Wykład 7: Pręty cienkościenne i nośność nadkrytyczna Leszek CHODOR dr inż. bud, inż.arch.

Podobne dokumenty
CIENKOŚCIENNE KONSTRUKCJE METALOWE

Materiały pomocnicze do wykładów z wytrzymałości materiałów 1 i 2 (299 stron)

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH

Temat: Mimośrodowe ściskanie i rozciąganie

CIENKOŚCIENNE KONSTRUKCJE METALOWE

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA

8. WIADOMOŚCI WSTĘPNE

Spis treści. Wstęp Część I STATYKA

Wykład 8: Lepko-sprężyste odkształcenia ciał

Projekt belki zespolonej

Wytrzymałość Materiałów

Zestaw pytań z konstrukcji i mechaniki

Moduł. Profile stalowe

Nieliniowości fizyczne Część 2 : Nieliniowość sprężysta. Teoria nośności granicznej

700 [kg/m 3 ] * 0,012 [m] = 8,4. Suma (g): 0,138 Ze względu na ciężar wykończenia obciążenie stałe powiększono o 1%:

STATYCZNA PRÓBA SKRĘCANIA

PODSTAWY STATYKI BUDOWLI POJĘCIA PODSTAWOWE

Podstawowe przypadki (stany) obciążenia elementów : 1. Rozciąganie lub ściskanie 2. Zginanie 3. Skręcanie 4. Ścinanie

Liczba godzin Liczba tygodni w tygodniu w semestrze

Ć w i c z e n i e K 3

Al.Politechniki 6, Łódź, Poland, Tel/Fax (48) (42) Mechanika Budowli. Inżynieria Środowiska, sem. III

Konstrukcje metalowe Wykład III Geometria przekroju

Opis efektów kształcenia dla modułu zajęć

Dr inż. Janusz Dębiński

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2014/15

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów sem. I studia niestacjonarne, rok ak. 2015/16

Politechnika Białostocka

Mechanika ogólna Wydział Budownictwa Politechniki Wrocławskiej Strona 1. MECHANIKA OGÓLNA - lista zadań 2016/17

Wyboczenie ściskanego pręta

Spis treści. Przedmowa... Podstawowe oznaczenia Charakterystyka ogólna dźwignic i torów jezdnych... 1

Wytrzymałość Konstrukcji I - MEiL część II egzaminu. 1. Omówić wykresy rozciągania typowych materiałów. Podać charakterystyczne punkty wykresów.


Konstrukcje metalowe Wykład XVI Belki (część I)

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania

Z-LOG-0133 Wytrzymałość materiałów Strength of materials

Freedom Tower NY (na miejscu WTC)

PŁYTY OPIS W UKŁADZIE KARTEZJAŃSKIM Charakterystyczne wielkości i równania

Konstrukcje metalowe Wykład VI Stateczność

SKRĘCANIE WAŁÓW OKRĄGŁYCH

Oddziaływanie membranowe w projektowaniu na warunki pożarowe płyt zespolonych z pełnymi i ażurowymi belkami stalowymi Waloryzacja

Projektowanie konstrukcji stalowych. Cz. 2, Belki, płatwie, węzły i połączenia, ramy, łożyska / Jan Żmuda. Warszawa, cop

2. Pręt skręcany o przekroju kołowym

KONSTRUKCJE DREWNIANE I MUROWE

Hale o konstrukcji słupowo-ryglowej

WYKŁAD 3 OBLICZANIE I SPRAWDZANIE NOŚNOŚCI NIEZBROJONYCH ŚCIAN MUROWYCH OBCIĄŻNYCH PIONOWO

Wytrzymałość materiałów Strength of materials

POZ BRUK Sp. z o.o. S.K.A Rokietnica, Sobota, ul. Poznańska 43 INFORMATOR OBLICZENIOWY

Konstrukcje metalowe Wykład IV Klasy przekroju

BUDOWNICTWO DREWNIANE. SPIS TREŚCI: Wprowadzenie

Politechnika Białostocka

Mechanika teoretyczna

Rys. 32. Widok perspektywiczny budynku z pokazaniem rozmieszczenia kratownic

WSTĘP DO TEORII PLASTYCZNOŚCI

Zadanie 1 Zadanie 2 tylko Zadanie 3

Pytania przygotowujące do egzaminu z Wytrzymałości Materiałów studia niestacjonarne I-go stopnia, semestr zimowy

