. parametry nominalne

Ćwiczenie 21. Badanie właściwości dynamicznych obiektów II rzędu. Zakres wymaganych wiadomości do kolokwium wstępnego: Program ćwiczenia:

REGULATORY W UKŁADACH REGULACJI AUTOMATYCZNEJ. T I - czas zdwojenia (całkowania) T D - czas wyprzedzenia (różniczkowania) K p współczynnik wzmocnienia

Rys. 1. Wzmacniacz odwracający

Automatyka i robotyka

Ćwiczenie nr 3 Układy sterowania w torze otwartym i zamkniętym

Symulacja sygnału czujnika z wyjściem częstotliwościowym w stanach dynamicznych

Teoria sterowania - studia niestacjonarne AiR 2 stopień

Ćwiczenie 1b. Silnik prądu stałego jako element wykonawczy Modelowanie i symulacja napędu CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE

Część 4. Zagadnienia szczególne. b. Sterowanie prądowe i tryb graniczny prądu dławika

SIMATIC S Regulator PID w sterowaniu procesami. dr inż. Damian Cetnarowicz. Plan wykładu. I n t e l i g e n t n e s y s t e m y z e

Inteligentnych Systemów Sterowania

11. Dobór rodzaju, algorytmu i nastaw regulatora

Opis matematyczny. Równanie modulatora. Charakterystyka statyczna. Po wprowadzeniu niewielkich odchyłek od ustalonego punktu pracy. dla 0 v c.

PAiTM. materiały uzupełniające do ćwiczeń Wydział Samochodów i Maszyn Roboczych studia inżynierskie prowadzący: mgr inż.

4.2 Analiza fourierowska(f1)

Tomasz Żabiński,

Analiza właściwości filtrów dolnoprzepustowych

W celu obliczenia charakterystyki częstotliwościowej zastosujemy wzór 1. charakterystyka amplitudowa 0,

Własności dynamiczne przetworników pierwszego rzędu

Transmitancje układów ciągłych

II. STEROWANIE I REGULACJA AUTOMATYCZNA

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Politechnika Warszawska Wydział Samochodów i Maszyn Roboczych Instytut Podstaw Budowy Maszyn Zakład Mechaniki

Analiza ustalonego punktu pracy dla układu zamkniętego

PL B1. Sposób regulacji prądu silnika asynchronicznego w układzie bez czujnika prędkości obrotowej. POLITECHNIKA GDAŃSKA, Gdańsk, PL

Podstawowe człony dynamiczne

Podstawy inżynierii sterowania Ćwiczenia laboratoryjne

WPŁYW OPÓŹNIENIA NA DYNAMIKĘ UKŁADÓW Z REGULACJĄ KLASYCZNĄ I ROZMYTĄ

UKŁADY Z PĘTLĄ SPRZĘŻENIA FAZOWEGO (wkładki DA171A i DA171B) 1. OPIS TECHNICZNY UKŁADÓW BADANYCH

Badanie wpływu parametrów korektora na własności dynamiczne układu regulacji automatycznej Ćwiczenia Laboratoryjne Podstawy Automatyki i Automatyzacji

Badanie napędu z silnikiem bezszczotkowym prądu stałego

Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych

LICZNIKI PODZIAŁ I PARAMETRY

Wprowadzenie do technik regulacji automatycznej. prof nzw. dr hab. inż. Krzysztof Patan

Przekształtniki impulsowe prądu stałego (dc/dc)

Układy sterowania: a) otwarty, b) zamknięty w układzie zamkniętym, czyli w układzie z ujemnym sprzężeniem zwrotnym (układzie regulacji automatycznej)

POMIARY WIELKOŚCI NIEELEKTRYCZNYCH

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania KOMPUTEROWE SYSTEMY STEROWANIA (KSS)

Podstawowe zastosowania wzmacniaczy operacyjnych

Regulator PID w sterownikach programowalnych GE Fanuc

Laboratorium Maszyny CNC

Transkrypt:

