P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt.

Podobne dokumenty
Moneta 1 Moneta 2 Kostka O, R O,R 1,2,3,4,5, Moneta 1 Moneta 2 Kostka O O ( )

Podstawy nauk przyrodniczych Matematyka

Prawdopodobieństwo

{( ) ( ) ( ) ( )( ) ( )( ) ( RRR)

Doświadczenie i zdarzenie losowe

Skrypt 30. Prawdopodobieństwo

RACHUNEK PRAWDOPODOBIEŃSTWA ZADANIA Z ROZWIĄZANIAMI. Uwaga! Dla określenia liczebności zbioru (mocy zbioru) użyto zamiennie symboli: Ω lub

Rachunek prawdopodobieństwa

Matematyka podstawowa X. Rachunek prawdopodobieństwa

c) Zaszły oba zdarzenia A i B; d) Zaszło zdarzenie A i nie zaszło zdarzenie B;

Elementy statystyki opisowej, teoria prawdopodobieństwa i kombinatoryka

RACHUNEK PRAWDOPODOBIEŃSTWA I KOMBINATORYKA

Zdarzenie losowe (zdarzenie)

R_PRACA KLASOWA 1 Statystyka i prawdopodobieństwo.

Zadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy:

12. RACHUNEK PRAWDOPODOBIEŃSTWA I STATYSTYKA zadania

PRAWDOPODOBIEŃSTWO I KOMBINATORYKA

NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI ZADANIE 1 oczka. ZADANIE 2 iloczynu oczek równego 12.

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 14 Zadania statystyka, prawdopodobieństwo i kombinatoryka

Statystyka podstawowe wzory i definicje

51. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń.

Rzucamy dwa razy sprawiedliwą, sześcienną kostką do gry. Oblicz prawdopodobieństwo otrzymania:

c. dokładnie 10 razy została wylosowana kula antracytowa, ale nie za pierwszym ani drugim razem;

KURS PRAWDOPODOBIEŃSTWO

Statystyka matematyczna

c) ( 13 (1) (2) Zadanie 2. Losując bez zwracania kolejne litery ze zbioru AAAEKMMTTY, jakie jest prawdopodobieństwo Odp.

Obliczanie prawdopodobieństwa za pomocą metody drzew metoda drzew. Drzewem Reguła iloczynów. Reguła sum.

p k (1 p) n k. k c. dokładnie 10 razy została wylosowana kula amarantowa, ale nie za pierwszym ani drugim razem;

Prawdopodobieństwo. Prawdopodobieństwo. Jacek Kłopotowski. Katedra Matematyki i Ekonomii Matematycznej SGH. 16 października 2018

PRAWDOPODOBIEŃSTWO CZAS PRACY: 180 MIN. ZADANIE 1 (5 PKT) NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI

Rachunek prawdopodobieństwa- wykład 2

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.

= 10 9 = Ile jest wszystkich dwucyfrowych liczb naturalnych podzielnych przez 3? A. 12 B. 24 C. 29 D. 30. Sposób I = 30.

KOMBINATORYKA I P-WO CZ.1 PODSTAWA

Statystyka matematyczna

L.Kowalski zadania z rachunku prawdopodobieństwa-zestaw 1 ZADANIA - ZESTAW 1. (odp. a) B A C, b) A, c) A B, d) Ω)

01DRAP - klasyczna definicja prawdopodobieństwa

( ) ( ) Przykład: Z trzech danych elementów: a, b, c, można utworzyć trzy następujące 2-elementowe kombinacje: ( ) ( ) ( ).

01DRAP - klasyczna definicja prawdopodobieństwa

01DRAP - klasyczna definicja prawdopodobieństwa

Liczby rzeczywiste, wyrażenia algebraiczne, równania i nierówności, statystyka, prawdopodobieństwo.