2.1. Wyznaczenie nośności obliczeniowej przekroju przy jednokierunkowym zginaniu

Ścinanie i skręcanie. dr hab. inż. Tadeusz Chyży

Wytrzymałość Materiałów

Karta (sylabus) modułu/przedmiotu MECHANIKA I BUDOWA MASZYN Studia pierwszego stopnia

CIENKOŚCIENNE KONSTRUKCJE METALOWE

Wytrzymałość Materiałów II studia zaoczne inżynierskie I stopnia kierunek studiów Budownictwo, sem. IV materiały pomocnicze do ćwiczeń

Wytrzymałość Materiałów I studia zaoczne inŝynierskie I stopnia kierunek studiów Budownictwo, sem. III materiały pomocnicze do ćwiczeń

Sprawdzenie nosności słupa w schematach A1 i A2 - uwzględnienie oddziaływania pasa dolnego dźwigara kratowego.

Rys. 1. Elementy zginane. KONSTRUKCJE BUDOWLANE PROJEKTOWANIE BELEK DREWNIANYCH BA-DI s.1 WIADOMOŚCI OGÓLNE

PROJEKTOWANIE KONSTRUKCJI STALOWYCH WEDŁUG EUROKODÓW.

Mechanika teoretyczna

Mechanika i wytrzymałość materiałów instrukcja do ćwiczenia laboratoryjnego

TARCZE PROSTOKĄTNE Charakterystyczne wielkości i równania

Politechnika Śląska w Gliwicach Wydział Organizacji i Zarządzania Katedra Podstaw Systemów Technicznych

Wpływ podpory ograniczającej obrót pasa ściskanego na stateczność słupa-belki

Mechanika teoretyczna

Laboratorium Wytrzymałości Materiałów

262 Połączenia na łączniki mechaniczne Projektowanie połączeń sztywnych uproszczoną metodą składnikową

Opis efektów kształcenia dla modułu zajęć

Spis treści: Oznaczenia Wstęp Metale w budownictwie Procesy wytwarzania stali Podstawowe pojęcia Proces wielkopiecowy Proces konwertorowy i

Wewnętrzny stan bryły

Konstrukcje metalowe Wykład XIX Słupy (część II)

Wytrzymałość Materiałów

Informacje ogólne. Rys. 1. Rozkłady odkształceń, które mogą powstać w stanie granicznym nośności

NOŚNOŚĆ GRANICZNA

Freedom Tower NY (na miejscu WTC)

Obliczeniowa nośność przekroju zbudowanego wyłącznie z efektywnych części pasów. Wartość przybliżona = 0,644. Rys. 25. Obwiednia momentów zginających

AiR_WM_3/11 Wytrzymałość Materiałów Strength of Materials

KARTA MODUŁU KSZTAŁCENIA

Z-LOGN Wytrzymałość materiałów Strength of materials

Karta (sylabus) modułu/przedmiotu Mechatronika Studia pierwszego stopnia. Wytrzymałość materiałów Rodzaj przedmiotu: obowiązkowy Kod przedmiotu:

Wyciąg z przepisów PRS i określenia podstawowych parametrów kadłuba. (Materiał pomocniczy Sem. V)

Wytrzymałość materiałów

Konstrukcje metalowe II Wykład IV Estakady podsuwnicowe Belki

Wytrzymałość materiałów. Wzornictwo przemysłowe I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny)

Spis treści. 2. Zasady i algorytmy umieszczone w książce a normy PN-EN i PN-B 5

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Wytrzymałość Materiałów

Nośność belek z uwzględnieniem niestateczności ich środników

PaleZbrojenie 5.0. Instrukcja użytkowania

Analiza płyt i powłok MES

Wytrzymałość materiałów Strength of materials

Transkrypt:

Wykład 7: Pręty cienkościenne i nośność nadkrytyczna Leszek CHODOR dr inż. bud, inż.arch. leszek@chodor.co [6] [6] [3] Literatura: [1] Piechnik St., Wytrzymałość materiałów dla wydziałów budowlanych,, PWN, Warszaw-Kraków, 1980 [7] [2] Piechnik St., Prety cienkościenne- otwarte, Wyd. Politechniki Krakowskiej, Kraków, 2000 [3] Makelainen P. (Ed), Light-Weight Steell and Aluminium Structures, 4-th Int. Conf. on Steel and... Espoo FIN, Elsevir 1999 [4] Kształtowniki stalowe gięte, Poradnik,, Praca zbiorowa, Wydawnictwo Śłąsk, 1983 [5] Bródka J, i in. Kształtowniki gięte. Poradnik, PWT, Warszawa, 2006 [6] Kotełko M., Nośność i mechanizmy zniszczenia konstrukcji cienkościennych, W N-T, Warszawa 2011 [7] Biegus A., Nośność graniczna prętowych konstrukcji stalowych, PWN, Warszawa-Wrocław 1997 Politechnika Świętokrzyska, Leszek CHODOR Teoria sprężystości i plastyczności 1

Pręty cienkościenne i teorie nośności Pręt cienkościenny jest to taki pręt, w którym jeden z wymiarów poprzecznych (grubość ścianki) jest nieporównalnie mały w stosunku do drugiego. Precyzyjnie: (c-długość linii środkowej mierzona pomiędzy dwoma skrajnymi punktami tej linii. L-długość pręta W ramach teorii Własowa można wyjaśnić zjawisko zwichrzenia [2] Politechnika Świętokrzyska, Leszek CHODOR Teoria sprężystości i plastyczności 2 [2] 1 c c 8 1 8 L Teoria prętów cienkościennych różni się teorii od teorii litego, ponieważ podstawowe hipotezy upraszczające : 1) założenie płaskich przekrojów Bernoulliego NIE jest spełnione, czyli podstawowy wzór nie obowiązuje bez zastrzeżeń M / I y z 2) zasada de Saint Venanta NIE obowiązuje Pdstawowowe teorie prętów cienkościennych 1. Teoria Własowa (1940) 2. Teoria Wintera (nośnosci nadkrytycznej, pokrytycznej) 3. Teoria załomów [6]

Pręty cienkościenne Teoria Własowa {1} W prętach cienkościennych należy rozpatrywać nie tylko statyczną, ale również kinematyczną równoważność układów sił. W tym celu wprowadzimy pojęcie siły przekrojowej bimoment (para par) (para=moment) Deformacje prętów różnią się jakościowo. Zaburzenia lokalne w prętach cienkościennych mogą rozchodzić się wzdłuż całej ich długości. Nie możemy pominąć skręcenia pręta zginanego nawet w płaszczyźnie głównej wprowadzimy pojęcie środka ścinania [1] Postawienie zagadnienia teorii prętów cienkościennych: Założenia Własowa: 1. Powierzchnia środkowa deformuje się tak, jakby w płaszczyźnie każdego przekroju poprzecznego (y,z) rozpostarta była na linii środkowej sztywna tarcza, idealnie jednak wiotka w kierunku (x), tak że możliwa jest swobodna deplanacja w kierunku osi pręta (hipoteza sztywnego konturu) kształtu powierzchni środkowych) 2. powierzchnia środkowa nie doznaje odkształceń kątowych 3. Wartość naprężenia normalnego x dominuje nad pozostałymi naprężeniami normalnymi Politechnika Świętokrzyska, Leszek CHODOR Teoria sprężystości i plastyczności 3 [1]

Pręty cienkościenne Teoria Własowa {2} Pręty cienkościenne dzielimy na: 1. otwarte, 2. zamknięte (i 3 quassizamknięte) zależnie od rodzaju profilu. Teoria prętów o profilu otwartym jest przypadkiem szczególnym teorii prętów o profilu zamkniętym, ale pojęcia podstawowe pokażemy w teorii prętów otwartych Podstawowa cecha profili zamknietych odporne na skręcanie Deplanacja=spaczenie przekroju [5] Politechnika Świętokrzyska, Leszek CHODOR Teoria sprężystości i plastyczności 4 [5]