Eliminacja drgań w układach o słabym tłumieniu przy zastosowaniu filtru wejściowego (Input Shaping Filter) 1. WSTĘP W wielu złożonych układach mechanicznych elementy występują połączenia elastyczne (długi wał, sprężystość, lina, elastyczne ramię robota). Skutkuje to występowaniem, po zmianie wymuszenia (wartości wejściowej), słabo tłumionych drgań o częstotliwości zależnej od parametrów układu. Podobne zjawiska mogą występować też w układach elektronicznych z elementami biernymi (L, C). Celem ćwiczenia jest badanie metod ograniczania drgań wzbudzonych w układach o słabym tłumieniu przez modyfikację sygnału wejściowego. Jednym z możliwych rozwiązań jest filtr wejściowy (ZV - Zero Vibration Shaper) projektowany w dziedzinie czasu. Filtry takie są stosowane w wielu układach nie tylko mechanicznych jak: suwnice, roboty przemysłowe, napędy twardych dysków ale także w układach elektronicznych jak zasilacze rezonansowe. Są trzy podstawowe metody tłumienia drgań: tłumiki mechaniczne, aktywne tłumienie przez sprzężenie zwrotne oraz filtry w układzie otwartym. Tłumiki mechaniczne są trudne do projektowania, strojenia i są źródłem dodatkowych kosztów. Metody aktywne tłumienia drgań ze sprzężeniem zwrotnym pozwalają na osiągnięcie znakomitych rezultatów pomimo nieliniowości w układzie i niedokładności modelu. Główną niedogodnością aktywnego tłumienia jest konieczność zainstalowania czujników pomiarowych, złożone projektowanie regulatora i większy koszt obliczeniowy. Metody filtrowania w układzie otwartym mają stosunkowo prosty algorytm. Wartość zadana jest modyfikowana w taki sposób, że sygnał wartości zadanej podawany na wejście obiektu nie wzbudza w nim drgań o określonej częstotliwości i niepożądanych procesów przejściowych. Zaletą jest proste projektowanie i brak czujników (koniecznych w układzie zamkniętym). Głównym problemem jest ograniczona odporność na niedokładność modelu, wynikająca ze struktury układu (układ otwarty).. PROJEKTOWANIE FILTRU WEJSCIOWEGO Zasada działąnia filtru wejściowego Zasada eliminacji drań polega na wytworzeniu sygnału sterującego o takich właściwościach, że powoduje on eliminację drgań o określonej częstotliwości. Drgania wzbudzane przez pierwszą część sygnału sterującego są kompensowane przez drgania wzbudzane przez kolejną część sygnału sterującego. Filtr wejściowy umieszczony pomiędzy sygnałem sterującym a obiektem modyfikuje sygnał sterujący (rys.1). Rys. 1. Sposób umieszczenia filtru wejsciowego [wikipedia] Projektowanie filtru polega na wyznaczeniu ciągu impulsów, takich, że odpowiedź impulsowa obiektu na kolejny impuls eliminuje drgania powodowane przez poprzedni impuls. W rezultacie, przy dobrze zaprojektowanym filtrze, po wystąpieniu ostatniego impulsu drgania obiektu są zerowe. Zasadę pokazano na rysunku.

Rys.. Zasada eliminacji drgań. Odpowiedź impulsowa obiektu na impuls A1 (niebieska), na impuls A (czerwona) i ich sumę (czarna ze znacznikiem). [3] Filtr wejściowy o postaci n impulsów może być opisany w postaci funkcji: h( t) IS( t) Ai ( t ti), 0 ti ti 1, Ai 0 (1) i1,... n gdzie A i oznacza amplitudę i-tego impulsu a jest funkcja Diraca z przesunięciem o czas t i. Ze wzoru wynika, że filtr wejściowy ma postać sumy ciągu opóźnionych sygnałów wejściowych z wagami A i i opóźnieniami t i. Odpowiedź filtru (input shaper, IS) w dziedzinie czasu jest określona przez splot filtru (1) z dowolnym sygnałem wejściowym, (co pokazano na rysunku 3): i i i i () v( t) h( t) f ( t) h( ) f ( t ) d A ( t t ) f ( t ) d A f ( t t ) gdzie h(t) jest oznacza filtr, f(t) pierwotny sygnał wejściowy a v(t) sygnał zmodyfikowany. Jak wynika ze wzoru () filtr ma postać sumy opóźnionych o t i sygnałów wejściowych z odpowiednimi wagami A i. Pierwotny sygnał wejściowy jest splatany z filtrem wejściowym i następnie podawany na wejście obiektu. Do sterowania obiektem używany jest ten nowy, odpowiednio ukształtowany sygnał wejściowy. Ciąg impulsów spleciony z pierwotnym, dowolnym, sygnałem sterującym obiektem skutkuje tym, że odpowiedź obiektu na to zmodyfikowane sterowanie też ma zerowe drgania (po wystąpieniu ostatniego impulsu, residual vibrations) (Rys.4). Amplitudy i położenie impulsów zależą od pulsacji drgań własnych i tłumienia obiektu. Filtr można zaprojektować tak aby był odporny na błędy parametrów obiektu. Rys.3. Modyfikowanie sygnału sterującego [] Realizacja filtru wejściowego Jeżeli uwzględni się zależność: f ( t) ( Ai ( t ti) Ai f ( t ti ) (3) to realizacja filtru może być oparta zarówno na operacji splotu jak i na operacji sumowania ciągu przeskalowanych i przesuniętych w czasie sygnałów wejściowych (rys.4).