Lista zadania nr 4 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

WYKŁADY Z RACHUNKU PRAWDOPODOBIEŃSTWA I (SGH)

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 1

KURS PRAWDOPODOBIEŃSTWO

Temat: Zmienna losowa. Rozkład skokowy. Rozkład ciągły. Kody kolorów: Ŝółty nowe pojęcie pomarańczowy uwaga. Anna Rajfura, Matematyka

DOŚWIADCZENIA WIELOETAPOWE

Zdarzenia losowe i prawdopodobieństwo

ZADANIA MATURALNE - RACHUNEK PRAWDOPODOBIEŃSTWA, ELEMENTY STATYSTYKI OPISOWEJ POZIOM PODSTAWOWY Opracowała mgr Danuta Brzezińska

Metody probabilistyczne

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

Statystyka matematyczna

Lista zadania nr 2 Metody probabilistyczne i statystyka studia I stopnia informatyka (rok 2) Wydziału Ekonomiczno-Informatycznego Filia UwB w Wilnie

a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.);

Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym

P (A B) P (B) = 1/4 1/2 = 1 2. Zakładamy, że wszystkie układy dwójki dzieci: cc, cd, dc, dd są jednakowo prawdopodobne.

METODY PROBABILISTYCZNE I STATYSTYKA

3. Podstawowe pojęcia statystyki matematycznej i rachunku prawdopodobieństwa wykład z Populacja i próba

Kombinatoryka i rachunek prawdopodobieństwa

Wymagania egzaminacyjne z matematyki. Klasa 3C. MATeMATyka. Nowa Era. Klasa 3

Rachunek prawdopodobieństwa Rozdział 2. Aksjomatyczne ujęcie prawdopodobieństwa

rachunek prawdopodobieństwa - zadania

Metody probabilistyczne

Zmienna losowa. Rozkład skokowy

P (A B) = P (A), P (B) = P (A), skąd P (A B) = P (A) P (B). P (A)

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.

Rachunek Prawdopodobieństwa i Statystyka Matematyczna

Matematyczne Podstawy Kognitywistyki

Wykład 13. Podstawowe pojęcia rachunku prawdopodobieństwa

Jak odróżnić wariację z powtórzeniami od wariacji bez powtórzeń, kombinacji?

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.

Podstawy Teorii Prawdopodobieństwa

Wykład 2. Prawdopodobieństwo i elementy kombinatoryki

Rachunek prawdopodobieństwa i kombinatoryka. Rachunek prawdopodobieństwa. Podstawowe pojęcia rachunku prawdopodobieństwa

12DRAP - parametry rozkładów wielowymiarowych

Probabilistyczne podstawy statystyki matematycznej. Dr inż. Małgorzata Michalcewicz-Kaniowska

Rachunek prawdopodobieństwa (Elektronika, studia niestacjonarne) Wykład 2

Statystyka matematyczna

Z4. Ankieta złożona ma być z trzech pytań: A, B i C. Na ile sposobów można ją ułożyć zmieniając tylko kolejność pytań? ODP. Jest 6 możliwych sposobów.

ZAGADANIENIA NA EGZAMIN USTNY Z MATEMATYKI

Kombinatoryka i rachunek prawdopodobieństwa (rozszerzenie)

a. zbiór wszystkich potasowań talii kart (w którym S dostaje 13 pierwszych kart, W - 13 kolejnych itd.);

04DRAP - Prawdopodobieństwo warunkowe, prawdopodobieństwo całkowite,

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.

DODATKOWA PULA ZADAŃ DO EGZAMINU. Rozważmy ciąg zdefiniowany tak: s 0 = a. s n+1 = 2s n +b (dla n=0,1,2 ) Pokaż, że s n = 2 n a +(2 n =1)b

Kombinatoryka i rachunek prawdopodobieństwa

Wybrane treści z rachunku prawdopodobieństwa w kontekście medycznym. M.Zalewska

Probabilistyka przykłady

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) PRAWDOPODOBIEŃSTWO ZAJŚCIA ZDARZENIA A POD WARUNKIEM, ŻE ZASZŁO ZDARZENIE B

Rachunek prawdopodobieństwa Rozdział 3. Prawdopodobieństwo warunkowe i niezależność zdarzeń.

RACHUNEK PRAWDOPODOBIEŃSTWA

Zadania z Zasad planowania eksperymentu i opracowania wyników pomiarów. Zestaw 1.

ZAGADNIENIA NA EGZAMIN POPRAWKOWY Z MATEMATYKI W KLASIE III TECHNIKUM.