Pręty cienkościenne Bimoment. Kinematyczna równoważność Układ obciążenia oryginalny A A O + dodajemy momenty: układy statycznie równoważne, ale również o podobnym efekcie kinematycznym siła 2P w p-kcie 0 (środku ciężkości ) + dwa momenty przeciwnie skierowane leżące w równoległych płaszczyznach (pólkach) [1] Bimoment = df Liczba gdzie M 2Pb 0 jest momentem pary sił P na krawędziach ścianki (półki), a h odległością tych płaszczyzn. Politechnika Świętokrzyska, Leszek CHODOR Teoria sprężystości i plastyczności 5 [1] B Mh

Bimoment. Znakowanie [1] Bimoment jest dodatni, jeżeli normalna zewnętrzna przekroju poprzecznego ma zwrot zgodny ze zwrotem osi układu, do której jest równoległa, i jeśli stojąc między płaszczyznami działania par, para, którą widzimy ma zwrot zgodny z ruchem wskazówek zegara Rozwiązanie ZBTS dokonuje się podejściem kinematycznym. Funkcje przemieszczeń punktów linii środkowej przewiduje się (zgodnie z 1 założeniem Własowa) poprzez złożenie ruchu linii środkowej należącej do nieodkształcalnej tarczy oraz jej spaczenia. Następnie z równań Cauchy ego i warunku geometrycznej Równoważności obliczamy odkształcenia. Korzystając z trzeciego założenia Własowa i równań Hooke a otrzymamy ~ ~ E x E x, gdzie : E 2 1 Politechnika Świętokrzyska, Leszek CHODOR Teoria sprężystości i plastyczności 6

Bimoment. Znakowanie [1] Bimoment jest dodatni, jeżeli normalna zewnętrzna przekroju poprzecznego ma zwrot zgodny ze zwrotem osi układu, do której jest równoległa, i jeśli stojąc między płaszczyznami działania par, para, którą widzimy ma zwrot zgodny z ruchem wskazówek zegara Sposób rozwiązania ZBTS dokonuje się podejściem kinematycznym. Funkcje przemieszczeń punktów linii środkowej przewiduje się (zgodnie z 1 założeniem Własowa) poprzez złożenie ruchu linii środkowej należącej do nieodkształcalnej tarczy oraz jej spaczenia. Następnie z równań Cauchy ego i warunku kinematycznej równoważności układu sił obliczamy odkształcenia. Korzystając z trzeciego założenia Własowa i równań Hooke a otrzymamy ~ E x Politechnika Świętokrzyska, Leszek CHODOR Teoria sprężystości i plastyczności 7 x ~, gdzie : E E 2 1

Rozwiązanie ZBTS zagadnienia Własowa Określenie funkcji bimomentu dokonuje się z warunku x S równości momentów skręcających od sił wewnętrznych i zewnętrznych ' M GJ ( x) GJ S S s M M M moment czystego skręcania patrz rozwiązanie ZBTS M db dx Kąt skręcenia -liniowa funkcja zależna od x moment giętno-skrętny Jeśli przyjmiemy z definicji: B ( x) EJ " ( x) M Całkiogólne: Stałe całkowania z warunków brzegowych Całki szczególne ze znajomości m(x) Politechnika Świętokrzyska, Leszek CHODOR Teoria sprężystości i plastyczności 8

Pręty cienkościenne- naprężenia (Klasyczne składowe naprężenia w przekroju pręta zginanego poprzecznie oblicza się standardowo) Zasada superpozycji (sumuje się naprżenia w punkcie) Politechnika Świętokrzyska, Leszek CHODOR Teoria sprężystości i plastyczności 9

Współrzędna wycinkowa Położenie punktu początkowego M i punktu S wyznacza się z zależności Przekroje cienkościenne- Wycinkowe charakterystyki wynikającymi z warunku samozrównoważenia się naprężeń normalnych [8] Politechnika Świętokrzyska, Leszek CHODOR Teoria sprężystości i plastyczności 10