Rys.4. Realizacje filtru wejściowego przez operację splotu (po lewej) i zgodnie ze wzorem (3) (po prawej). [] Projektowanie filtru IS polega na doborze wartości amplitud A i i opóźnień t i, tak aby po ostatnim impulsie amplituda drgań resztowych była równa zero (Zero Vibration IS) lub miała ograniczoną wartość. Przykład filtru wejściowego Poniżej pokazano filtr wejściowy (ZV IS) dla układu drugiego rzędu o transmitancji: P ( s) (4) s s o dopowiedzi impulsowej: t yp( t) e sin( ) dt (5) 1 i filtrze ZV złożonym z dwóch impulsów o postaci: IS t) A ( t t ) A ( t ) (6) ( 1 1 t gdzie, d, oznaczają odpowiednio pulsację drgań nietłumionych, tłumionych i współczynnik tłumienia obiektu. Z warunku, że po wystąpieniu drugiego impulsu, czyli dla t>t amplituda drgań jest równa zero oraz przy dodatkowym założeniu, że suma amplitud impulsów jest równa 1: A 1 A 1 (7) Otrzymuje się następujące wyrażenia, określające parametry filtru ZV IS: A1 1 K t 1 0, 1 K 1, A, K e t d, 1 K 1 d Do poprawnego zaprojektowania filtru ZV muszą być więc znane (8): pulsacja drgań własnych i współczynnik tłumienia obiektu. Błąd w ocenie parametrów modelu skutkuje niezerowymi drganiami resztowymi. Jeżeli parametry modelu są znane niedokładnie lub są zmienne w pewnym zakresie, to należy zaprojektować inny filtr, odporny na zmiany parametrów. Odporny filtr jest projektowany przez dodanie dodatkowych warunków. Modyfikacja polega na uwzględnieniu np. dodatkowego warunku: V (, ) 0 (9) gdzie V oznacza amplitudę drgań resztowych. Warunek ten oznacza, że funkcja V osiąga ekstremum dla wybranej pulsacji, czyli że w otoczeniu tej pulsacji amplituda drgań resztowych jest niewielka. Otrzymuje się IS złożony z trzech impulsów i nosi on nazwę ZVD (Zero Vibration Derivative). Filtr ten jest mniej wrażliwy na zmiany parametrów modelu, ale kosztem wydłużenia czasu odpowiedzi układu na wartość zadaną. Spotyka się także bardziej złożone filtry np.; ZVDD, czy filtry dla dwóch częstotliwości. W tabeli 1 pokazano parametry filtru ZV, ZVD oraz ZVDD dla obiektu drugiego rzędu. (8)