15. Rachunek prawdopodobieństwa mgr A. Piłat, mgr M. Małycha, mgr M. Warda

Zadanie 2. Wiadomo, że A, B i C są trzema zdarzeniami losowymi takimi, że P (A) = 2/5, P (B A) = 1/4, P (C A B) = 0.5, P (A B) = 6/10, P (C B) = 1/3.

Biologia Zadania przygotowawcze do drugiego kolokwium z matematyki

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Ćwiczenia z metodyki nauczania rachunku prawdopodobieństwa

I. FUNKCJA WYKŁADNICZA I LOGARYTMY 1. POTĘGI Zad.1. Zapisz za pomocą potęgi o podanej podstawie:

Ćw,1. Wypisz wszystkie k-wyrazowe wariacje bez powtórzeń zbioru A = {1, 2,3 }, gdy: a) k = l, b) k = 2, c) k = 3. Wariacje 1 z 6

Transkrypt:

P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. Lekcja 2 Temat: Podstawowe pojęcia związane z prawdopodobieństwem. Str. 10-21 1. Doświadczenie losowe jest to doświadczenie, zdarzenie, które moŝna wielokrotnie powtarzać, ale nie moŝna w sposób jednoznaczny przewidzieć wyniku. a) Rzut kostką jest 6 moŝliwych wyników. b) Wyciąganie jednej karty z talii kart są 52 moŝliwości. c) Rzut dwoma monetami są 4 moŝliwości. 2. Zdarzenie elementarne jest to pojedynczy wynik doświadczenia losowego. a) Doświadczenie losowe rzut monetą. Zdarzenie elementarne wypadł orzeł. b) Doświadczenie losowe wyciąganie jednej karty z puli 52 kart. Zdarzenie elementarne wyciągnęliśmy asa. 3. Zbiór zdarzeń elementarnych jest to zbiór wszystkich moŝliwych zdarzeń elementarnych danego doświadczenia i zbiór ten oznaczamy Ω i zapisujemy Ω = {e 1, e 2, e n }. a) Przy dwukrotnym rzucie monetą mamy następujący zbiór zdarzeń elementarnych Ω = {(O;O); (O;R); (R;O); (R;R)}. b) Przy jednym rzucie kostką do gry mamy następujący zbiór zdarzeń elementarnych Ω = {1; 2; 3; 4; 5; 6}. 4. Zdarzenie losowe jest to podzbiór zbioru wszystkich zdarzeń elementarnych danego doświadczenia losowego, którego elementy spełniają w sposób pozytywny dane doświadczenie losowe. Zdarzenie losowe oznaczamy A i zawsze zachodzi A Ω. a) Przy rzucie kostką zdarzeniem losowym jest wypadnie liczba oczek mniejsza niŝ trzy. A = {1; 2} są to wszystkie liczby oczek mniejsze od 3. b) Przy rzucie trzech monet zdarzeniem losowym jest wypadną dwa orły A = {(O; O; R); (O; R; O); (R; O; O)} są to wszystkie przypadki, gdy mamy dwa orły. 5. JeŜeli zdarzenie losowe jest niemoŝliwe, puste to zapisujemy A = φ np. przy rzucie kostką wypadnie liczba oczek równa 8 to zdarzenie niemoŝliwe, nigdy to się nie zdarzy. 6. JeŜeli zdarzenie losowe jest pewne to zapisujemy A = Ω np. przy rzucie kostką wypadnie liczba oczek mniejsza niŝ 8 to zdarzenie pewne, zawsze tak jest, Ŝe jest ich mniej niŝ 8. 7. Moc zbioru jest to liczba określająca ilość elementów w danym zbiorze. Oznaczamy ją A. Przykład. a) Zdarzenie losowe opisane jest za pomocą zbioru A={1,3,5}, to moc A = 3 Strona 1 z 7