Środek ścinania (zginania) Przekroje cienkościenne- Środek ścinania Biegun R(a,b) dla którego zerują się wycinkowe momenty odśrodkowe nazywać będziemy środkiem ścinania (lub zginania). Nazwa wywodzi się stąd, że obciążenie pionowe przyłożone w środku ścinania nie powoduje skręcania przekroju. Środek ciężkości pokrywa się ze środkiem ścinania tylko dla przekroju symetrycznego, wic tylko dla takich przekrojów obciążenie przyłożone w środku ciężkości nie skręca przekroju. [5] Politechnika Świętokrzyska, Leszek CHODOR Teoria sprężystości i plastyczności 11

Przekroje cienkościenne- Środek ścinania cd Politechnika Świętokrzyska, Leszek CHODOR Teoria sprężystości i plastyczności 12

Typowe przekroje cienkościenne [8] Politechnika Świętokrzyska, Leszek CHODOR Teoria sprężystości i plastyczności 13

Przykład wyznaczenia charakterystyk cienkościennych [8] Poradnik projektanta konstrukcji metalowych, Arkady 1980 [8] [8] Politechnika Świętokrzyska, Leszek CHODOR Teoria sprężystości i plastyczności 14

Typowe schematy cienkościennych [8] [8] [5] Politechnika Świętokrzyska, Leszek CHODOR Teoria sprężystości i plastyczności 15

Teoria nośności nadkrytycznej {1} Idea teorii Wintera: Teoria wykorzystuje zjawisko cienka płyta, podlegająca ściskaniu po przekroczeniu naprężeń krytycznych utracie nośności miejscowej jest w stanie nadal przenosić obciążenia, z reguły znacznie większe od obciążenia krytycznego. Korzyści z teorii nośności nadkrytycznej Wpływ szerokości i grubości płyty na naprężenie krytyczne płyt ze wzoru: [4] Przyjmując za Timoshenko, że po utracie stateczności długa płyta podparta przegubowo na dłuższych krawędziach dzieli się w przybliżeniu na płyty kwadratowe, a współczynnik k=4, ze wzoru uzyskuje się wynik, ze nośność sprężysta płyty jest wyczerpana dla b/g 45 i 55 dla zakresy wytrzymałości Rk=240i 350 MPa. Teoria nośności nadkrytycznej umożłiwa natomiast stosowanie przekrojów o stosunku b/g 10-krotnie większym. [7] Politechnika Świętokrzyska, Leszek CHODOR Teoria sprężystości i plastyczności 16

Teoria nośności nadkrytycznej {2} Zjawisko nadkrytyczne {1} [4] W modelu elementy płytowe zastąpiono myśłowo prętami. Przy wzroście obciążenie, przy obciążeniu krytycznym prętów, uległyby one jednoczesnemu wyboczeniu. W modelu płyty zjawisko nie wystąpi, gdyż pręty poprzeczne zaczynają pracować jako cięgna przeciwdziałąjące wygięciu prętów pionowych, przy tym najmniejsze wygięcie wykazują pręty przy krawędziach podpartych, a największe pręty środkowe. W tej sytuacji jest widoczne, ze nawet po osiągnięciu naprężenia krytycznego zaróeno płyta jak i model nie ulegaja wyboczeniu i mogą przenosić dodatkowe obciążenia. Zjawisko to nazywa się nadkrytycznym stanem płyty Politechnika Świętokrzyska, Leszek CHODOR Teoria sprężystości i plastyczności 17

Teoria nośności nadkrytycznej {3} Zjawisko nadkrytyczne {2} Na skutek uchylania się prętów środkowych od przenoszenia obciążeń w miarę wzrostu obciążenia rozkład naprężeń jest coraz bardziej nierównomierny. Płyta ulega wyboczeniu, gdy w pasach przyległych do bocznych krawędzi wystąpi przekroczenie granicy plastyczności Z badań wynika, że w stanie nadkrytcznym naprężenia w części płyty znacznie wygiętej mogą zmniejszać się w stosunku do naprężeń krytycznych, a przy dużych stosunkach b/g naprężenia mogą nawet zmieniać znak. Politechnika Świętokrzyska, Leszek CHODOR Teoria sprężystości i plastyczności 18