Tabela 1[] Jeżeli na obiekt działają zakłócenia to filtr wejściowy nie tłumi drgań przez nie indukowanych. Stąd wniosek, że filtry wejściowe stosuje się do układów, gdzie poziom zakłóceń jest niewielki. W przypadku, gdy celem układu regulacji jest nie tylko wyeliminowanie drgań powodowanych przez zmianę wartości zadanej ale także ograniczenie wpływu zakłóceń, stosuje się zamknięty układ regulacji z filtrem wejściowym. Struktura taka pozwala na zastosowanie większych wzmocnień w regulatorach i szybszą kompensację zakłócenia a jednocześnie przeregulowanie w odpowiedzi na wartość zadaną jest mniejsze. 3. CEL I ZAKRES ĆWICZENIA Celem ćwiczenia jest 1. zaprojektowanie dla zadanego obiektu filtru wejściowego ZV, zbadanie jego działania i odporności na zmiany parametrów,. zaprojektowania filtru odpornego ZVD i ZVDD wraz z określeniem odporności na zmiany parametrów obiektu, 3. zaprojektowanie zamkniętego układu regulacji bez filtru wejściowego, zbadanie jego odpowiedzi na wartość zadaną i zakłócenie, 4. zaprojektowanie zamkniętego układu regulacji wraz z filtrem wejściowym 5. porównanie właściwości zbadanych układów. 4. OBIEKT BADAŃ Obiektem jest suwnica z podwieszonym ładunkiem, który przy zmianie pozycji wózka zachowuje się jak wahadło i kołysze się. Tłumienie kołysań zależy od oporów ruchu, ale przeważnie jest niewielkie. Schemat obiektu pokazano na rys.5. Celem zadania jest zaprojektowanie filtru wejściowego, który ograniczy kołysanie ładunku przy zmianie położenia zadanego. Schemat blokowy układu przedstawiony jest na rysunku 6. Rys.5. Schemat suwnicy z ładunkiem

Rys.6. Schemat blokowy modelu obiektu [1] Model obiektu składa się z części elektrycznej, czyli serwonapędu z regulatorem położenia i prędkości wózka (część CRANE) oraz z części mechanicznej, czyli modelu ładunku na linie (część LOAD). Część elektryczna opisuje dynamikę ruchu wózka a część mechaniczna dynamikę ruchu ładunku (obciążenia). Dynamika ruchu ładunku opisana jest członem oscylacyjnym drugiego rzędu: gdzie, to pulsacja drgań nietłumionych i współczynnik tłumienia obiektu, V c to prędkość wózka dźwigu a V l to prędkość kątowa ładunku. Transmitancja opisuje zależność pomiędzy prędkością wózka a prędkością ładunku. Układ regulacji serwonapędu (Rys.7) składa się z trzech pętli o strukturze kaskadowej: prądu, prędkości i położenia. Pętla regulacji prądu może być zamodelowana jak obiekt inercyjny pierwszego rzędu a regulatory prędkości i położenia mają strukturę odpowiednio PI i P. W układzie przewidziano także generator trajektorii, czyli sprzężenia typu FF reprezentujące pożądaną trajektorię prędkości (sp_v) i przyspieszenia (sp_a). Sygnałem wejściowym do układu serwomechanizmu jest wartość zadana położenia wózka a sygnałem wyjściowym - siła napędowa wózka. Rys.7. Struktura układu regulacji serwonapędu [1] W odpowiedzi na zmianę wartości zadanej położenia wózka indukowane są wahania ładunku. Jeżeli w układzie zastosuje się filtr wejściowy, to wartość zadana dla serwomechanizmu jest filtrowana tak aby wyeliminować drgania o określonej częstotliwości i w rezultacie ruch wózka nie wzbudza drgań ładunku (albo je bardzo ogranicza). W badanym przypadku filtr jest projektowany dla układu drugiego rzędu opisującego dynamikę ruchu ładunku i właściwości filtrujące są zachowane po przejściu przez dynamikę serwonapędu. Założenie to jest prawdziwe gdy układ jest liniowy, czyli gdy żaden z regulatorów nie osiąga ograniczeń. W przeciwnym przypadku drgania nie są całkowicie eliminowane. 5. BIBLOGRAFIA [1]. Gobej M., Skarda R., Schlegel M., Input shaping filter for the control of electric al driver with flexible load, 17-th Int. Conf. on Process Control 009, Slovakia, []. Arolovich I., Agranovich G., Control Improvement of under-damped systems and structures by input shaping, [3]. Singh T., Singhose W., Tutorial on input shaping/ time delay control of maneuvering flexible structures