b) Zdarzenie losowe opisane jest za pomocą zbioru B = {(O; O); (R; R)}, to moc B = 2 8. Reguła mnoŝenia JeŜeli doświadczenie losowe składa się z kilku czynności, to ilość wszystkich moŝliwych zdarzeń elementarnych, tego doświadczenia losowego obliczamy mnoŝąc ilość zdarzeń elementarnych dla pierwszej, razy ilość zdarzeń elementarnych dla drugiej czynności itd. Przykłady a) Ile moŝna stworzyć kodów czterocyfrowych z cyfr: 1; 2; 3; 4; 5; 6; 7; 8; 9. Cyfry mogą się powtarzać, czyli zwracamy wylosowaną cyfrę do zestawu. Losujemy pierwszą cyfrę kodu spośród 9 Losujemy drugą cyfrę kodu spośród 9 Losujemy trzecią cyfrę kodu spośród 9 Losujemy czwartą cyfrę kodu spośród 9 Ω = 9 9 9 9 = 6561 b) Ile moŝna stworzyć kodów czterocyfrowych z cyfr: 1; 2; 3; 4; 5; 6; 7; 8; 9. Cyfry nie mogą się powtarzać, czy losowanie bez zwracania. Losujemy pierwszą cyfrę kodu spośród 9 Losujemy drugą cyfrę kodu spośród 8 Losujemy trzecią cyfrę kodu spośród 7 Losujemy czwartą cyfrę kodu spośród 6 Ćwiczenie. 2 ; 3; 4 str. 11 Ω = 9 8 7 6 = 3024 Lekcja 3-5 Temat: Obliczanie ilości zdarzeń elementarnych. Str. 10-21 Zad. 1, 2, 3, 4 str. 12 Zad. 1, 2, 3, 4 str. 16 Powtórzenie. Zad. 1, 2 str. 12 Powtórzenie. Zad. 1, 2, str. 17 Zad. 1, 2, 3, 4 str. 19 Zad. 1, 2, 3, 4 str. 21 Powtórzenie. Zad. 1, 2 str. 19 Powtórzenie. Zad. 1, 2, str. 21 Zad. 7, 8 str. 17 Zad. 5 str. 19 Zad. 5, 6 str. 21 Powtórzenie. Zad. 3 str. 21 Powtórzenie. Zad. 4 str. 17 Strona 2 z 7

Lekcja 6-7 Temat: Reguła dodawania i diagramy Venna. Str. 22-24 1. Reguła dodawania JeŜeli zdarzenia losowe A i B są rozłączne, czyli nie mają wspólnych elementów, to moc sumy tych zdarzeń losowych równa się sumie mocy poszczególnych zdarzeń losowych. A B = A + B Przykład Zdarzenie losowe X ile jest róŝnych liczb trzycyfrowych w zapisie, których występują cyfry {2 ; 3 ; 5 ; 6 ; 7 ; 8 ; 9} i co najmniej raz wystąpi cyfra 5. Z treści zadania wynika, Ŝe podane liczby mogą się powtarzać. Kolejność jest istotna. Sformułowanie co najmniej raz wystąpi cyfra 5 oznacza Ŝe moŝe wystąpić: raz, dwa razy, trzy razy. Niech Ω oznacza wszystkie liczby trzycyfrowe utworzone z liczb: 2; 3; 5; 6; 7; 8 ; 9. Jest ich siedem. Ω = 7 * 7 * 7 = 343. ------------- --------------- --------------- I poz. setki. II poz. dzies. III poz. jedn. Niech A oznacza wszystkie liczby trzycyfrowe, ale bez liczby 5, czyli wszystkie utworzone z liczb: 2; 3; 6; 7; 8 ; 9. Jest ich sześć. A = 6 * 6 * 6 = 216. ------------- --------------- --------------- I poz. setki. II poz. dzies. III poz. jedn. Moc szukanego zdarzenia losowego X wynosi. Od wszystkich moŝliwych przypadków odejmujemy te, gdzie nie ma liczby 5. Zatem zostaną te, gdzie piątka jest co najmniej raz. X = Ω A = 343 216 = 127. Zad. 1, 2 str. 23 Zad. 3, 4, 5 str. 24 Powtórzenie. Zad. 1, 2 str. 24 2. Diagramy Venna Diagramy Venna, to schematy graficzne zwykle w postaci elips ilustrujące zaleŝności między zbiorami. Przykład. Dla danego doświadczenia losowego, dane są dwa zdarzenia losowe A i B. Wyniki zdarzeń losowych, to zbiory, które moŝna przedstawić za pomocą diagramów Venna. Wygląda to następująco. Strona 3 z 7