Teoria nośności nadkrytycznej {4} Z badań wynika, ze już przy obciążeniu nieznacznie większym od krytycznego pasmo płytowe przyjmuje wypukłość. Przy wzroście obciążenia wypukłości tworzą się w strefach brzegowych.po dalszym rozszerzaniu się wypukłości następuje gwałtowne przejście do nowej postaci wygięcia płyty (d), co jest równoznaczne z osiągnięciem jej nośności granicznej. Róznica miedzy obciążeniem krytycznym i granicznym jest nieduża, gdy obciążenia krytyczne są bliskie plastycznym. Zakres nadkrytycznego zachowania płyty zwiększa się wraz ze wzrostem b/g. Wzrost nie jest jednak równomierny. Stwierdzono, że w przypadku płyt cienkich i szerokich ich nośność niewiele wzrasta ponad pewną wartość przy dalszym zwiększaniu b. W zależności od wymiarów płyty i od sposobu jej podparcia, a także występujących w płycie obciążeń, nośność graniczna w stosunku do siły krytycznej może być znaczna, nawet kilka razy większa. Szerokość współpracująca Politechnika Świętokrzyska, Leszek CHODOR Teoria sprężystości i plastyczności 19

Szerokość współpracująca z doświadczeń {1} [5] Karman, Sechler i Donnel po podstawieniu Sechler Marguerre zbyt optymistyczne [5] Politechnika Świętokrzyska, Leszek CHODOR Teoria sprężystości i plastyczności 20

Szerokość współpracująca z doświadczeń {2} [5] Karman Winter Zaproponowane do pasm płytowych w elemntach z kształtowników profilowanych na zimno Stowell Ściskanie osiowe płyty Model naprężeń normalnych ścianki ściskanej osiowo, podpartej środnikiem Istotne jest usztywnienie krawędzi kształtowników Politechnika Świętokrzyska, Leszek CHODOR Teoria sprężystości i plastyczności 21

Szerokość współpracująca {3} [5] Belki Belki badane przez Bródkę [5] Winter (modyfikacja Karmana) Politechnika Świętokrzyska, Leszek CHODOR Teoria sprężystości i plastyczności 22

Szerokość współpracująca {4} [5] Słupy ściskane osiowo Heimler Chilver Politechnika Świętokrzyska, Leszek CHODOR Teoria sprężystości i plastyczności 23

Szerokość współpracująca (5} [4] [5] Politechnika Świętokrzyska, Leszek CHODOR Teoria sprężystości i plastyczności 24

Szerokość współpracująca {6} Politechnika Świętokrzyska, Leszek CHODOR Teoria sprężystości i plastyczności 25 [4]

Teoria załomów cienkościennych (1} Przykłady mechanizmów Zniszczenia w elementach cienkościennych [6] Załomy plastyczne na pełny moment plastyczny: a) prostopadłe do siły, b) ukośne Politechnika Świętokrzyska, Leszek CHODOR Teoria sprężystości i plastyczności 26

Teoria załomów cienkościennych (2} Redukcja momentu plastycznego [6] Nachylony załom plastyczny Redukcja momentu Muray [1973] a) rozkład naprężeń w przekroju, b)schemat obciążenia Linia schodkowa Politechnika Świętokrzyska, Leszek CHODOR Teoria sprężystości i plastyczności 27

Teoria załomów cienkościennych {3} Wędrujący przegub lokalny [6] Wędrując Mechanizmy zniszczenia płyt ściskanych przy symetrii Politechnika Świętokrzyska, Leszek CHODOR Teoria sprężystości i plastyczności 28

Teoria załomów cienkościennych {4} Mechanizm zniszczenia belki z dużym udziałem ścinania Mechanizm zniszczenia w dźwigarze dwuteowym: a) mechanizm symetryczny (wyboczenie środnika) b) Mechanizm niesymetryczny (wyboczenie środnika połączone z obrotem półki) Politechnika Świętokrzyska, Leszek CHODOR Teoria sprężystości i plastyczności 29

Teoria załomów cienkościennych {5} Mechanizm zniszczenia dżwigarów cienkościennych skrzynkowych Politechnika Świętokrzyska, Leszek CHODOR Teoria sprężystości i plastyczności 30