Największa elipsa, to zbiór wszystkich zdarzeń elementarnych, czyli Ω. Mniejsze elipsy w środku, to zdarzenia losowe A i B. Część zamalowana w niebieskim kolorze, to część wspólna A B. Na zielono zamalowana jest suma zdarzeń losowych A i B ( A B ), czyli wszystko, co naleŝy do A lub B, ale liczone jest jeden raz. W kolorze pomarańczowym zaznaczone jest zdarzenie losowe A PRZECIWNE do A. W kolorze Ŝółtym mamy róŝnicę zdarzeń losowych A \ B, czyli wyniki naleŝące do A, a NIE naleŝące do B. Na ostatnim rysunku mamy dwa zdarzenia losowe A i B wykluczające się, czyli rozłączne. Ćwiczenie 2, 3 str. 26 Zad. 1, 2 str. 27 Powtórzenie. Zad. 1, 2 str. 27 Lekcja 7-9 Temat: Obliczanie prawdopodobieństwa. Str. 29-37 1. Prawdopodobieństwem zdarzenia losowego A, gdy poszczególne zdarzenia elementarne są jednakowo prawdopodobne nazywamy iloraz liczby zdarzeń elementarnych spełniających zdarzenie losowe A, do liczby wszystkich moŝliwych zdarzeń elementarnych Ω występujących w doświadczeniu. Zapisujemy to następująco: n A P(A) =, gdzie A = n A, Ω = N N Przykład. Oblicz prawdopodobieństwo wyrzucenia parzystej liczby oczek przy rzucie kostką. Doświadczenie losowe rzut kostką. Ω = {1; 2; 3; 4; 5; 6}, moc Ω = 6 Zdarzenie losowe wypadnie parzysta liczba oczek. A = {2; 4; 6}, moc A = 3 Prawdopodobieństwo tego zdarzenia losowego: 3 1 P(A) = = 6 2 Zad. 1, 2, 3 str. 30 Zad. 4, 5 str. 31 Powtórzenie. Zad. 1, 2, str. 31 Strona 4 z 7

Lekcja druga Zad. 7, 8, 9 str. 31 Zad. 1, 2, 3 str. 34 Powtórzenie. Zad. 1, 2, str. 35 Lekcja trzecia Zad. 4, 5 str. 34 Zad. 6, 7, 8 str. 35 Powtórzenie. Zad. 3, 4 str. 35 1. Rzucamy trzema identycznymi monetami. Oblicz prawdopodobieństwo zdarzenia, polegającego na wyrzuceniu co najmniej dwóch orłów. 2. Z tali 52 kart losujemy 3 karty ze zwracaniem. Jakie jest prawdopodobieństwo, Ŝe wylosujemy za pierwszym razem damę pik, za drugim razem króla, a za trzecim razem blotkę? 3. Z czterech kart: król pik, król karo, dama pik, dama karo losujemy bez zwracania dwie karty. Oblicz prawdopodobieństwo zdarzenia, polegającego na wylosowaniu za pierwszym razem króla, a za drugim razem pika. 4. Z czterech identycznych tali kart liczących po 24 karty losujemy po jednej karcie. Oblicz prawdopodobieństwo otrzymania czterech dziesiątek. 5. Rozkład prawdopodobieństwa dla rzutu czworościenną kostką przedstawia tabelka. Oblicz prawdopodobieństwo zdarzenia losowego, polegającego na wylosowaniu nieparzystej liczby oczek. 6. Oblicz prawdopodobieństwo, Ŝe losując jednocześnie dwie liczby ze zbioru Z = {-2,-1,0,1,2,3,4} wylosujemy dwa miejsca zerowe funkcji: 7. Rzucamy dwa razy symetryczną sześcienną kostką do gry. Oblicz prawdopodobieństwo zdarzenia A polegającego na tym, Ŝe liczba oczek w drugim rzucie jest o 1 większa od liczby oczek w pierwszym rzucie. Lekcja 10-11 Temat: Obliczenie prawdopodobieństwa metodą drzewka. Str. 43-47 1. Drzewo probabilistyczne Prawdopodobieństwo moŝna równieŝ obliczać metoda drzewka. Wierzchołki noszą nazwę stanów, a strzałki określają prawdopodobieństwo przejścia z jednego stanu do drugiego i musi ich być tyle, by suma prawdopodobieństw opuszczenia jednego stanu zawsze wynosiła jeden, czyli muszą być przedstawione wszystkie moŝliwe przypadki. Rozwiązując zadania metodą drzewka rozbijamy je na etapy, a w etapach mamy róŝne stany. Przykład W urnie jest 5 kul czerwonych i 15 białych. Oblicz, prawdopodobieństwo, Ŝe losując trzy kule bez zwracania będziemy mieli jedną kulę białą i dwie czerwone. Strona 5 z 7

Zdarzenie losowe A zostały wylosowane dwie kule czerwone i jedna kula biał. Wybieramy właściwe gałęzie na rysunku są zaznaczone na czerwono. Wówczas prawdopodobieństwo obliczamy nastepująco: 15 5 4 5 15 4 5 4 15 5 P(A) = + + = 20 19 18 20 19 18 20 19 18 38 2. Zadania Zad. 1, 2, 3 str. 43 Zad. 4, 5 str. 44 Lekcja druga Zadania Zad. 7, 8 str. 45 Zad. 9, 10, 11 str. 46 Lekcja 12-14 Temat: Własności prawdopodobieństwa. Str. 38-42 1. Przypomnienie! Zdarzenia losowe A; B; C;, to podzbiory A; B; C:, zbioru wszystkich moŝliwych zdarzeń elementarnych Ω. 2. Pojęcia związane ze zdarzeniami losowymi. a) A B - suma zdarzeń losowych (suma zbiorów) b) A B - iloczyn zdarzeń losowych (iloczyn zbiorów) c) A \ B - róŝnica zdarzeń losowych (róŝnica zbiorów) d) A' - zdarzenie losowe przeciwne, czyli zdarzenie równe róŝnicy A'= Ω \ A (jest to dopełnienie zbioru do zbioru wszystkich zdarzeń elementarnych) e) A B - zdarzenie losowe A pociąga za sobą zdarzenie losowe B (zbiór A zawiera się w zbiorze B) f) A B = φ - zdarzenia losowe wykluczają się (zbiory są rozłączne) Strona 6 z 7

4. Własności prawdopodobieństwa: a). Prawdopodobieństwo dowolnego zdarzenia losowego, to zawsze liczba z przedziału P(A) 0; 1, czyli 0 P(A) 1. b) Prawdopodobieństwo zdarzenia pewnego wynosi zawsze P( Ω ) = 1 c) Prawdopodobieństwo zdarzenia niemoŝliwego wynosi zawsze P( φ ) = 0 d) JeŜeli zdarzenia losowe A i B wykluczają się, czyli A B =, to prawdopodobieństwo P(A B) = P(A) + P(B). e) JeŜeli zdarzenia losowe A pociąga za sobą zdarzenie losowe B czyli A B, to prawdopodobieństwo P(A) P(B). f) Prawdopodobieństwo zdarzenia losowego przeciwnego A zawsze wynosi P(A' ) = 1 P(A), czyli P(A) + P(A') = 1 g) Dla dowolnych dwóch zdarzeń losowych A i B związanych z tym samym doświadczeniem losowym zachodzi: P(A B) = P(A) + P(B) - P(A B). 5. Zadania Ćwiczenia 1, 2, 3 str. 38 Ćwiczenia 4, 5, 6, 7 str. 39 Zad. 1, 2 str. 40 Lekcja druga Zadania Ćwiczenia 8, 9 str. 40 Zad. 3, 4, 5, 6 str. 41 Powtórzenie. Zad. 1, 2, 3 str. 42 Lekcja 15-16 Temat: Powtórzenie wiadomości z rachunku prawdopodobieństwa i sprawdzian. Str. 10-52 Zestaw I, II str. 48-49 Test str. 51-52 Lekcja 17 Temat: Sprawdzian z rachunku prawdopodobieństwa i sprawdzian. Str. 10-52 Lekcja 18 Temat: Omówienie sprawdzianu z rachunku prawdopodobieństwa i sprawdzian. Str. 10-52 Strona 7 z 7